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A systematic study of additive isometries on a quaternionic Hilbert space is presented. A 
number of new results describing the properties of such operators are proved. The work 
culminates in the first mathematical proof of Wigner's theorem for quaternionic Hilbert spaces 
of dimension other than 2 which asserts that any operator which preserves the absolute value 
of the inner product on a quaternionic Hilbert space is equivalent, in the sense of differing 
pointwise by a mere phase factor, to a linear isometry. A complete and concise description of 
the exceptional situation in a two-dimensional quaternionic Hilbert space is given. 

I. INTRODUCTION 

This work continues the fundamental study of additive 
operators on a quaternionic Hilbert space undertaken in our 
earlier works. I -3 The relevance of quaternionic vector spaces 
in celestial mechanics was recently demonstrated by Vivar
elli,4 in quantum mechanics by Horwitz and Biedenharn5 

and Adler6 and in relativity by Rocher? and Sharma.8 Ho
momorphisms on any linear space are, of course, linear, but 
because of the noncommutativity of quaternions, linear op
erators on a quaternionic Hilbert space do not form an alge
bra although they do form a ring. In many quantum me
chanical applications it is desirable to have an algebra of 
operators and it was shown in Ref. 3 that the smallest algebra 
of operators which contains the ring of bounded linear oper
ators is the algebra of bounded additive operators. It is for 
this reason that additivity takes the central role in the study 
of operators on a quaternionic space: Even in complex space 
study of additivity is fruitful as has been demonstrated in 
numerous works (see Ref. 2 where further references will be 
found). Isometries are among the simplest operators and, 
therefore, study of additive isometries comes to the forefront 
as soon as the basic properties of additive operators have 
been defined. 3 We prove a number of new results on additive 
isometries but our final result-Wigner's theorem for qua
ternionic Hilbert spaces-is not new. It was correctly stated 
by Bargmann,9 who also gave a "proof," which was a re
markable achievement in view of the very limited number of 
tools available to him. Our own proof is a simple generaliza
tion of our proofJO for the complex case which in the opion
ion of the referee of that work was the first "mathematical" 
proof of the theorem: We hope the same adjective applies to 
our proof in the present case. 

In Sec. II we establish our notation and state with indi
cations of proofs several elementary lemmas which we use in 
the later sections. In Sec. III we state and prove all our main 
results the last of which is Wigner's theorem. In Sec. IV we 
give a concise and complete description of the exceptional 
situation in the two-dimensional case and make a few con
cluding remarks indicating the direction in which our work 
will proceed next. 

II. FORMALITIES 

We denote the fields of real and complex numbers by R 
and C, respectively, and the skew field of quaternionic 
numbers by lHl. Elementary properties of quaternions are de
scribed in Ref. 1. We state briefly the properties we are going 
to need in this work. Quaternions form a normed associative 
division algebra over R and are best described with the help 
of three distinct linearly independent abstract square roots 
of - I, which are denoted by symbols iJ, and k and whose 
products are defined by 

P=/=k 2 = -1, 

ij= -ji= k, 

jk = - kj= i, 

ki= - ik=j. 

(2.1) 

(2.2) 

(2.3 ) 

(2.4 ) 

It is easy to verify that lHl is a four-dimensional vector space 
over R where 1, i,j, and k are members ofa basis. Thus any 
yelHl has a unique representation as 

(2.5) 

with Yo, YI' Y2' Y3 ER. Quaternionic conjugation is defined by 

It is easy to verify that lHl is a normed algebra with the norm 
defined by 

(2.7) 

In addition to the axioms of the norm, the norm satisfies, as 
in the complex case, 

(2.8) 

In the context of a quaternionic Hilbert space, to avoid con
fusion we shall refer to the norms of quaternions as moduli 
though we shall continue to use the same notation for the 
norm. 

Some simple properties of quaternionic numbers that 
we need are collected together as the following lemma. 
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Lemma 2.1: Let YE1Hl. Then 

(i) y = 0 ¢? Yo = YI = Y2 = Y3 = 0, 

where Yo, YI' Y2' Y3 are as in (2.5). 
(ii) If the imaginary square root of - 1 in C is identified 

with the quaternionic i then Y has a unique representation as 

Y= Co + cJ, (2.9) 

with CO, CIEC and further 

iyi* = - iyi = Co - cJ. (2.10) 

Furthermore, in the preceding assertion i can be replaced by 
j (resp. k) andjby k (resp. n. 

(iii) L 'TYT = - Y - 2y*. 
T= iJ.k 

(iv)Letp be any other quaternion, then 

111 + ypll = 111 +pyll· 

(2.11) 

(2.12) 

Proof (i) Follows from the fact that 1, i,j, k form a basis 
in H as a vector space over Rand (ii) and (iii) follow as a 
result of straightforward calculations using Eqs. (2.1)
(2.6). If either p or yis zero the validity of (iv) is self-evident 
but if neither is zero, (iv) follows from the following simple 
calculation: 

111 + ypll = Ilylllly-1 +pll = Ilylllll +pYlilly-11l 

= 111 +pyll· (2.13 ) 
o 

Let jy be a vector space over IF, where IF = R, C, or H. 
We define a positive definite Hermitian form on jyby 

(,):jyxjy --IF, 

(pu,qv) = p(u,v)q*, 

(u + v,w) = (u,w) + (v,w), 

(u,v)* = (v,u), 

(2.14 ) 

(2.15 ) 

(2.16) 

(u,u) = 0 only ifu = 0, (2.17) 
where p* = p if IF is real, p* = complex conjugate of p if IF is 
complex, and p* = quaternionic conjugate of p iflF is quater
nionic. 

Let jyl and jy2 be Hilbert spaces over IF. We say that a 
map A:jyl -- jy2 is additive if and only iffor all U,VEJY'I 

A(u + v) =A(u) +A(v). (2.18) 

If, in addition, the map A satisfies 

A (pu) = pA (u) 

for all pElF and all UEJY'I' then it is called linear. 

If, on the other hand, A satisfies 

A(pu) =p*A(u), 

(2.19) 

(2.20) 

for all pEF and all UEJY'I' then it is called semilinear. It was 
shown in Ref. 2 that coordinate-free semilinear maps ac
cording to this particular definition do not exist for the qua
ternionic case. In a quaternionic Hilbert space it is necessary 
to define three different kinds of semilinearities called i-, j-, 
and k-semilinearity thus: A i-semilinear map A from jyl to 
jy2 is an additive map that satisfies 

A(ru) = rAu, A(iu) = iAu, A(ju) = -jAu, 

A(ku) = - kAu, (2.21) 
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for allrER and all UEJY'1 andj-, and k-semilinearities have 
analogous definitions. It was shown by Coulson II that any 
additive map A can be written as a sum offour maps Ao, A I' 
A2, andA3, whereAo is linear and AI' A2 , andA3 are, respec
tively, i-,j-, and k-semilinear and that this decomposition is 
unique. In this decomposition Ao, A I' A 2, and A3 are given by 

Aou=HAu-iA(iu) -jA(ju) -kA(ku)], (2.22a) 

Alu = HAu - iA(iu) + jA(ju) + kA(ku)], (2.22b) 

A2u = HAu + iA(iu) - jA(ju) + kA(ku)], (2.22c) 

A3U = HAu + iA(iu) + jA(ju) - kA(ku)]. (2.22d) 

Here we have a slight generalization of a similar decomposi
tion given in Ref. 5. 

Let p be a quaternion of unit modulus. An additive map 
A from a quaternionic Hilbert space jyl to another quater
nionic Hilbert space jy2 is said to be p-semilinear if it satis
fies for every UEJY'I and every aEH 

A(au) =p*apAu. (2.23) 

It is evident that the various semilinearities defined above 
are special cases of this general definition. 

As was correctly shown in Ref. 2, a coordinate-free de
finition implied in (2.20) leads to a contradiction, but given 
a basis {u;}, not necessarily orthonormal, we can define a 
semilinear operator A analogous to that implied by (2.20) by 

A (~a;u;) = ~arA(u;). (2.24) 

Coordinate-dependent objects usually do not playa funda
mental role in either the mathematical or the physical devel
opment of a theory, though, there are, of course, important 
exceptions the most familiar of which is the K operator of 
Wigner l2 (though, of course, even K is coordinate indepen
dent in the Hilbert space of square integrable complex-val
ued functions on an Euclidean manifold). Furthermore the 
correspondence a t--+(l* in the quaternionic case is an anti
isomorphism (anti because it is product reversing) rather 
than an isomorphism: for this reason we call the operator 
defined in (2.24) an antilinear operator. Again we can have 
coordinate-dependent definitions of i-, j-, and k-antilinear 
operators similar to those defined by (2.21) and analogous 
relations defined relative to a basis and more generally for a 
quaternion p of unit modulus a p-antilinear operator is an 
additive operator that satisfies 

A (~a;u;) = ~p*arpA(u;). (2.25) 

It was proved by Pian and Sharma 13 that in the complex case 
every additive continuous map from jyl to jy2 is a direct 
sum of a linear and a semilinear continuous map from jy I to 
jy2 (Ref. 13 was in the more general context of Banach 
spaces of which Hilbert spaces are particular cases). The 
corresponding decomposition in the present case is given by 
Eqs. (22a)-(22d). 

A map from a set Y to itself will be called an operator 
onY. 

Let A be an operator or a matrix. A is said to be involu
tivel4 if and only if 

A 2 = 1. (2.26) 
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Let d' be an algebra. An involution * on d' is an involu
tive operator on d' which takes A to A * and satisfies the 
following properties. 

(i) The operator * is a homomorphism of the additive 
group in the algebra, that is, 

(A+B)*=A*+B*, (2.27) 

for all A, BEd', 
(ii) The operator * is product reversing, that is, 

(AB)* = B *A *, (2.28) 

and being involutive, of course, means that it satisfies 

A ** =A, (2.29) 

for all AEd'. This definition is a generalization of the one 
given by Rudin. 15 Here, unlike Rudin, we do not require * to 
be semilinear but we require it to be additive. 

It is now known3 that if A is a bounded p-semilinear 
operator on a quatemionic Hilbert space Jr', then its adjoint 
A * exists, is p*-semilinear and satisfies 

(Ax,y) = p*(x,A *y)p, (2.30) 

and this includes the case when A is linear which corre
sponds to p = 1. 

Let Jr' be a Hilbert space over any field. Two operators 
A and B on Jr' are said to be Wigner equivalent 10 if their 
images at each point in Jr' differ merely by a phase factor, 
that is, for each xEJr', Ax = aBx, where a has unit norm. It 
is trivially easy to verify that Wigner equivalence is an equiv
alence relation. 

We now state some basic lemmas with brief indication of 
their proofs which we shall need in the later sections. 

Lemma 2.2: Every inner-product preserving map on a 
Hilbert space is necessarily linear. (Note that such a map 
need not be surjective.) 

Proof Let A be an inner-product preserving map on a 
Hilbert space. The lemma follows by a simple verification of 

IIA(ax + py) - aAx - PAyl1 = 0, (2.31) 

where x and yare any pair of vectors and a and P are any pair 
of scalars. D 

Lemma 2.3: The real algebra of quatemions is isomor
phic with the real algebra generated by complex 2 X 2 matri
ces with entries a and a as the diagonal elements and P and 
- 7J as the off-diagonal elements where a and P are any two 

complex numbers. 
Proof See Ref. 1. (An easy way of obtaining this result is 

to identify the quatemionic i, j, and k with icuz' icuy, and 
icux, respectively, where the u's are Pauli matrices and ic is 
the complex squareroot of - 1 and is identified with the 
quatemionic i.) D 

Lemma 2.4: The group of quatemions of unit modulus 
[called Sp ( 1 )] is isomorphic with SU (2). 

Proof An elementary consequence of the identification 
made in Lemma 2.3. D 

Lemma 2.5: The algebra SO(3) is isomorphic with 
SU(2)/'G'SU(2), where 'G'SU(2) is the center ofSU(2). 

Proof: It follows by verifying that the transformation 

[ 
-z' 

x' -iy' 
x' + iY'] 

z' 

1037 J. Math. Phys., Vol. 31, No.5, May 1990 

= [ a _ ~] [ - ~ x + iY] [~ - P] 
-P a X-ly z P a 

(2.32) 

corresponds to the rotation of Euclidean coordinates (x,y,z) 
in R3 by Euler angles «(J,f/J,,p) as defined in Ref. 12 if 

a=e-i(9+t/J)/2cos(f/J/2) (2.33) 

and 

P= _e- i(9-t/J)/2sin(f/J/2), (2.34) 

and that the correspondence is a bijection if the transforming 
unitary matrices and their negatives (obtained by reversing 
the sign of each entry) are regarded to be the same in the 
sense which is equivalent to taking the quotient by the cen
~ D 

It is easy to see that the transformation a ~yay-I 
(resp. ya*y-I ), where y is a fixed nonzero quatemion and a 
is any quatemion is an automorphism (resp. antiautomor
phism) that preserves the norm and the center of the algebra 
of the quatemions. An automorphism (resp. antiautomor
phism) that can be written in this form is called an inner 
automorphism (resp. inner antiautomorphism). Having de
fined an inner automorphism we are in a position to assert 
our next lemma. 

Lemma 2. 6: All norm-preserving automorphisms of the 
quatemions are inner automorphisms. 

Proof An automorphism evidently takes the center into 
the center and it is obvious that the only norm-preserving 
automorphism of R (which is the center in this case) is the 
identity transformation. Thus any norm-preserving auto
morphism of the quatemions leaves the center fixed 
pointwise. Regard the quatemions as a four-dimensional 
real space in which the imaginary part of the quatemions are 
isomorphic with R3. The norm-preserving automorphisms 
of R3 are members of SOC 3) which as we have just seen is 
isomorphic with the group of unit quatemions and the corre
spondence is through a transformation which makes all 
these rotations into the inner automorphisms of the quater
nions. D 

The proof we have given depends on the proof of 
Lemma 2.5 which depends on some lengthy though straight
forward computations. There is another way of looking at 
things which gets to the result avoiding the computations. 

Alternative proof of Lemma 2. 6: Note first that the trans
formation 

[a: a~] = [PII P12] [a l a 2] [Yll YI2] (2.35) 
a 3 a4 P21 P22 a 3 a 4 Y21 Y22 

is a linear transformation of the coordinates (a l ,a2,a3,a4) of 
a vector in ~. It is very simple to verify that there are 16 
linearly independent transformations of this type and the 
dimension of the space of linear transformations from ~ to 
C4 is also 16, hence every linear transformation on C4 can be 
written as a linear combination of terms in this form. It is not 
difficult to prove that all automorphisms that preserve the 
value of a la4 - a 2a 3 can be written as a single term in this 
form. In a representation of an automorphism the two trans
forming matrices must each be invertible and since the auto
morphism takes the unit element of the quatemions which is 
represented by a unit matrix into itselfit will have to be of the 
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form pap -I. Finally it must take a quaternion a of a unit 
modulus (that is, aa* = 1) into a quaternion of unit modu
lus, hence 

(pap-I) * = (pap-I) -I, (2.36a) 
which is the same thing as 

(2.36b) 
or 

p*pa- 1 = a-1p*p. (2.37) 

Thus p* p is a 2 X 2 matrix that commutes with every unitary 
matrix among them the matrices [6 _? ] and [_? 6] . 
The requirement that p*p commutes with the first of these 
matrices leads to the conclusion that its off-diagonal ele
ments are zero and the requirement that it commutes with 
the second matrix leads to the conclusion that its diagonal 
elements are equal. This proves that p is a complex constant 
times a unitary matrix, but a unitary p and a multiple of p by 
a complex constant clearly correspond to the same automor
phism. Thus every automorphism of H is an inner automor
phism. 0 

This result is, of course, a particular case of the well
known theorem in ring theory which asserts that if A is an 
automorphism of a simple algebra which is finite-dimension
al over its center and if every point of the center is a fixed 
point of A then A is an inner automorphism. 16 Our method 
can also be used to prove the analogous result: All norm
preserving antiautomorphisms of H are inner antiautomor
phisms. 

We now come to our last basic lemma. 
Lemma 2.7: LetfH -- H be a map which preserves inner 

products on H regarded as an Euclidean four-dimensional 
space and which satisfiesf (1) = 1. Thenfis either an inner 
automorphism or an inner antiautomorphism on H. 

Proof Remembering that when H is regarded as a four
dimensional Euclidean space 1, i, j, and k satisfying Eqs. 
(2.1 )-( 2.4) are regarded as an orthonormal basis, by 
Lemma 2.2fis real-linear and since it preserves inner prod
ucts and satisfies f (1) = 1, it leaves real quaternions fixed 
and transforms the imaginary space of quaternions in such a 
way that orthogonal vectors go into orthogonal ones. We 
know geometrically that only such transformations in three 
dimension are space inversion and rotation. A pure rotation 
will take i,j, and k into orthogonal vectors which continue to 
satisfy Eqs. (2.1 )-(2.4) and an immediate consequence is 
that products are preserved in which case our map is an inner 
automorphism by the preceding Lemma. If rotation is com
bined with space inversion, products are reversed and we 
have an inner antiautomorphism. 0 

Corollary 2.7.1: Let! H--H be a norm-preserving map 
with 1 as a fixed point and satisfying 

111 +a{j*1I = 111 +f(a)(j({j»*II, (2.38) 

thenfis either an inner automorphism or an inner antiauto
morphism on H. 

Proof Follows from the preceding lemma by noting that 
ifH is regarded as a four-dimensional Euclidean space, then 
the inner product of two quaternions a and {j is Re(a{j *). 0 

Lemma 2.8: Let A be an operator on a Hilbert space JY 
over any field whose restriction to each one-dimensional 
subspace of JY is additive and which for any pair of mutually 
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perpendicular vectors x and y in JY satisfies 

A(x + y) =Ax +Ay, 

then A is additive on JY. 

(2.39) 

Proof In view of what is given additivity has to be veri
fied only for a linearly independent pair of vectors which are 
not mutually perpendicular and since the sum of any two 
such vectors can be written as a sum of two mutually perpen
ducular vectors verification is trivial with the help of what is 
given. 0 

III. THE MAIN RESULTS 

Proposition 3.1: Let A be a p-semilinear isometry from a 
quaternionic Hilbert space JY to itself. 

Then 
(Ax,Ay) =p*(x,y)p. (3.1) 

Further A * A = I and AA * = P, where I is the identity map 
on JY and P is an orthogonal projection on P(JY). Further
more if A is surjective then P = I and pA is unitary. 

Proof Consider first the case whenp = 1, in which case 
A is linear. Since A preserves the norms of vectors, by consid
ering the norms of A x, Ay, andA(x + y), where x andy are 
arbitrary vectors in JY, we easily deduce 

(Ax,Ay) + (Ay,Ax) = (x,y) + (y,x). (3.2) 

Replacing y, in turn, by iy, jy, and ky, we get after simple 
rearrangement 

(Ax,Ay) + i(Ay,Ax)i = (x,y) + i(y,x)i, (3.3) 

and two similar equations with i replaced by j and k, respec
tively. Adding together the three equations thus obtained 
and taking into account (2.11) gives us 

(Ax,Ay) - (Ay,Ax) = (x,y) - (y,x). (3.4) 

By adding the preceding equation to (3.2) we get 

(Ax,Ay) = (x,y). (3.5) 

In the general case whenp is any quaternion of unit length, it 
follows from (2.23) thatpA is linear and by using (3.5) we 
are able to establish immediately the validity of (3.1). 

By using (2.30) we have in all cases 

(A *Ax,y) = (x,y). (3.6) 

This implies that A * A = 1. Then AA * is clearly linear, self
adjoint, and idempotent so that it is an orthogonal projection 
on its image. The rest of the assertion is obvious. 0 

We note that (3.1) is also valid if A is a p-semilinear 
isometry from one quaternionic Hilbert space to another. 
Further if A is a linear isometry from a quaternionic Hilbert 
space JYto itself then every unit scalar multiple of A (when 
we multiply a linear operator with a unit scalar p* we get a p
semilinear operator) is an additive operator on JY which 
preserves the modulus of the inner product. We prove that 
all additive operators on JY that preserve the modulus of the 
inner product arise in this way provided the dimension of JY 
is at least 2. Before we prove this we provide counterexam
ples in the one-dimensional case: here we can identify JY 
with H and any inner antiautomorphism is additive and pre
serves the modulus of the inner product and we will see in the 
corollary of the next proposition that such an operator can 
not be a scalar multiple of a linear isometry. 
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Proposition 3.2: Let K be a quaternionic Hilbert space 
of dimension greater than 1. An operator preserving the 
modulus of the inner product on K cannot be a p-antilinear 
operator. 

Proof: Suppose an operator A preserves the modulus of 
the inner product and is p antilinear with respect to a nor
malized basis. Since the dimension of K is at least 2, we can 
certainly find two distinct members u and v in this basis so 
that they are both unit vectors and linearly independent. We 
shall establish a contradiction. Consider 

0= II(u + iV,ku - jv)II = II(A(u + iv),A(ku - jv)II 

= II (Au,Au)p*kp - (Au,Av)p*jp 

- p*ip(Av,Au)p*kp + p*ip(Av,Av)p*jpll 

= 112p*kp + (Au,Av)p*ipp*kp - p*ip(Av,Au)p*kPll· 
(3.7) 

This implies 

2 = p*ip(Av,Au) + (Au,Av)p*i*p 

= 2 Rep*ip(Av,Au). 

Hence 

1<IIP*ip(Av,Au) II = II (Av,Au) II 
= II(v,u)II<IIvlliluil = 1. 

This is possible only if 

II (v,u) II = IIvllilull, 

(3.8) 

(3.9) 

(3.10) 

or, in other words, only if u and v are linearly dependent (or 
parallel). This contradiction proves our assertion. 0 

Corollary 3.2.1: An inner antiautomorphism cannot be a 
scalar multiple of an inner automorphism. 

Proof: We first prove that no inner antiautomorphism 
can be represented as an inner automorphism. To see this, 
suppose that the inner antiautomorphism induced by the 
quaternion p (that is, a ~ pa* p*) is equal to the inner auto
morphism induced by the quaternion q (that is, a ~ qaq*) 
where without loss of generality we assume that p and q have 
unit moduli. Then for any aEH, we have 

pa*p* = qaq* (3.11 ) 

or 

a* = p*qaq*p. (3.12) 

If we now take a = k, we have 

- k = p*qkq*p = p*qijq*p = p*qiq*pp*qjq*p = i*j* = k. 
(3.13 ) 

This contradiction proves that no isomorphism can be both 
an inner automorphism and an inner antiautomorphism. 
Finally, since both preserve the real quaternions we do not 
really have a choice of a scalar multiple because the only 
scalar which mUltiplied to a real number leaves that number 
unchanged is 1. 0 

Proposition 3.3: Let A be an additive operator on a qua
ternionic Hilbert space K of dimension greater than 1 that 
preserves the modulus of the inner product of any pair of 
vectors. Then A is a p-semilinear isometry. 

Proof Since A preserves orthogonality and norms we 
have for any xEK and any aEH 
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(3.14 ) 

where II ax II = IIall· We note that for every xEK, Ix = 1. Let 
x and y be mutually orthogonal unit vectors. Then 

III +a,8*11 

= II(x+ay,x+!:MII = II(A(x+ay),A(x+,8y»II 

(3.15 ) 

By Corollary 2.7.1 the correspondence ~y is either an 
inner automorphism or inner antiautomorphism of H. Let z 
be any unit vector perpendicular to y, then 

0= II(az+y,z-a*y)II = II(A(az+y),A(z-a*y»II 

= IIaz - ayll, (3.16) 

for all aEH. Hence a z = ay. Thus a~y is the same func
tion for all members of an orthonormal basis. Proposition 
3.2 rules out the possibility that this function is an inner 
antiautomorphism. Hence there exists a unit quaternion p 
such that 

Aax = p*apAx, ( 3.17) 

which shows that A is a p-semilinear isometry. 0 
Proposition 3.4: Let T be an operator on a quaternionic 

Hilbert space K that satisfies 

(Tx,Ty) = p*(x,y)p, V (x,y)EKXK, (3.18 ) 

for some unit quaternion p. Then T is a p-semilinear iso
metry. 

Proof: Follows by observing that p T preserves the inner 
product and therefore by Lemma 2.2 is linear and therefore, 
T = p*pT is p-semilinear which evidently preserves the 
norm and is an isometry. 0 

Proposition 3.5: Let K be a two-dimensional quater
nionic Hilbert space. Then there exist operators on Kwhich 
are not Wigner equivalent to a linear isometry. 

Proof: Let {u,v} be an orthonormal basis in K. Let Ube 
any unitary operator on K, then {Uu, Uv} is also an ortho
normal basis in K. Let p be any nonreal unit quaternion. We 
first write an arbitrary vector w in the form w = rau + ,8v, 
where r is real, a is a unit quaternion!--.and,8 is any quater
nion. If r is zero or a is real we define U by 

Uw = p*(ra)*pUu + p*,8*pUv, ( 3.19) 

which is straightforward p-antilinearity. When r is nonzero 
and a is nonreal, we define Uby first writing was 

w = rau + aa*,8v, (3.20) 

and then by the following relation which looks like p antilin
earity but is not because it fails to reverse the product of a 
and a*,8: 

Uw = p*(ra)*pUu + p*a*pp*(a*,8)*pUv. (3.21 ) 

With the help of Lemma 2.1 (iv) it is easily verified that U 
preserves the moduli of inner products. The only linear iso
metry which takes u into Uu and v into Uv is U. We shall 
show that U cannot be Wigner equivalent to U. Suppose the 
contrary is true, that is for some unit quaternion r depending 
on both a and (J 

Uw = rUw. (3.22) 
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Substitution in (3.21) with the help of (3.20) gives 

r=p*a*pa*, (3.23) 

which shows that r is independent of {3 and substituting this 
in the coefficient of Uv gives 

a*{3 = p* (a*{3) *p. (3.24) 

Since a*{3 as {3 ranges over lBI is merely a different enumera
tion (or permutation) of members of lBI, we have established 
a contradiction with the help of Corollary 3.2.1. 0 

Proposition 3.6: Let Tbe an operator on a quaternionic 
Hilbert space cW' of dimension other than 2 that preserves 
the modulus of the inner product, then Tis Wigner equiva
lent to a linear isometry A.lfin addition Tis surjective, then 
A is unitary. 

Proof' In dimension 1 any operator that preserves the 
modulus of the inner product and therefore the norm is 
clearly Wigner equivalent to the identity operator. 

Suppose now that the dimension of cW' is at least 3. Giv
en T with the stated properties we shall construct a linear 
isometry U which is Wigner equivalent to T. Take any unit 
vector x in cW', let fE be the one-dimensional space spanned 
by x. We shall first define an operator A on (x + fEl) U fE\ 
and later we shall use A to define U. We start by defining 

Ax= Tx. (3.25 ) 

For any unit vector JlEfEl and any quaternion a we define 
the images of A at x + ay and ay to be unit scalar multiples 
of the corresponding images of T in such a way that 

(Ax.A(x + ay» = 1 (3.26) 

and 

(A(x+ay).A(ay» = lIall 2
• (3.27) 

Since in the domain in which A has been defined thus far, it is 
Wigner equivalent to T, it too preserves the moduli of the 
inner products. It is evident that any operator which pre
serves the modulus of the inner product preserves norms and 
perpendicularity of vectors: this fact together with the defin
ing equations imply that 

A(x + ay) = Ax + A(ay) = Ax + ayAy, (3.28) 

where 

Ilayll = Ilall· (3.29) 

For a fixed vector JlEfEl and a, aE 1HI, we have 

111 +aa*11 = II(A(x+ay).A(x+ay»1I = 111 +aya;lI· 
(3.30) 

This together with the fact that (3.28) implies that 1 y = 1 
leads us to conclude with the help of Corollary 2.7.1 that the 
mapping a~ay is either an inner automorphism or an inner 
antiautomorphism of 1HI; in either case A restricted to the 
one-dimensional subspace spanned by y is additive. We shall 
prove next that A restricted to fEl is additive which by Prop
osition 3.3 will rule out the possibility that the mapping 
~ay is an inner antiautomorphism of 1HI. 

Next let y and z be any pair of mutually perpendicular 
unit vectors in fEl and let a and{3be any pair of quaternions. 
Remembering that ay + {3z divided by its norm is a unit 
vector in fE\ the equation corresponding to (3.28) for 
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A (x + ay + {3z) reads, after again taking into account that 
A preserves norms and perpendicularity of vectors: 

A(x + ay + {3z) = Ax + A (ay{3z) =Ax + a'Ay + {3'Az, 
(3.31) 

where a' and{3' have the same moduli as a and{3, respective
ly. Taking the absolute values of the inner product of the two 
sides of (3.28) with the corresponding sides of (3.31) gives 

111 + aa*11 = 111 + aya'*II, 

which evidently implies 

and similarly 

{3'={3z, 

so that 

A(ay+{3z) =A(ay) + A ({3z) , 

(3.32) 

(3.33 ) 

(3.34 ) 

(3.35) 

which implies that the restriction of A to fEl satisfies the 
requirements of Lemma 2.8 and is, therefore, additive. 
Hence from Proposition 3.3 it now follows that the restric
tion of A to fEl is a p-semilinear map for some unit quater
nion p and thus pA is a linear isometry which is Wigner 
equivalent to A and, therefore, to Talso. We take U to be pA 
extended by linearity to the whole of cW'. Since we know that 
the values of U differ from those of T (x + fEl) U fE1U fE 
by a phase factor only, all that remains to be done is to check 
that U(ax + {3y) differs from T(ax + {3y) by a phase factor 
only: here JlEfEl and a and {3 are an arbitrary pair of nonzero 
quaternions. By the linearity of U and the known fact that on 
x + fE1U and T differ by a phase factor only, we have 

T(ax + {3y) = T(a(x + a- 1{3y» = aT(x + a- 1{3y) 

= arU(x + a- 1{3y) 

(3.36) 

where r has unit modulus and a and a have the same moduli. 
Thus Tis Wigner equivalent to the linear isometry U. The 
proof of the rest of the assertion is obvious. 0 

In this connection it remains only to remark that U is 
Wigner equivalent to - U, as was first pointed out by Barg
mann.9 Consequently U in the proposition above is unique 
up to a sign. 

IV. DISCUSSION 

The most remarkable thing about Wigner's theorem for 
quaternionic Hilbert spaces is that for such spaces dimension 
2 is exceptional. The first counter example was given by 
Bargmann.9 Our proof of Wigner's theorem enables us to 
systematically describe all possible counter examples: Barg
mann's and our own among them. Let Tbe an operator on a 
quaternionic Hilbert space cW' of dimension 2 which pre
serves the modulus of the inner product, but is not Wigner 
equivalent to any unitary operator on cW'. We shall deter
mine all possible forms of T. Let {x,y} be an orthonormal 
basis in cW', then since T preserves orthonormality {Tx, Ty} 
is also an orthonormal basis. Clearly there is a unitary opera
tor U which takes {x,y} to {Tx,Ty}. Proceeding as in the 
proof of Wigner's theorem we define on operator A which is 
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Wigner equivalent to T and which demonstrates the various 
possibilities. We set Ax = Tx = Ux and define A on 
(x + fl'1) U fl'1. As in the proof ofWigner's theorem it fol
lows that A thus defined induces either an inner automor
phism or an inner antiautomorphism. If A were inducing an 
inner automorphism, then as in the last part of the proof it 
will follow that A is Wigner equivalent to a unitary operator. 
Thus A must be a p-antilinear operator on (x + fl'1) U fl'1. 

We have seen that such an A cannot be Wigner equivalent to 
either a linear of antilinear operator, in the latter case be
cause we have seen that antilinear operators do not preserve 
the moduli of inner products unless the dimension of the 
space is I. On fl' all maps to T( fl') that preserve the moduli 
of inner products are Wigner equivalent to each other. For 
considering the remaining points of JY", that is those not in 
fl'Ufl'1 U(x+ fl'1), these can be written in the form 
ax + f3y with a neither zero nor 1 and f3 nonzero. We can 
rewrite these vectors in the form a(x + a-I f3y) and from 
the argument familiar from the proof of Wigner's theorem 
we can write for any definition of A on these points which 
preserves its Wigner equivalence to T 

A(a(x + a- 1f3y» = rT(a(x + a- lf3y» 

= ra'T(x + a- 1f3y) = a"A(x + a- 1f3y), (4.1) 

where r has unit modulus and a, a', and a" have the same 
moduli. We can choose the correspondence a~" to be any 
inner automorphism or any inner antiautomorphism on H. 
The interesting point to note is that even if we choose this 
correspondence to be the same as the one which gives us a p
antilinear operator on (x + fl'1) U fl'\ we do not getp anti
linearity on the whole space. To see this, consider the action 
of A defined by these prescriptions on ax + f3y(aoj=O), 
clearly 

A (ax + f3y) = p*a*pAx + p*a*f3 *a*-lpAy, 

which is not the same as p*a*pAx + p*f3 *pAy that one 
would expect if A were p antilinear on the whole space.Final
ly we can compose any such A with any unitary transforma
tion either on the left or on the right to get another operator 
which preserves the modulus of the inner product without 
being Wigner equivalent to any unitary transformation. It is 
possible to systematically classify all these possibilities and 
study how they are related to each other, but at the present 
time there does not seem to be sufficient motivation for un
dertaking such a study. We will, however, point out that the 
counterexamples of Bargmann9 and of this paper are cov
ered by these possibilities as they must be because the possi
bilities above are exhaustive. Finally we point out that, as is 
easy to see, each counterexample gives a discontinuous oper
ator (to see this, take U in the example of Proposition 3.5 to 
be the identity operator on JY" and set p = a = i and f3 = j. 

The vectorjv can also be written as lim rau + aa*jv. Hence 
r_O 
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if U were continuous, UUv) can be evaluated by either 
(3.19) or (3.21), but one of them gives the valuejv while the 
other gives-jv. The demonstration for the general case is no 
harder.). Thus we could have used the lack of continuity to 
prove that these operators are not Wigner equivalent to any 
linear operator. However, there is no need to use analysis 
where one can reach one's goal with algebra alone! 

We hope that our proof ofWigner's theorem makes the 
theorem as obvious to everyone as it was to Wigner and we 
hope and believe that it is mathematically more rigorous as 
well as more elementary than Bargmann's.9 Apart from a 
new counterexample and a new proof we have presented a 
number of results that are technically new but we wish to put 
greater emphasis on the newness of our methods rather than 
of our results. Even the methods are not all that new but they 
are designed in such a way that they bring rigorous math
ematical methods with the use of only simple and easy con
cepts. 

In our future work we shall continue to develop the 
mathematics of operators on a quaternionic Hilbert space, 
but time seems ripe for a reappraisal of the theory of time 
reversal operator as well as charge conjugation and parity in 
the light of all the experience gained thus far and to see how 
much mathematical rigour can be brought into the theory of 
these operators. Work is in progress and will be reported in 
due course. 
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The algebra of the group of smooth maps from a manifold M to a compact simple 
Lie group G is studied for two cases. The first is when M is the double coset 
SO(d.R) \SO(d + I,R)/SO(d.R), the corresponding maps are those from a d sphere to G 
that are invariant under left translations by elements from SO(d,R). In the second 
example, M is a two-dimensional torus. The problem of central extension of these algebras is 
solved. For the first example, no central extension is possible. For the second, the number 
of independent central extensions is infinite. 

I. INTRODUCTION 

Let G be a Lie group, g its Lie algebra over the field F, 
and M a smooth COO manifold. Homotopically trivial 
smooth maps from M to G constitute a group aM under 
pointwise multiplication. This group has the natural struc
ture of an infinite-dimensional Lie group. The correspond
ing Lie algebra gM, the algebra of flows, consists of COO 
functions M --+g with pointwise commutator. That is to 
say, the algebra of flows is definable by the structure 
g ® Coo (M) with the commutator given by the formula 

where gl> g2eg and al> a2ECoo (M) and the commutative 
algebra Coo (M) is defined over the same field F as is g. 
When M is a circle SI, gSl is the loop algebra-the quotient 
of the Kac-Moody algebra 1.2 by its center. When M is a 
d-dimensional sphere Sd, the corresponding sphere alge
bras are of interest. Two special cases of these, namely, 
d = 2 and d = 3, and G compact and simple, have been 
studied recently. 3.4 

To analyze the structure of an algebra of flows, one 
chooses a basis. This is provided by a suitable choice of the 
basis of g and a choice of a complete set of functions on M. 
For the loop algebra, a complete set of functions is pro
vided by T, n = integer, here the complex number Z pa
rametrizes the circle Z = ei8• For the cases M = S2 and 
M = s3, the complete set off unctions are, respectively, the 
spherical harmonics Y1m((J, cfJ) and the rotation matrices 
D~m·(a, /3, r)· Here, a, /3, and r are the Euler angles. The 
problem of understanding the structure of an algebra of 
flows, in its essence, is the problem of displaying the alge
braic structure of the corresponding complete set of func
tions in a compact, tractable, and reasonably simple man
ner. 

A related problem concerns the question of central 
extensions of an algebra of flows. The number of indepen
dent central extensions to gM is equal to the dimension of 
the second cohomology spaces H2(gM) of algebra gM, with 
coefficients in F (Ref. 5). When M is a manifold of dimen
sion greater than one and G compact, the space H2(gM) is 
infinite dimensional, as has been proved by Feigin.6 In Ref. 
4, the spaces H2(gM) for the cases M = S2, M = S3, and 
G compact and simple, have been explicitly constructed. 

Thus for the case M = S2, the current algebra correspond
ing to gM has an anomaly term that contains an arbitrary 
function on the two sphere. When this function is 
expanded into the complete set Y1m of functions, one gets 
the infinite number of central extensions. Similarly, for the 
case M = S3, the anomaly term contains three arbitrary 
functions. 

How much of the analysis of Ref. 4 could be general
ized to the d-dimensional sphere Sd (d > 3)? For a 
straightforward generalization, we need to have at our dis
posal a complete set of functions on Sd. While this task 
entails no difficulty in principle, it is quite messy in prac
tice. The functions are of d independent variables; and 
their algebraic structure (reduction of a product of two 
functions into the sum) is rather complicated, to say the 
least. One way to cut down on the number of variables, in 
fact, to be left with a single variable is to restrict oneself to 
a particular subspace (of the d sphere) that is realizable as 
a certain double coset, as follows.7.8 Let H = SO(d 
+ 1, R) and the closed subgroup K = SO(d, R), the left 
coset space H/K is Sd, our M is the double coset 
K\H/ K. Functions on the left coset are realizable as func
tions f(s) on H such that fest) = f(s) for all teK; that is, 
as functions on H that are invariant under right transla
tions by elements from K. Similarly, the functions on the 
right coset are functions on H that are invariant under left 
translations by elements from K. Functions on H, f(s) 
which are invariant under both left and right translations 
by elements from K,f(tst') = f(s) for t, t' in K, are the 
functions on the double coset K\H/K. They may also be 
identified with functions on Sd such that h(t·x) = hex) 
for teK and xeSd• A basis for the space L2(K\H/K) of 
square-integrable (with respect to the canonical measure) 
functions on the double coset is provided by the so-called 
zonal spherical harmonics.7,8 Embedding the sphere ~ in 
Rd + 1 in the canonical way, one may also identify the zonal 
spherical harmonics with the restriction to Sd of the ho
mogeneous harmonic polynomials in Rd + 1. These func
tions are very interesting, they play a central role in the 
theory of generalized Fourier analysis of groups.7,8 In Sec. 
II, we study the algebra of flows for the case where M 
= K\ H/K, H = SO(d + 1, R), K = SO(d, R), and G 
is compact and simple. We shall explicitly display the basic 
commutation relations for this Lie algebra. We shall also 
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find that this algebra does not possess any central exten
sion. We shall call these the zonal sphere algebras. 

The fact that the number of possible independent cen
tral extensions to gM is infinite, whenever the dimension of 
M is greater than one, raises many questions. Looked at 
one way, it seems that the whole thing has become a bit 
meaningless. On the other hand, if there is, as there indeed 
is, an infinite number of central terms, then it is with an 
infinite number of central terms that one has got to learn to 
live. There is yet another possibility. The centrally 
extended algebra might possess representations in which all 
but a finite number of central terms vanish. In any event, it 
is plainly desirable to work out an example of an algebra 
with an infinite number of central terms which is, at the 
same time, simpler than the examples in Ref. 4. The sim
plest example of such an algebra is obtained when the man
ifold M is a two-dimensional torus. In Sec. III, we shall 
study this example. 

II. ZONAL SPHERE ALGEBRAS 

We wish to consider the algebra of flows corresponding 
to the group of smooth (COO) maps from M to G, where M 
is subspace of Sd, which is realized as the double coset 
SO(d) \SO(d + 1 )/SO(d); here the d sphere Sd is iden
tified with the left coset space SO(d + 1 )/SO(d). For 
functions on M, a basis (a complete set of functions) is 
provided by the zonal spherical harmonics. The latter are 
identifiable7,8 with the classical Gegenbauer polynomials 
c:n(x); here, m is the degree of the polynomial and the 
index A is related to the dimension d of the sphere 
Sd via d = 2A + 1, and x = cos () where () parametrizes 
the double coset. Let us consider some examples. For d 
= 2, C:t2 is the usual Legendre polynomial P m(cos (}). For 
d = 3, C~ is sin(m + l)(}/sin (). Recall that S3 is the 
manifold ofSU(2) and thus a complete set off unctions on 
S3 is provided by the functions that provide the set of 
unitary irreducible representations of SU (2) (rotation ma
trices). The polynomial C~(cos (}) is the corresponding 
character function. For a fixed A, the product of two poly
nomials can be expanded as 

C;;(x)~(x) = I c"m0(x), (2.1) 
I 

where the expansion coefficients c"m are given by 

[21 - 2A1T/(r(A»2] [r(l + 2A)I(I + A)l!]c"m 

= f~1 0(x)C;;(x)~(X)(1_X2)A-I/2dx. (2.2) 

The integral that appears above is known.9 We thus obtain 
the following expression for the coefficient C~m: It is zero 
unless I + m + n is even and there exists a triangle with 
sides I,m,n; when non vanishing it is given by 

c'.. _as_las_mas_nl+ArU+1) r(s+U) 
nm- as s + A res + 1) r(l + U)' 

(2.3) 

where 
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(2.4) 

and 

s=4(1 + m + n). (2.5) 

We note that the coefficients c"m are non-negative, the 
nonvanishing ones given by (2.3) are positive. It is also 
interesting to note that for the special case A = 1, corre
sponding to the zonal harmonics for S3, all the nonzero 
coefficients become unity, C~m = 1. This is as it should be. 
Similarly, the case A = ! is easily checked to reproduce the 
correct result for Legendre polynomials. 

Let r, a = 1,2, ... ,dim(G), be a basis for the Lie al
gebra g of G, and .rbc the corresponding structure con
stants. A basis for the algebra gM may now be chosen as 
r:." m is a non-negative integer, in such a way that the 
basic commutation relation can be calculated from the "de
fining representation" r:., = rc:n (the label A is 
suppressed on the r:." its presence is understood from the 
context). We thus obtain the desired commutator 

(2.6) 

The consistency of the above relation is easily checked. 
Notice that C~m is symmetric in the lower indices, thus 
antisymmetry of the commutator is guaranteed. The Jacobi 
identity for the double commutator is also easily checked. 
Finally, a summation over the repeated indices c and 1 in 
(2.6) is understood. Consider now the problem of central 
extension of the algebra. Toward this end we write 

......b bc"'/ b' [r,:, 1 ;,,] =.r l.-~m 1/ + tr"mj Ki, (2.7) 

where Kj are the central generators. To proceed further we 
restrict G to be compact and simple. The structure con
stants of G may now be taken as completely antisymmetric 
satisfying.rbc .rbd = £Jcd. Following a standard argument4 

we can now, without loss of generality, set 

(2.8) 

The Jacobi identity for the commutator (2.7) now gives 

(2.9) 

where a summation over the dummy index is understood 
and we have suppressed the additional index [jin (2.8)] 
on dnm. After all, this index simply labels the linearly in
dependent solutions to (2.9), which is precisely what we 
are now going to study. Equation (2.9) together with the 
antisymmetry property 

(2.10) 

are the relations needed to determine the central terms. 
We are now going to prove that the system (2.9) and 

(2.10) of equation possess no nontrivial solution. The 
range of summation over the dummy index k in (2.9) is 
determined by the non vanishing property of the coefficients 
~m' Thus in the first term of (2.9) k ranges from In 
- m I to n + m in steps of 2, in the second term of (2.9) 
k ranges from I m - II to m + I, and in the third term 
from II - n I to I + n, in steps of 2. For each summand 
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C~m is now given by (2.3), and every such C~m is positive. 

Also note C~o = {jnk' Now take I = m = 0 in (2.9) to 
conclude that dno = 0 for all n. To proceed further we argue 
as follows. Suppose there exists a positive integer n such 
that we have dij = 0 for all i ;;;; n - j + 1, asj takes up 
positive integer values (1,2,3, ... ) up to (n - 1) /2 if n is 
odd and to n/2 if n is even. Because of antisymmetry of 
dij it really amounts to the statements dil = 0 for i ;;;; n, 
di2 = 0 for i ;;;; n - 1 and so on; the sequence ends with 
d(n+3)/2,(n-I)/2 = 0 for n = odd or with d(n+2)12,n12 
= 0 for n = even. When these conditions are satisfied we 
shall say that we have a null system based on n. Now we 
state the following. 

Proposition: If there exists a null system based on n for 
a particular value no of n, then so does a null system based 
onno + 1. 

Proof: Take I = i,m = l,n = no - i + 1 inEq. (2.9) 
to obtain 

~o - i + 1,Idki + C{i dk,no - i + I + c7,no - i + Idkl =0. 
(2.11 ) 

Consider the third term above. In the k summation, the 
maximum value is no + 1, all other values of k are lower in 
steps of 2. Thus only one term k = no + 1 survives. In the 
second term in (2.11) the allowed values of k are k 
= i-I and k = i + 1; of these only the term k = i 
+ 1 survives. Similarly, in the k summation in the first 

term only the one with k = no - i + 2 is nonzero. We 
thus obtain 

~o+ I d rIIo- i + 2 d . . 
no-i+I,i no+I,I+\"'n~-i+I,1 no-l+2,1 

(2.12) 

In case no is even, the above provides us with a system of 
equations no/2 is number (i runs as i = 1,2, ... ,no/2), the 
number of unknowns is also no/2, due to antisymmetry of 
dij. In case no is odd, the above is a set of (no + 1 )/2 
equations for that number of unknowns [i here runs from 1 
to (no + 1)/2)]. We now set dno - i + 2,i = Xi> assemble the 
X/s into a column vector X, and write Eq. (2.12) as the 
matrix equation 

AX=O, (2.13 ) 

where A is a certain square matrix, with the following 
structure. The ith row of the matrix has the shape: first 
entry is positive, the ith entry is again positive, the (i 
+ l)th entry is negative, all other entries are zero. This 
means that each row, except the first and the last, has 
exactly three entries with the stated signs. The first row has 
two entries, first positive and second negative. The last row 
has two entries, the first and the last, both positive. The 
conclusion regarding the signs comes from the fact that the 
C's as given by (2.3), are all positive. Beyond this, no 
further information regarding the matrix A will be needed. 
Upon writing out the matrix A it becomes clear, after a 
little inspection (start with the lower right-hand corner, 
examine the cofactors and walk up) that A must be 
nonsingular; its determinant cannot vanish. Thus Eq. (2.3) 
has only the trivial solution X = O. Another way of prov-
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ing this result has been shown to the author by McGlinn. 
Fix the convention that dno+ 1,1 is positive. Equation 
(2.12) with i = 1 now gives dno.2 is positive. Using this, 
Eq. (2.12) now gives for i = 2 that dno - I ,3 is positive. 
Continuing this way and using all but the last equation in 
(2.12) one proves that all d's are positive-a conclusion 
that is contradicted by the very last equation in (2.12). 
Thus all d's must vanish. Our proposition stands proved. 

We can now prove that Eqs. (2.9) and (2.10) possess 
no nontrivial solution. The existence of a null system based 
on no for the cases no = 2 and no = 3 follows directly from 
Eq. (2.12). In view of our proposition, we now have the 
following theorem. 

Theorem: No central extension exists for the zonal 
sphere algebras associated with a compact simple Lie 
group. 

III. TWO TORUS ALGEBRAS 

In this example M is a two-dimensional torus T2, pa
rametrized by the ordered pair (ZI>Z2) of complex num
bers, each with magnitude equal to unity. The elements of 
the dual space 1'2 are ordered pairs N = (nl,n2) of inte
gers. In the sequel, we shall consistently denote such or
dered pairs by the corresponding capital letter. In 1'2, we 
have an operation of component wise addition: 

N +M=(nl + ml, n2 + m2); 

N=(nl,n2), M=(ml>m2)' 
(3.1) 

We define the antisymmetric product (1' 2® 1'2 ..... Z) by 
the formula 

(3.2) 

We introduce the Kronecker symbol /jMN = {jm n {jm n . We 
I I 2 2 

choose the basis for g such that the structure constants 
.robe are completely antisymmetric (G is simple compact 
and Lie). We may now select a basis for our algebra of 
flows gT2 to be given by TN that obey the commutation 
relations 

(3.3 ) 

Consider, now, the problem of central extension of the 
algebra. Toward this end we write 

['0.r, T'M] = .robe 0v + M + {jab d NM(i)Kj, (3.4) 

where Kj are the central generators, indexed by J. We 
should note that the assumed dependence of the central 
terms on a and b in (3.4) does not imply any loss of 
generality. In order for (3.4) to satisfy the Jacobi identity, 
the following condition must be satisfied: 

dN+M,L(J) + dM+L,N(J) + dL+N,M(J) =0. (3.5) 

The above plus the requirement of antisymmetry deter
mine the central extensions. Equation (3.5) has the solu
tions: 

(3.6) 

These solutions are indexed by LE 1'2. There are two other 
linearly independent solutions to (3.5): 
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dNM(1)=nI8N+M,O; dNM(2)=n2 8N+M,O' 

We summarize our result as follows: 

[0., Tt] =.rbcnv+M + 8ab(N I\M)KN+ M 

+ 8ab(n iK
I + n2K2 )8N+ M,O' 

(3.7) 

(3.8) 

Here, KI, K2, and KL (Le 1'2) are the central charges. Be
fore proceeding further it is useful to look at the corre
sponding current algebra. 

Let us define the "currents": 

(3.9) 

From (3.8) and (3.9) we compute the current commuta
tion relations: 

{ 
ah ah 

[T'(OI,02)'T"(O;,0~)] =.rbcr:8(OI - 0;>8(02 - O~) + 8ab aol8(OI - 0;>8'(02 - O~) - ao/'(Ol - 0;>8(02 - O~) 

- iKI8'(OI - 0;>8(02 - O~) - iK28 (01 - 0;>8'(02 - O~) j, (3.10) 

where 

(3.11 ) 

Thus the anomaly term in the current algebra contains the 
arbitrary function h(OI> O2), Indeed, we could have started 
from the other end and written the anomaly term in the 
current algebra in the form 

8'(01 - 0;>8(02 - 0i>hl(0l> ( 2) 

+ 8(01 - 0;)8'(02 - 0~)h2(OI' ( 2), 

The Jacobi identity would then give the condition 

ahl ah2 
aOI + a02 =0. (3.12) 

The functions hI> h2 are identifiable with the components 
of a certain close one-form. The Hodge decomposition the
orem plus the deRham cohomology of the two torus now 
gives the general solution of (3.12) in the form 

ah ah 
hi = - a0

2 
+ CI> h2= aO

I 
+ C2, (3.13 ) 

where CI and C2 are constants, and h is an arbitrary func
tion of 01 and O2, Expanding h (01) ( 2) in terms of the basis 
functions we would then, once again, obtain the commu
tation relation Eq. (3.8). 

The algebra (3.8) contains subalgebras isomorphic to 
the Kac-Moody algebra. Generators TN, where N is of the 
form N = (nl> 0), obey 

[r:" T!. ]=.rbcT'" +m +8abnl8n +m OKI, (3.14) 
1 1 1 1 1 l' 

wher~ we have put TN = T,!1 for N = (nl> 0). Similarly, 
TN with N of the form N = (0, n2) generate algebra 

[r:,2' T!.) = .rbcT',,2 + m2 + 8abn28n2 + m2' 0 K2. (3.15) 

1045 J. Math. Phys., Vol. 31, No.5, May 1990 

Note that (3.12) and (3.13) are mutually noncommuting. 
Yet another Kac-Moody algebra is generated by operators 
of the type TN with N = (n, n). We have 

(3.16) 

where TN= T,! for N = (n, n). These facts are sufficient to 
guarantee that the central charges KI and K2 are quantized 
in the same fashion as the Kac-Moody central charge. 

Is it possible to associate with the algebra (3.8) a root 
vector system in a finite dimensional root vector space? 
First, we note that we can obviously introduce a pair 
d; (i = 1,2) of grading operators with the defining prop
erty 

[d;, 0.] =n;0.; i= 1,2, (3.17 ) 

plus the requirement that d; commute with each other and 
with all the central charges. However, the algebra (3.8) 
cannot be extended by appending the elements d;. One 
checks easily that (3.8) together with (3.17) are inconsis
tent with the Jacobi identifies (because of the presence of 
the central charges KN, Ne 1'2). Thus the answer to the 
question raised at the beginning of this paragraph is no. In 
this sense, our algebra is essentially distinct from the Kac
Moody algebras. 

The algebra given by Eq. (3.8) is probably the simplest 
conceivable extension of the notion of a Kac-Moody alge
bra. This algebra was considered previously by Bars,3 but 
the central extension terms were not obtained in their gen
erality by him (the term denoted here as KN was left out). 
In conclusion, we make the following remark. It is imme
diately apparent from the commutation relations (3.8) 
that there exists a class of representations in which all the 
central generators except two, namely KI and K2, vanish 
(have zero eigenvalue). From this class, we can pick up 
the class of "highest weight representations" with the de
fining property 

0.ls) =0, (3.18 ) 
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whenever N = (nlo n2) is such that either of the two con
ditions (1) nl > 0, n2 > 0, (2) nl > 0, n2 > ° is fulfilled. 
The states Is) then provide a representation of g, which 
may be taken as irreducible. The resulting irrep of (3.8) 
can further be made unitary if the central charges Kl and 
K2 are quantized in the fashion of a Kac-Moody central 
charge: 

( 3.19) 

where t/J is the long root of g and /Lo the highest weight of 
the "vacuum" representation provided by the states Is). 

We did not address the question of possible physical 
application of the mathematical structures outlined in this 
paper. Actually, it appears entirely feasible to construct 
physical models corresponding to our two-torus algebra. 
This problem is under current investigation and its conclu
sions will be reported in a future communication. 
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The Cayley-Klein groups are defined as the groups that are obtained by the contractions and 
analytical continuations of the orthogonal groups. The Jordan-Schwinger representations of 
Clyley-Klein groups are discussed based on the mixed sets of creation and annihilation 
operators of boson or fermion type. The matrix elements of finite group transformations are 
obtained in the bases of coherent and Fock states. 

I. INTRODUCTION 

In 1935, Jordan 1,2 introduced the so-called Jordan map
ping that is a mapping from a one-particle realization of the 
kinematic symmetry into field operators of either boson or 
fermion type. This mapping preserves the commutation rela
tions of matrices. In 1952 Schwinger3 introduced an original 
treatment of the rotation group by representing the matrix 
generators in terms of their bilinear forms with respect to 
boson annihilation and creation operators. Since this repre
sentation is equivalent to the Jordan mapping it is often 
called4 the Jordan-Schwinger representation. It has been 
widely used to provide a treatment of representations of Lie 
groups. On the other hand, there is the well-developed theo
ry of a many-body quantum system in the second quantized 
field formalism whose Hamiltonians are multidimensional 
quadratic in boson or fermion creation and annihilation op
erators.5

,6 The methods of this theory may be used for the 
calculation of matrix elements of finite transformations of 
Lie groups in the bases of coherent and Fock states. 7 

In the present series of papers we shall discuss the Jor
dan-Schwinger representation of Cayley-Klein groups, i.e., 
groups obtained from classical (orthogonal, special unitary, 
and symplectic) one's by all possible contractions and analy
tical continuations of group parameters. The Inonu-Wigner 
contractions8 and analytical continuations are regarded on 
the basis ofa unified description9-13 with the help of Clifford 
dual numbers. We consider the Jordan-Schwinger represen
tation of the matrix generators of groups under discussion 
based on either fermion or boson operators. For the groups 
obtained from classical one's by only contractions the set of 
particle operators describing the representation is pure, i.e., 
all members of the set are either annihilation or creation 
operators. However, if the groups are obtained by analytical 
continuations only or both continuations and contractions 
then the representations are based on mixed sets of annihila
tion and creation operators.4 The matrix elements of the Jor
dan-Schwinger representation of the finite group transfor
mations are calculated in the bases of coherent states, which 
were introduced by Glauber. 14 In the case of boson represen
tations we use the important property of the coherent states, 
namely, that the coherent state gives a generating function 

for discrete Fock states. Then the matrix elements of the 
finite group transformations in the coherent state bases are 
the generating function for the matrix elements in Fock 
bases. The last matrix elements are expressed in terms of 
Hermite polynomials of several variables with zero argu
ments. 

The outline of the content is as follows: In Sec. II we 
present a brief account of the (well-known) theory of quan
tum systems with quadratics in boson and fermion operator 
Hamiltonians that is adapted to the calculation of the matrix 
elements of the Jordan-Schwinger representations of Lie 
groups. In Sec. III we describe the orthogonal Cayley-Klein 
groups. In Sec. IV we construct the Jordan-Schwinger rep
resentation of Cayley-Klein groups of arbitrary dimension 
and obtain the matrix elements of the finite group transfor
mations in the coherent basis. For the illustration of the de
veloped formalism we regard in Sec. V some groups of low 
dimensions. The connections of Jordan-Schwinger repre
sentations with a stationary quantum system are briefly dis
cussed in the concluding remarks. 

II. THE SECOND QUANTIZATION METHOD AND 
MATRIX ELEMENTS 

Let G be a group of N-dimensional matrices with the 
generatorsXk and~ommutators [Xk,xm] = l:s ckmXs. De
fine the operators Xk = l:p,q (Xk ) pqap+ aq, where a/ and aq 
are the boson or fermion creation and annihilation opera
tors, respectively, satisfying the canonical commutation re
lations 

(2.1) 

aiak+ - Eat ai = Dik · 

Here E = 1 in the boson case and E = - 1 in the fermion 
case. Then the operators Xk satisfy the commutation rela
tions of the Lie algebra of group G and realize their Jordan
Schwinger.,fepresentation. The finite group transformation 
operator Ug (r) is connected with the general element 
A A 

!(r) = l:krkXk ~the Lie algebra by the exponential map 
Ug (r) = exp( - X(r», where rk are the group parameters. 

The representation space H is the state space of the N-
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dimensional quantum oscillator. We shall use here as the 
bases in the representation space the overcomplete family' of 
Glauber coherent states, 14 i.e., the eigenstates of the annihil
ation operators Ok la) = a k la), (ala) = 1. In the boson 
case ak' k = 1,2, ... ,N are complex variables and in the fer
mion case ak are Grassmann anticommutative variables. 15 

A vector If) E His determined7 by the analytic (with respect 
to a*) function[(a*) 

[(a*) = exp(!laI2)(alf), (2.2) 

and the operator Ug by the kernel U(a*, (3), 

U(a*, (3) = exp(~laI2 + ~I (312)(aIUgl (3). (2.3) 

A transformed vector If) = Ug If) is represented by the 
function 

['(a*) = J U(a*, (3)[( (3*)df.L( (3), 

df.L( (3) = 1T- N exp( - I (312)d 2(3, 
(2.4 ) 

where lal 2 = l:f= Ilak 12, 1(31 2 = l:f= II 13k 12, d 2
(3 

= IIf = I d(Re 13k) ·d(lm 13k)' 

The matrix elements (or the kernel) of the finite group 
transformation operator Ug (r) are obtained by the method 
of motion integrals.6 The motion invariants are built with 
the help of the matrix 

A(r) = eXP(l:B(r»=( ~I ;), (2.5) 

where the matrix 

E is an N-dimensional unit matrix and the matrix B(r) is 
defined by the equation 

X(r) = ~rkXk = (i,i+)B(r) (i~)' (2.6) 

Here (i,i+) is the row matrix, (:+ ) is the column matrix, 
and the product in Eq. (2.6) is the ordinary matrix product. 
We shall use such an agreement throughout the paper. The 

A 

kernel ofthe operator Ug (r) is given by the following equa-
tion6

: 

U(a*, (3,r) = (det s) - E/2 exp (- !(a*, (3)R (r) ( ~*)) 
= (det s) - E/2 exp( - !a*S -I;a* + a*s -1(3 

+!€(37I1S- I(3), (2.7) 

where the 2N-dimensional matrix R (r) is as follows: 

(s -1'11 
R (r) = _ €S - IT 

-S-I ) 
I . 

- €7JIS-
(2.8) 

In the boson case (€ = 1) we also regard the discrete 
Fock states basis in the representation space H. The Fock 
state In) is the eigenstate of the particle number operator 
0k+ Ok In) = nk In), n = (n l ,n2, ••• , nN ) and nk are non-nega
tive integer numbers. We may use the important property of 
the coherent states, namely, that the coherent state gives the 
generating function for the Fock states 
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( 
1 ) 00 aD 

la) = exp - -lal2 L ~ In), 
2 D=O (n.) 

(2.9) 

where 
N N 

n! = IT nk !, aD = IT a~k 
k= I k= I 

and it follows immediately, that the kernel (2.7) is the gener-
A 

ating function for the matrix elements of the operator Ug (r) 
in the Fock states basis 

co U·mpD A 
U(a*, (3,r) = L 1/2 (mlUg(r)ln). 

m,D=O (m!n!) • 

Multidimensional Hermite polynomials H ~R) (x) 
fined by their generating function as follows l6

: 

exp( -...!.- aRa + aRx) = I a: H~R)(X). 
2 k=O k. 

(2.10) 

are de-

(2.11 ) 

Then the kernel (2.10) multiplied by (det S) 1/2 is the gener
ating function for the Hermite polynomials of 2N zero vari
ables 

(dets)I/2U(a*,(3,r)=exp( - ~ (a*, (3»)R(r) (;*) 

= I a·
m

(3D H(R(r»)(o) 
m,D = ° mIn! m.D , 

where the matrix R(r) is given by Eq. (2.8). 

III. THE ROTATION GROUPS IN CAYLEY-KLEIN 
SPACES 

(2.12) 

It is well known in geometry,17 that there are 3n n-di
mensional real spaces of constant curvature. Pimenovl8 has 
given their unified axiomatic description and has built the 
transformations of the elliptic space into arbitrary space of 
constant curvature. In accordance with the Erlangen Pro
gram, due to F. Klein, each geometry is associated with a 
motion group. Then the transformations of the geometry 
induce the transformations of the related motion group. This 
idea was used to develop the method of transitions between 
groupS,9-13 that naturally unify both contractions and analy
tical continuations of groups. 

Let us define the fundamental map of the Euclidean 
space R n + I into the space R n + I (j) as follows: 

"p: Rn+ I .... R n+ I (j), 
(3.1 ) 

k 

"pxo = X o, "pxk = X k IT jm' 
m=1 

where k = 1,2, ... ,n; XO,Xk are the Cartesian coordinates, 
j = (j1,j2, ... ,jn)' parameterjk may be equal to the real unit 
1, or to the Clifford dual unit tk' or to the imaginary unit i. 

The dual units are characterized by the following alge
braic properties: each of them are not equal to zero tk #0; a 
different dual unit obeys the commutative law of multiplica
tion tk ·tm = tm ·tk #0, k #m; the product of a dual unit 
multiplied by itselfis always equal to zero ti = O. Division of 
a real or complex number by a dual unit is not defined. We 
assume that division of a dual unit by itself is equal to a real 
unit tk/tk = 1 (but not tk/tm or tmltk' k #m, these con
structions are not defined). The last property is equivalent to 
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the fact that the equation atk = btk has only one solution 
a = b in the real or complex number field. The dual units 
may be regarded as even products of Grassmann anticom
mutative numbers and new "b numbers" of the paper19 are 
then nothing but Clifford dual numbers. 

We define the (n + 1 )-dimensional real Cayley-Klein 
space R n + I (j) as the (n + I)-dimensional vector space 
with the following metric: 

n k 

x2(j) = x~ + L xi rr j~. (3.2) 
k=l m= I 

Then Eq. (3.1) is the mapping of the Euclidean space into 
the Cayley-Klein spaces. The space of constant curvature 
Sn (j) is realized on the sphere Sn (j) 
= {x E Rn + I ( j) Ix2(j) = t} in the Cayley-Klein space. 

The set of parameters j gives all 3n (n + 1)-dimensional 
Cayley-Klein spaces or n-dimensional spaces of constant 
curvature. It must be emphasized that usually the spaces 
with identical signatures are not distinguished, i.e., the space 
R3 (1,i) with the metric x~ + xi - x~ and the space R3 (i,i) 
with the metric x~ - xi + x~ are the same. We have fixed 
the numbers of coordinate axes and for us R 3 (1,i) and 
R 3 (i,i) are the different spaces. 

The rotations of the Cayley-Klein space Rn + I (j) form 
the group SOn + I (j), which we call the orthogonal Cayley
Klein group. The map (3.1) induces the transformation of 
the group SOn + I into the Cayley-Klein group SOn+ I (j). 
The generators XJlV of SOn + I are the infinitesimal rotations 
in two-dimensional planes {xJl,xv }, fl = O,I, ... ,n - I!.. v 
= 1,2, ... ,n, fl < v. The nonzero elements of the matrix XJlv 

are as follows: (XJlv)JlV = - I, (XJlv)VJl = 1. It is easy to 
obtain the induced transformation law of the generators of 
SOn + I under the map (3.1) in the following group9,1O: 

XJlv(j)=( IT jm)XJlv (-+). (3.3) 
m=Jl+I 

Here, by XJlV (-+), we denote the transformed generator XJlV 
with the following nonzero matrix elements: 

(XJlv(-+»Jlv=( IT jm)(XJlv)Jlv=- IT jm' 
m=Jl+I m=Jl+I 

(3.4) 

(XJlv(-+»VJl=( IT j~I)(XJlv)VJl= IT j~l. 
m=Jl+I m=Jl+I 

Then the transformation (3.3) gives for the nonzero matrix 
elements of the generator XJlV (j) 

v 

rr '2 Jm' 
m=Jl+ I 

(3.5) 

The generatorsXJlV (j) satisfy the commutation relations9
,10 

V, 
X

V1V2 rr 1m, fll = fl2' VI <v2, 
m =Jl, + I 

[XJl'V' ,xJl2V2] = v, 
XJl ,Jl2 rr 1m, fll <fl2' VI =v2, 

m=Jl2+ I 

(3.6) 

of the group SOn + I (j). 
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Let us observe that when some parametersjm are equal 
to the dual units the transformations (3.3) are the multidi
mensional Inonu-Wigner contractions.8 Indeed, XJlv (-+) 
are the singular transformed generators, the products 
n;;. = Jl + I j m play the role of the zero tending parameters 
and the resulting generators (3.5) are not singular. 

The finite rotation E(r,j) = expX(r,j) corresponds to 
the general element 

n(n + 1)/2 
X(r,j) = L r"X,t<j), r" ER (3.7) 

,,=1 

of the algebra sOn + I (j). Here A is in a one-to-one accor
dance with fl, v, fl < v due to the equation 

A = v + fl(n - 1) - fl( fl - 1)/2. (3.8) 

Due to the Cayley-Hamilton theorem2o the matrix E (r j) is 
expressed algebraically by the matrices X m(r,j), m = 0, I, ... , 
n. The explicit form of the finite rotations E(r,j) can be 
directly obtained for the groups of low dimensions, namely 
S02(jt)' S03(j), S04(j)· 

Combining Eqs. (3.3) and (3.7) we observe that for the 
imaginary values of some parametersjk some real group pa
rameters r" are imaginary ones, i.e., they are analytically 
continued from the real number field into the complex one. 
The orthogonal group SOn + I is transformed by these into 
some pseudoorthogonal group SO(p,q). For the dual values 
of some parameters jk some real group parameters r" are 
pure dual ones, i.e., they are continued into the dual number 
field and we have a contraction of the group SOn + I' Thus 
from the viewpoint of transformations both procedures have 
the same nature, namely the continuation of group param
eters from the real number field into the dual (contraction) 
or complex ones. 

IV. THE JORDAN-SCHWINGER REPRESENTATIONS 
OF THE ORTHOGONAL CAYLEY-KLEIN GROUPS 

Let us define the transformation of annihilation and cre
ation operators induced by the map (3.1) as follows: 

.1':;' (A A rrk .) .1':;'+ _ (A + A + rrk '-1) .,.,A = ao,a k m = I J m , .,.,A - ao ,a k m = I J m , 

(4.1 ) 
k = 1,2, ... ,n, 

h .I'··d . I' .1':;' A .1':;' + A + h . I w ere.,.,lsl entlca,l.e.,.,.,A=a,.,.,A =a ,w enJk = ,tk • 

For the imaginary values of parameters j we use the well
known properties of the annihilation and creation operators: 
iOk =o:,io: = EOk • ThenEq. (4.1) may be written in the 
form 

¢~j~j») Cl: )=\II-I(j) (a:)' 
(4.2) 

where tPl (j), tP2(j) are (n + I )-dimensional diagonal matri
ces with the following nonzero matrix elements: (tPl (j»oo 
= I, (tPI(j»kk = ± I, ifn~= I jm = ± band b is a posi
tive real or dual number, (·tPl (j)hk = ° otherwise; (tP2(j»00 
= 0, (tP2(j)hk = 0, if (tPl (j»kk = ± I and (tP2(j» 

kk = + I, if n~= I jm = ± ib. The 2(n + 1)-dimensional 
matrix \II (j) has the property \II (j) = (\11- I (j» T. It is easily 
shown by direct calculations that the operators 
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(4.3) 

satisfy the commutation relations (3.7) and hence provide 
the Jordan-Schwinger representation of the group 
SOn + I (j). 

The general element of the algebra SOn + I (j) in Jordan
Schwinger representation is written in the form 

A n(n+ 1)/2 A 1 ( f/Ji) 
X(r,j)= L ,,,X,,(j)=-(f/Ji,f/Ji+)6.(rj) A 

,t=1 2 f/Ji+ 

1 (A A+ B ° ( i) ="2 a,a ) (r,J) i + ' 

(4.4) 
where the matrix 6.(rj) is given by the equation 

6.(r 0) = (0 E"XT(rj ») 
,J X(rj) 0 . (4.5) 

The nonzero matrix elements of X(r,j) are as follows: 
v 

(X(rj»V/l = ',t, (X(rj»/lV = -',t II In· 
m=/l+1 

Here A. is connected with p., v, p. < v by Eq. (3.8). Using Eq. 
(4.2) we conclude that the matrix B(r,j) is obtained from 
the matrix 6.(rj) by the following transformation: 

B(rj) = 'I1(j)6.(r,j)\I'-I(j). (4.6) 

We regard firstthe Cayley-Klein groups SOn + I (j) that 
are obtained from SOn + I only by the contractions, i.e., 
when the parameters j k are equal to the real unit or to the 
Clifford dual units, jk = 1, tk' k= 1,2, ... ,n. Then (4.1), 
(4.2) are identical transformations,B(rj) = 6.(rj), and we 
have from Eq. (2.5) 

A(r 0) = (E(r,j) 0) 
,J 0 o;:T( 0)' - - r,J 

(4.7) 

i.e., 11 = 111 = 0, 51 = ET( - rj), 5 = E:(rj), det 5 
= det E:(r,j) = 1, and 5 -I = E:-I(rj) = E:( - r,j). Here 

E: (r j) is the finite rotation matrix of the group SO" + I (j). 
!::rom Eq. (2.7) t!!.e kernel of the finite rotation operator 
Ug (rj) = exp( - X(rj»in a coherent state basis is given by 

U(a*, (3,rj) = exp(a*E:( - rj)(3). (4.8) 

In the boson case (E" = 1) this kernel is the generating 
function for the Hermite polynomials H!:~rJ»(O) with the 
matrix R(rj) in the form 

( 
0 -E(-rj ») 

R(r,j) = -T( 0) 0 . -.:. - r,J 
(4.9) 

Contractions of SOn + I (j) under dual values of some of the 
parametersjk give rise to limit processes in the generating 
function (4.8) and hence induce a limit processes between 
Hermite polynomials.21 .22 

Let the Cayley-Klein groups SOn + I (j) be obtained 
from SO" + I by both contractions and analytical continua
tions,i.e.,jk = l,tk,i,k= 1,2, ... ,n.Letusintroducethenew 
pararpeters]k']k = 1, tk as follows:jk =ijk' ifjk =iand 
jk = jk' ifjk = 1, tk' The reason ofsuch a redefinition of the 
parameters is to consider explicitly the analytical continua
tions and give the opportunity of regarding the contractions 
ofthese_anal)'tical continuated groups. The motion integrals 
matrix A (r j) is obtained from the matrix (4.7) as follows22: 
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A(rj) = 'I1(j)A(rj)'I1- I(j) = (5 11). 
111 51 

Using Eqs. (4.2), (4.7), and (4.10), we have 

5 = IfIE(rJ)lfl + 1f2ET( - rj)lf2' 

51 = 1f2E (rJ) 1f2 + IfIET( - rj)lfl' 

11 = -IfIE(rj)lf2 + E"lf2ET( - r,j)lfl' 

111 = -If2E (rj)lfl + E"lfIET( - r,j)lf2' 

(4.10) 

(4.11 ) 

and by Eq. (2.7) obtain the kernel of the finite rotation oper-
A 

ator Ug (rj) in a coherent state basis. Note that Eq. (2.7) 
includes a nonlinear operation of obtaining the inverse ma
trix 5 -I; therefOre for the kernel we do not have the simple 
equation as Eqs. (4.6) or (4.10). 

VoEXAMPLES 

To show the effectiveness of the general consideration 
developed for the Jordan-Schwinger representation of Cay
ley-Klein groups in the previous sections we shall discuss 
some groups oflow dimensions S02 (j I)' S03 (j), S04 (j) for 
which it is possible to obtain the explicit form of the finite 
rotation matrix E: (r ,j ) . 

Ao S02(11) groups 

The map (3.1), namely Ifxo = XO, If XI = jlxl,jl = l,tl,i, 
gives the spaces R2(jl) with the metric x2( jl) = x~ + jixi. 
Here R2 ( 1 ) is a Euclidean plane, R2 (i) is the Minkowski (or 
hyperbolic) plane, and R2 (t l ) is the Galilean plane. Then 
three groups S02 (j I) are as follows: S02 (1) is the usual 
rotation group on the plane, S02 (i) is the group of (one
dimensional) Lorentz transformations, and S02 (t I) is the 
group of (one-dimensional) Galilean transformations. 
Equation (3.5) gives the matrix generator ofS02(j1) in the 
form 

(5.1 ) 

Then the finite rotation matrix E:('I,jl) = exp('IXol (jl» is 
easily obtained: 

_ . (COSjl'l - jl si.njl'l) . 
':'('I,JI) = '-1" 

- JI SlOh'l cosh'l 
(5.2) 

A function of dual arguments is defined by its Taylor expan
sion, therefore cos tl'l = 1, sin tl'l = tl'l' and we have 

E('I,t l ) = (1 0), 
'1 1 

i.e., the matrix of Galilean transformation. 
When jl = 1, t l , the operator XOI (jl) = i+ XOI (jl)i 

A + A '2 A + A 'd h J = a l ao - h ao a l prOVl es te ordan-Schwinger repre-
sentation ~f S02 ( j I) and the kernel of the finite rotation 
operator Ug ('I,jl) = exp( - 'IXOI (jl» in a coherent state 
basis is given by, using (4.8) and (5.2), 

U(a*, (3"I,jl) = exp(a*E( - 'l,jl)(3) 

= exp«a~ Po + at PI)cosjl'l 

- aT Pojl- I sinjl'l 

+ a~ Pdl sinjl'I)' 
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In the boson case, when at,/3k are the complex variables, 
the expression (5.3) is the generating function for the Her
mite polynomials of four zero-valued variables. We write 
some first polynomials 

Ho,o;o,o(rl,jl) = 1, 

HI,I;I,I (rl,jl) = cos2 jlr l - sin2 jlrl, 

HI ,0;1 ,0 (rl,jl) = HO,I;O,I (rl,jl) = cosjlrl , (5.4) 

Ho,l;I,o (rl,jl) = - jl-I sinjlrl, 

HI,o;O,1 (r(Jjl) =jl sinjlrl· 

For the Galilean group S02(tl) we have XOI(t l ) =01+°0 

and Eq. (5.3) gives 

U(<<*, p,rl,t l ) = exp(at /30 + at /31 - rlat /30)' 

Then the first Hermite polynomials are 

Ho,o;o,o (rl,t l) = HI,I;I,I (rl,t l) 

= Hl,o;I,o (rl,t l) 

= HO,I;O,I (rl,t l) = 1, 

Ho,I;I,o (rl,t l ) = - r l, HI ,0;0, I (rl,t l) = O. 

(5.5) 

(5.6) 

Whenjl = iwe introduce the new parameterJI asjl = ijl 
andJI = 1, t l. ThecaseJI = tl corresponds to the contraction 
of the Lorentz group S02 (i). Equations (4.1) ~ve !fi 
= (00,01+ ), r/J8+ = (00+ , - EO I) and the operator XOI WI) 

.1_ +x. ( .. ) .1... '2 A + A + A A 'd h J d = 'f'A 01 IiI 'f'A = iI ao a l - Ealao provl es t e or an-
Schwinger representation of S02 (ij I)' From Eqs. (4.2) we 
obtain the matrices tPl and tP2 in the form 

(5.7) 

Replacing parameterjl in (5.2) by ijl we have 

":' ;: _ (COShJlrl JI sinhJlrl) 
_(rl,{/i)- -:-1' h-: h-:' 

11 sm hrl cos iIrl 
(5.8) 

Then the intermediate matrix A(rl,ijl) is given by Eqs. (4.7) 
and (5.8). Using it in Eq. (4.10), we obtain the motion inte
grals matrix A(rl,ijl) ofS02(ijl)' namely, 

(1 0) -5 = 51 = 0 1 coshjlrl , 

(5.9) 

The kernel of the operator fig (rl,ijl) of the finite Lorentz 
transformation is given by Eq. (2.7) and is as follows: 

U(<<*, p,rl,ijl) = (coshJlrl) -Eexp{(coshJlrl)-1 

X [at /30 + at /31 + (/30/31 - J~atan 

XJI- I sinhJlrd}. (5.10) 

Under the contraction 01 = t I) of the Lorentz group we 
have for the kernel 

U(<<*, p,rl,it l) = exp(at /30 + at /31 + r l /30/31)' (5.11) 

Comparing the last expression with Eq. (5.5) we conclude 
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that they are different though it follows from Eq. (3.5) the 
group S02(tl) and S02(itl) are the same, namely Galilean 
group. It is the particular case of the general situation22: if a 
Cayley-Klein group SOn + I (j) is obtained from SOn + I by a 
k-dimensional contraction, i.e., if k parameters j are equal to 
the dual units, then there are 2k different Jordan-Schwinger 
representations of SOn+ I (j). The connections between 
such representations are still under investigation. 

B. S03(j) groups 

The map (3.1), namely tPxo=xo, tPxl=jlxl, tPX2 
= jdzX2' jl = 1, t l, i, j2 = 1, t2, i, gives the nine Cayley
Klein spaces R3(jI,j2) = R3(j) with the metric x2(j) = X6 
+ ji xi + j~ j~ x~. The nine geometries of the planes of con

stant curvature are realized l8 on the spheres S2(j) 
= {xlx2(j) = 1} in the spaces R 3(j). These geometries are 

as follows: S2(1, 1)-elliptic; S2 (t I' 1)-Euclidean; 
S2(i,I)-Lobachevski (or hyperbolic); S2(1,t2 )-semiel
liptic (or co-Euclidean); S2(t l,Lz)-Galilean; S2(i,t2)-se
mihyperbolic (or co-Minkowski); S2( 1,i)-anti-de Sitter; 
S2 (t I,i)-Minkowski; S2 (i,i)-<ie Sitter. The rotation group 
S03 (j) is isomorphic to the motion group of the geometry 
S2(j). We shall call the Cayley-Klein group S03(j) by the 
name of appropriate geometry. 

Equation (3.5) gives the matrix generators ofS03(j) in 
the form 

X,(j) ~G 
'2 

D· X,(j) ~G 
0 H) -iI -iIh 

0 0 o , 
0 0 0 

X,(j) ~G 
0 

~) 0 (5.12) 

The set of generators satisfy the commutation relations 

[XI,x2] = R X3, [X2,x3] = j~XI' [X3'XI ] = X 2• 

(5.13 ) 

In accordance with Eq. (3.8) we denote the generators as 
follows: XI = XOI , X2 = X 02, X3 = X!2' To the general ele
ment 

3 

X(rj) = L r,,x..t (j) 
..t=1 

(5.14 ) 

of the algebra S03 (j) corresponds to the finite rotation of the 
group S03 (j) 

2(rj) = exp X(r,j) = E cos r + X(r,j)(sin r/r) 

where 

+ X'(rj)[ (1 - cos r)/r], 

(5.15 ) 
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- ji Ar2r3 

jiA~ 
- ftr lr2 

(5.16 ) 

(5.17) 

We shall discuss only contractions of the rotation group 
S03' i.e., jl = 1, t l , j2 = 1, t 2• Then the transformations 
(4.1), (4.2) are identical and the Jordan-Schwinger repre

I 
U(u*, a,rj) = exp{u*2( - r,j) a} 

sentation of the generators (5.12) is given by the operators 

that satisfy the commutation relations (5.13). The kernel of 
A A 

the finite rotation operator Ug (r,j) = exp( - X (r j » in a 
coherent state basis is given by, using (4.8) and (5.14)
(5.17), 

=exp{cosr kto at/3k - [(sinr)/rl[rl(~r/3o-jiat/3l) +r2(a!/30-jU~at/32) 
+ r3(aT /31 - j~aT /32) + [(1 - cos r)/rl[j~~at /30 + jU~~ar /31 + ji ita! /32 

- Ar2r3(aT /30 + ftat /31) + rlr3(a! /30 + ft jiat /32) - ft rlr2(a! /31 + j~ar /32)] }. ( 5.19) 

In the boson case Eq. (5.19) is the generating function for 
the Hermite polynomials of six zero-valued variables. 

C. S04(j) groups 

The map (3.1) gives the 33 = 27 Cayley-Klein spaces 
R4(j), j = (jlj2j3),jk = 1, t k, i, k = 1,2,3 with the metric 
x2 (j) = x~ + ji xi + ftji x~ + jUV~ x~ . The three-dimen
sional spaces of constant curvature are realized on the 
spheres S3(j) = {xlx2(j) = 1} of the unit real radius in 
R4 (j). Some of these spaces are well known, for example, 
S3(i,1,1 )-Lobachevski; S3(t l,1,1 )-Euclidean; S3(t l,i,1) 
-Minkowski; S3(tl,t2,1 )-Galilean, and some do not have 
special names. 

The six matrix generators of S04(j) are given by Eq. 
(3.5) as follows: 

1052 

(

0 -ft 0 

X, ~X,,~ ~ ~ ~ 

x,~xoo~G ~ 
;2 '2 

-Jlh 

o 
o 
o 

X'~XM~G 
0 0 . H) -11:213 
0 0 

0 0 o ' 
0 0 0 

x.~x"~G 
0 0 

v' 
0 '2 -h 

1 0 

0 0 

x,~x"~G 
0 0 

o ) 0 0 • '2 
-A13 

0 0 o ' 
0 0 
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o 
o 
o 
o 

o 
o 
o (5.20) 

and due to Eq. (3.6) satisfy the commutation relations 

[XI,x2] = jiX4, [XI,x3] = ftXs, [X~3] = ji AX6, 

[XI,x4] = - X 2, [XI,xs] = - X 3, [X2'X6] = - X 3, 

[X2,x4] =jiXI, [X3,xs] =AAXI, [X3,x6] =j~X2' 

[X4,xs] =j~X6' [X4,x6] = -Xs, [XS,x6] =AX4. 
(5.21) 

Let us introduce the new denominations for the group pa
rameters, namely, r4 = - S3' rs = S2' r6 = - SI' Then the 
general element of the algebra S04 (j) is 

3 

X(r,s,j) = L rkXk (j) - S3X4(j) + S~s(j) - SIX6(j) 
k=1 

(

0 - ji rl - jUi r2 - ft j~ Ar3) 

= r l 0 A S3 - ji j~S2 (5.22) 
r2 -S3 0 j~sl 

r3 S2 - SI 0 
and the finite rotation matrix of the group S04(j) is given by 
the following equation: 

2(r,sj) = «r + ~)2 - 4ji A (r,s)2)-1/2 

X(E'A +X'B+ (r,s)'XI'C+X 2 'D), 

(5.23 ) 

where E is a four-dimensional unit matrix, the matrix X is 
giv(:n by Eq. (5.22), the matrices XI and X 2 are in the form 

(

0 - ft j~sl 

X = j~sl 0 
1'2 ·2 ·2 

13 S2 -1113 r3 

S3 ji r2 

'2 '2 '2 -11h13S2 

ft jU~r3 
o 
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_ ,2 
j~(rxs)1 

(rXS)2 
(rXS)3 

jiA(rxs)1 
j~si -jirf-r 
ASIS2 - A '1'2 

SIS3 - A'I'3 

The functionsA,B,C,D in Eq. (5.23) are equal to 

A = ZI cos~ - Z2 - Z2 cos~, 

B sin~ sin~ - Z2 
=ZI -Z2 , 

~ ~-Z2 

C = sin~ _ sin..J=Z; , 

~ ~-Z2 

D = cos,f=Z; - cos~ - Z2' 

where 

(5.25 ) 

ZI.2 = - (r + S2 + «r + S2)2 - 4jU~ (r,s»1/2)/2. 

(5.26) 

We use the following denominations: 

r=Arf +Aj~~ +jU~A~, s2=Asi +jU~~ +A~, 

(r,s) = 'lSI + j~ ('2S2 + '3S3)' (rXs) 1= '2S3 - j~'3S2' 
(5.27) 

In the case of only contractions of the orthogonal group S04' 
i.e.,A = 1, lk, k = 1,2,3, the Jordan-Schwinger representa-

'" tion of the generators (5.20) is given by theexpressionXk (j) 
= a+ X k (j)a and the kernel of the finite rotation operator is 

obtained by Eq. (4.8) with help of the matrix (5.23). We 
shall not write out this kernel. 

VI. CONCLUDING REMARKS 

In the previous sections we have defined the Cayley
Klein groups SOn + I (j) and have discussed their Jordan
Schwinger representations. Here we point out the connec
tion of these representations with a properties of quantum 

'" systems. The general element X (r j) of the algebra so n + I (j) 
in the Jordan-Schwinger representation is the linear func
tion of the second quantized generators of SOn + I (j), there
fore the replacement of the group parameters r by (ilfz)tr, 
where t is the time variable, transform the finite rotation 

'" '" ~erator Ug = exp( - X(rj» into t!le evolution operator 
U = exp( - (ilfz)tH) = exp( - (ilfz)t~(rj) of the quan
tum system with the Hamiltonian H = X(r,j). The last 
quantum systems we call the group quantum systems.23 In 
the case of stationary systems (when the group parameters, 
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do not depend on the time t) the kernel of the finite rotation 
operator is transformed into the matrix elements of the evo
lution operator (or Green's function) of corresponding 
quantum system as follows: G(u*, (3,rj,t) 
= U(u*, (3,(ilfz)trj). Thus, investigating the Jordan
Schwinger representations of the set of the groups 
SO n + I (j), we simultaneously investigate the set ofthe sta
tionary quantum systems, which are corresponded to 
SOn+ I (j). 
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The unitary Cayley-Klein groups are defined as the groups that are obtained by the 
contraction.s and analytical continuations ofthe special unitary groups. The Jordan-Schwinger 
representations of the groups under consideration are discussed based on the mixed sets of 
creation and annihilation operators of boson or fermion type. The matrix elements of finite 
group transformations are obtained in the bases of coherent states. 

I. INTRODUCTION 

The purpose of this series of papers is to present the 
Jordan-Schwinger representations l

-
3 of the groups that are 

obtained from the classical one's by the contractions and 
analytical continuations of the group parameters. The In
onu-Wigner contractions4 and analytical continuations of 
the groups are regarded on the base of the unified description 
of the groupS.5,6 The main feature of such an approach is the 
transformations of the well-known algebraic constructions 
(generators, commutators, etc.) of the classical groups into 
the algebraic constructions of the groups under considera
tion. The Jordan-Schwinger representations of the groups 
are built by both boson and fermion creation and annihila
tion operators. The matrix elements of the finite group trans
formations in the Glauber coherent state basis7 are calculat
ed with the help of the methods of the well-developed theory 
of the quantum systems that are quadratic in creation and 
annihilation operators Hamiltonians. 8

-
1O 

The first paper in this series II (hereafter referred to as I 
and whose equations will be subsequently quoted by their 
number preceded by I) was devoted to a consideration of the 
Jordan-Schwinger representations of the orthogonal Cay
ley-Klein groups that were obtained from the special or
thogonal groups by the contractions and analytical contin
uations of the group parameters. In this paper we discuss the 
case of the special unitary groups. In Sec. II we describe the 
unitary Cayley-Klein groups and construct their Jordan
Schwinger representations. In Sec. III we regard in detail 
SU2(j1) and SU3 (j\>j2) groups for which the calculations 
are made in explicit form. 

II. THE SPECIAL UNITARY GROUPS IN COMPLEX 
CAYLEY-KLEIN SPACES 

Let us define the map of the (n + 1 )-dimensional com
plex space Cn + I into the complex space Cn + I (j) as follows: 

f/;: Cn+I--+Cn+I(j), 
k (2.1 ) 

f/;zo = zo, f/;Zk = Zk II jm' 
m= 1 

where k = 1,2, ... ,n; ZO,Zk are the complex Cartesian coordi
nates, j = (j1,j2, ... ,jn), and each of the parametersjk may 
be equal to the real unit 1, the Clifford dual unit lk' or the 
imaginary unit i. The dual numbers are not often used and 
we briefly review their algebraic properties. Each of the dual 
units is not equal to zero lk #0; different dual units obey the 
commutative law of multiplication lklm = lmlk #0, k #m; 
the square of a dual unit is always equal to zero l ~ = 0. Divi
sion of a real or complex number by a dual unit is not de
fined, but division of a dual unit by itself is equal to a real unit 
Lkllk = 1. A function of a dual argument is defined by its 
Taylor expansion. The quadratic form (z,z) = l:::' = 0 IZm 12 
of Cn + I transforms under the map (2.1) into the following 
quadratic form of the complex Cayley-Klein space Cn + I (j) 
(Ref. 12): 

n k 

(z,z) = IZol2 + I IZkl2 II j;", (2.2) 
k= 1 m= I 

where Zk = (xi + yi) 1/2 is the absolute value of the com
plex number Zk = X k + iYk and z = (ZO,ZI,,,,,zn) is the com
plex vector. 

The unitary Cayley-Klein group SUn + 1 (j) is defined 
as the group that keeps invariant the quadratic form (2.2) 
transformations in the space Cn + I (j). The map (2.1) 
induces the transformation of the special unitary group 
SUn + I into the group SUn + I (j). All (n + 1)2 - 1 genera
tors ofSU n + I are Hermite matrices. The commutation rela
tions for these Hermite generators are very complicated and 
usually the matrix generators Ykm , k,m = O,l, ... ,n of the 
general linear group GLn + 1 (R) are used. 13 The only non
~ero matrix element of Y km is (Ykm ) km = 1. The generators 
Yof GLn + I (R) satisfy the commutation relations 

[Ykm,Ypq ] = omp Y kq - Okq Y mp ' (2.3) 

The independent Hermite generators of SUn + I are defined 
by the equations 

Q/tv = (i/2)(Y/tv + Yv/t)' I/tv = (1I2)(Yv/t - Y/tv), 

1\ = (i12)(Yk - I ,k_1 - Y kk ), (2.4) 

where /-L = 0, 1, ... ,n - 1, v = /-L + 1,/-L + 2, ... ,n. The matrix 
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generators Yare transformed under the map (2.1) as fol
lows: 

Yv,. (j) = ( IT jm)Yv,. (---) = Yv,., /1- < v, 
m=,.+1 

Ykk (j) = Ykk , (2.5) 

wherz Y,.~ ( --- ) and Yv,. ( --- ) denote the transformed genera
tors Y,.v,Yv,. with the following nonzero matrix elements: 

(Y,.v(---»,.v = ( IT jm )(Y,.v),.v = IT jm' 
m=,.+1 m=,.+1 (2.6) 

(Yv,. (--- »v,. = ( IT j;;.I)(YV ,. ) v,. = IT j;;.l, 
m=,.+1 m=,.+1 

The generators (2.5) satisfy the commutation relations 

I, I. ( I. 
e Ykm,Ypq ] = II jl II jl 6mp Ykq II jl- I 

1=1, I=/., 1=1, 

I, ) -6kq Ymp IIjl-1 , 
1:= I, 

(2.7) 

where II = 1 + min(k,m), 12 = max(k,m), 
13 = 1 + min (p,q) , 14 = max(p,q), Is = 1 + min(k,q), 
16 = max(k,q), 17 = 1 + min(m,p), 18 = max(m,p). The 
same laws of transformations as in Eq. (2.5) are held for the 
Hermite generators (2.4). Then we obtain the matrix gener
ators of the unitary Cayley-Klein group SUn + I (j) in the 
form 

= H Yv,. (j) - Y,.v (j» 

= 21 (Yv,. - Y,.v IT j ~), 
m=,.+1 

Pdj) =Pk = (i/2)(Yk_ l ,k_1 - Ykk ), k= 1,2, ... ,n. 
(2.8) 

The commutation relations of these generators may be de
rived with the help ofEq. (2.7), but they are very cumber
some and we do not write them here. 

The finite group transformation 

E(r,s,wJ) = exp Z(r,s,wJ) (2.9) 

of SU n + I (j) correspond to the general element 

n(n+I)12 

Z(r,s,wJ) = L (rAQA(j) +sALA(j» 
A=I 

(2.10) 
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of the algebra sun+ I (j), where rA , SA' Wk are real group 
parameters and index A is connected with the indices /1-, v by 
Eq. (1.3.8). The explicit form of the finite transformation 
E(r,s,wJ) may be obtained for the groups SU2 (j1) and 
SU3 (jI,j2)' 

The Jordan-Schwinger representations of SUn+ I (j) 
are provided by the operators 

Q,.v (j) = rpa + Q,.v (j) rpa, L,.v (j) = rpa + L,.v (j) rpa, 
Pk(j) =rpa+Pk(j)rpa, /1-<V, k= 1,2, ... ,n, (2.11) 

where the transformed sets rpa +, rpa of the creation and anni
hilation operators are given by Eqs. (1.4.1) and (1.4.2). In
deed, it is verified by direct calculations that the operators 
"'-
Y(j) = rpa + Y(j) rpa satisfy the commutation relations (2.7) 
and we may conclude that the operators (2.11) satisfy the 
commutation relations of the group SUn + I (j). The finite 
group transformation is represented by the operator 

"'- "'-
Ug (r,s,w,j) = exp( - Z(r,s,w,j», (2.12) 

"'-
where the operator Z is given by Eq. (2.10) with the gxnera-
tors QA (j), LA (j), Pk (j) replaced by the operators QA (j), 
LA (j), and P dj), respectively. The kernel of the operator 
Ug(r,s,wJ) in a coherent state basis is obtained quite 
analogous to the case of orthogonal groups. II When the 
Cayley-Klein groups SUn + I (j) are obtained from SUn + I 
by only contractions (jk = 1'£k' k = 1,2, ... ,n) this kernel is 
given by 

U(a*,(3,r,s,w,j) = exp(a*E( - r, - s, - w,j) (3), (2.13) 

[compare with Eq. (1.4.8)]. When the groups SUn + I (j) 
are obtained from SUn + I by both contractions and analyti
cal continuations the kernel is given by the following equa
tion: 

U(a*,(3,r,s,wJ) = (det S)-eI2expq a*s -11]a* 

a*s -1(3 + ! £(31] IS -1(3), (2.14) 

where the matrices S, 1], 1]1 are expressed through the matrix 
(2.9) by Eqs. (1.4.11). 

III. EXAMPLES 

We shall discuss in detail two sets of unitary Cayley
Klein groups SU2(j1) and SU3 (jI,j2) for which it is possi
ble to obtain the explicit form of the finite group transforma
tion matrix E(r,s,w,j). 

A. SUz(j,) groups 

The map (2.1), namely ,pzo = Zo, ,pZI = jlzl,jl = 1, £1' i, 
gives the complex space C2(j1) with the quadratic form 
(z,z) = IZol2 + j i IZ112. The transformations belonging to 
the group SU2(j1) keep this quadratic form invariant. The 
matrices (2.5) are as follows: 

Yoo = (~ ~), 

YIO = (~ ~), 

(00) (on) 
Y II = 0 1 ' YOI = 0 0 ' 

and the commutation relations 

N. A. Gromov and V. I. Man'ko 
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[YOO,YIl ] = 0, [Yoo,Yod = YOI ' 

[YOO'YIO ] = - Y IO' 

[YII,YOI ] = - YOI ' 

[YOI'YIO ] =jiYoo 

(3.2) 

are satisfied. The matrix generators ofSU2 (J1) are given by 
Eq. (2.8) in the form 

i (1 0) i (0 ji) 
PI = 2 0 - 1 ' QOI = 2 1 0 ' 

1 (0 
LOI =2 1 

.2) -11 
o ' 

(3.3 ) 

and satisfy the following commutation relations 

[PI,Qod = L ol , [Lol,Pd = QOI' 

[Qol,Lod =jiPI· 
(3.4) 

The generators (3.3) for jl = 1 are equal up to a coefficient 
to the Pauli matrices. The general element of algebra SU2 (j I) 
in accordance with Eq. (2.10) is given by 

=.l C'W I . - j i (S~ - ir l ») , (3.5) 
2 1+ lr l -lWI 

and for the finite group transformation matrix we have 

'2( .) 1 . V) - 1 I SI - lr l - sm-
V 2 

v . WI . V ' 
COS--l-sm-

2 v 2 
(

v. WI . V 
COS-+l-sm-

v 2.v 2 v 2 
E:(rl,sl,wl,jl) = E2 cos - + Z - sm - = 1 

2 v 2 (s + ir )_ sin ~ 
I I V 2 

(3.6) 

where 

V
2(J1) =wi +ji(ri +si)· (3.7) 

Whenjl = 1, £1 the following operators: 

QOI(JI) = i+Qol(Jl)i = (i/2)(atao + jiao+a l ), 
A (. A +L (.) A I (A. + ..... . 2 A + A ) LoI 11)=a 01 1I a=2 al ao-1lao aI' 

1\ (JI) = i+ PI (J1)i = (i/2)(ao+ ao - at al), (3.8) 

satisfy the commutation relations (3.4) and therefore pro
vide the Jordan-Schwinger representation ofSU2 (J1)' The 
kernel of the finite group transformation operator is ob
tained by Eq. (2.13) with help of the matrix (3.6) and is 
given in the form 

U(u*,(3,jl) = exp {atpo (cos ~ - i :1 si~ ~) 

+ aTPI (cos ~ + i ~ sin ~) 
2 v 2 

- aTPo(sl + irl).l sin ~ 
v 2 

• 2 *P ( .) 1 . V} (39) + 1 I ao lSI - lr l - sm -. . 
v 2 

For the contracted group SU2 (£I) we have from Eq. (3.7) 
v = WI and from Eq. (3.9) 

U(U*,(3'£I) = exp{atpoe- (i/2)w, + aTPle(i/2)W, 

- aTPo(sl + ir l ) (lIw l )sin(w l 12)}. (3.10) 

When jl = i we introduce the new parameter il as 

.. .., ,.., 
jl = iil,j = 1, £1' The casejl = £1 corresponds to the con-
traction of the pseudounitary group SU2 (i) = SU(l,I). 
Equations (1.4.1) give t/Ji = (ao,at ), t/Ji+ = (ao+ , - Ea l )· 
Then from Eqs. (2.11) we obtain the operators 

QOI(YI) = t/Ji+Qo\(YI)t/Ji = - (i/2)(Ea lao + jiao+at), 

LOI (YI) = t/Ji+ LOI (YI) t/Ji = -! (Ealao - j i ao+ at ), 

PI (YI) = t/Ji + PI (YI)t/Ji = (i/2 )(ao+ ao + Ealat), (3.11) 

that provide the Jordan-Schwinger representation of 
SU2(i}I)' The diagonal matrices 1/11 (i), 1/I2(i) in Eq. (1.4.2) 
are in the form 

(3.12) 

and using Eqs. (1.4.11) and (3.6) we obtain the matrices 
;,1],1]1 

5= (~ 

1] = (~ 

1]1 = (~ 

0) ( jj . WI . jj ) COS-+l-sm- , 
1 2 jj 2 

1) -: 2 ( .) 1 . jj 
011 sl-lrl jj sm 2 , 

1) ( .) 1 . jj o SI + lr l jj sm 2 ' 
(3.13 ) 

After some calculations we find the matrices 5 -I, 5 -11], 
1] IS - I and using Eq. (2.14) obtain the kernel of the finite 
group transformation operator ofSU2 (i}I) in the form 

U(U*,(3'YI) = (cos ~ +i ~I sin ~)-£exp{(cos ~ +i ~I sin ~rl 
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X [atpo + aTPI - ~ (ataT + aTat)}i (SI - ir l ) ~ sin ~ 

+ + E(PtPI + Ptf30 )( SI + ir l ) ~ sin ~ ]} . 
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For the contracted group SU2(it l ) we have from Eq. (3.13) v = WI and from Eq. (3.14) 

U(u*,(3,it l ) =e-(i!2l£W'exp{e-(i/2lW'[at.80+ a T.81 +!e(.8JiI +.81.80}( SI +irl ) ~I sin ~I]}. (3.15) 

Comparing Eq. (3.15) with Eq. (3.10) we conclude that 
they provide different Jordan-Schwinger representations of 
the same'group SU2(t l ) = SU2(it l ). Notice that some re
cent works13

•
14 were devoted to the connections SUO,I) 

with SU(2) and to the problem of the evolution SU(2) and 
SU ( 1,1) coherent states regarding from a unified point of 
view. 

Yoo~G 
0 

~). Yu~G 
0 

~). Y~~G 0 
0 0 

Yw~G 
0 

~). Y"~G 
• 2 

~). Yw~G 
1 I 

0 0 
0 0 

0 

0 
0 

I 
B. SU3(J1,J2) groups 

The SU3 UI,j2) group consists of all transformations of 
C2+IUI,j2) keeping invariant the quadratic form 
(z,z) = IZol2 + j f IZI12 + j fj f IZ212. The matrix generators 
ofthe general linear group are given by Eq. (2.5) in the form 

D· 
0 

~). 0 (3.16) 

0 

Y"'~G 
0 jii~) Y,,~G 

0 

~). Y"~G 
0 0) 0 o , 0 0 • 2 

l~ . 
0 0 1 0 

Then the matrix generators ofSU3 Ul>j2) are given by Eq. 
( 2. 8) as follows: 

p,~~(~ 
0 

~). p,~~(~ 
0 

~). -1 1 
2 0 0 o 2 0 0 -1 

Q, ~ Q" ~~(~ 
• 2 
II 

~). L, ~ L" ~ ~ G 
• 2 

-ll 

~). 2 0 
0 
0 

Q'~Q",~~(~ 
0 jii~) 1 C 
0 ~ , L2 = L02 ="2 ~ 

2 1 0 

Q, ~ Q" ~~(~ 
0 

j~). L,~L,,~ ~ G 
0 

0 0 
2 0 

They satisfy the commutation relations 

[PI .P2] = o. [PI.Qd = L I • [P1.Ld = - QI' 

[PI,Q2] =! L 2• [PI.L2] = -! Q2' [PI,Q3] = -! L 3, 

[PI,L3] =!Q3, [P2.QI] = -!LI, [P2.L 1 ] =!QI' 

[P2.Q21 =! L 2, [P2,L2] = -! Q2' [P2,Q31 = L 3, 

[P2.L3] = - Q3' [QI.LI] =jfPI, [Q3,L3] =j~P2' 

[Q2.L 2] =jU~ (PI + P2). [QI,L21 = - ViQ3' 
[Q2,L31 = V~QI' [L I.Q21 = ViQ3' [Q3,L l l =! Q2' 

[L2,Q31 = -V~QI' [QI.L3 1 = -!Q2, [Q).Q3] =!Lz. 

[Q),Q21 =VfL3, [Qz,Q31 =V~, [L),Lz] =VfL3, 

(3.18 ) 
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0 

0 

0 

0 
0 

' .') ( 3.17) 
-lll2 

o . 
0 

. 2 o ) 
-l~ . 

It is well known 15 that the structure of group (algebra) 
is changed under contraction. Letjl = t l , then the simple 
classical algebra su3 contracts into the algebra 
sU3 (tl>j2) = ntuz(2)' where T= {QI,L I,Qz,L2} is 
the commutative ideal and the subalgebra U2UZ) 
= {PI,P2,Q3,L3} is the Lie algebra of the unitary group in 

the complex Cayley-Klein space C2 (2)' From Eq. (3.18) 
forjl = tl we conclude that [T.U2(2) 1 eTas it must be for 
a semidirect sum. The structure ofSU3 (t l,j2) is the semidi
reet product SU3 {tI.j2) = eT&U2(2)' Such groups are 
called inhomogeneous unitary groups. )6 

From Eq' (2.10) we have the general element of the 
algebra su3 (j) in the form 

3 

Z(r.s.wJ) = I (rkQk + SkLk) + WIPI + W2P2 
k=1 
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1 (iWI -ji~T -jin~!) 
="2 ~I i(w2-wl ) -j~~r , (3.19) 

~2 ~3 -lW2 

where ~k == Sk + irk' k = 1,2,3 and ~r is the complex 
conjugate. The finite group transformation matrix E: (~, w j) 
is obtained from Eq. (3.19) by the exponential map 
(2.9). We shall find the matrix E: by the Cayley-Hamilton 
theorem. 17 The characteristic equation det(Z - A,E3 ) = 0 
of the matrix Z is the following cubic equation: 

A, 3 + PA, + q = 0, 

p = wi - WI W2 + w~ + I~ 12(j), 

q = - iWIW2 (W2 - WI) + iw2 n 1~112 (3.20) 

- i(W2 - wl)j ij ~ 1~212 
. '21r12 2"2'21 rr*r -lWil2 ~3 + lj il2 m ~I~ 2~3' 

where 

1,,2(j) = ji 1~112 + j ij ~ 1~212 + j ~ 1~312. (3.21) 

The roots ofEq. (3.20) are as follows l5
: 

_ ( q (( q)2 (p )3)112)1/3 
A,k - --+ - + -

2 2 3 

+ ( - ; - ( ( ; r + ( ~ ) TI2) 113 

= A, k + A, Ie', (3.22) 

where A, k + A, Ie' = - pl3 and A, k, k = 1,2,3 are the three 
distinct cube roots. Then by the Cayley-Hamilton theorem 
we obtain 

E:(~,w,j) = A'E3 - B'Z + C'Z 2
, 

where 

(3.23 ) 

- j i (iw~T + j~~r~3) 
- (W2 - WI)2 - jt 1~112 - n 1~312 
- iWI~3 - j t ~ n2 

and the functions A, B, C are expressed in the following way: 

A = D -I [e""A,zA3 (A,2 - A,3) - e"'2A, IA,3 (A, I - A,3) 

+ e""A,1A,2(A,1 - A,2)], 

B =D-I[et'(A~ -A,~) -e""(A,t -A,D 

+ e"" (A, t - A, D ] , 
C = D -I [e""(A,2 - A,3) - e"'2(A,1 - A,3) + e""(A,1 - A,2)], 

D= (A,I -A,2)(A,1 -A,3)(A,2 -A,3)' (3.25) 

From Tr Z = 0 we conclude that det E: = 1 and 
E:-I(~,WJ) = E:( -~, - wj). 

We shall only discuss contractions of the special unitary 
group SU3, i.e.,jl = 1, £1' j2 = 1'£2' Then tfJi+ = i+, tfJi = i 
in Eq. (2.11) and the Jordan-Schwinger representation of 
the generators (3.17) is given by the operators 

1058 

PI(j) = (i/2)(ao+ao-atal ), 

P2(j) = (i/2)(at al - at az), 

QI (j) = (i/2)(a l+ ao + jiao+ al ), 

LAc') I(A+A '2 A+ A ) 
I J ="2 a l ao-Jlao ai' 

Q2(j) = (i/2)(az+ao+jV~aO+a2)' 
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LA (.) I(A+'" ·2'2""+'" 
2 J ="2 a2 ao - J il z ao a2 ), 

Q3(j) = (i/2)(at al + j ~ao+ ( 2 ), 

LA (.) 1( ..... + ..... . 2 ..... + A ) 3 26) 
3 J ="2 az a l - J za l a2 . ( . 

These operators satisfy the commutation relations (3.18). 
The general element of sU3 (j) is represented by the following 
operator: 
A 3 A A A A 

Z(~,w,j) = L (rkQdj) + SkLdj» + WIPI(j) + w2PZ(j) 
k=1 

_ 1 {. A + A'( ) ~ + A . ~ + ~ -"2 lwlaO ao + 1 W2 - WI al a l - lW2aZ a2 

3 

+ L ~kak+aO-n~Tao+al-jtn~raO+a2 
k=1 

-n~rata2}' (3.27) 

The kernel of the finite group transformation operator 
(2.12) of SU3 (j) in a coherent state basis is given by Eq. 
(2.13), using Eqs. (3.23)-(3.25). We shall not write this 
kernel. We write out only the kernel of operator of the group 
SU3 (L 1'£2) that is obtained from SU3 by two-dimensional 
contraction. This kernel is as follows: 

(3.28) 
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where the functions A', B I, C I are given by Eqs. (3.25) 
and AI ,A2,A.3 are the roots of Eq. (3.20) with the following 
coefficients:p = wi - W IW2 + wL q = - iW IW2(W2 - WI). 

IV. CONCLUDING REMARKS 

On the basis of ideas of the previous paperll we have 
regarded the unitary Cayley-Klein groups SUn + I (j) as the 
groups of motion (except for translations) of the complex 
Cayley-Klein spaces Cn + I (j). The groups SUn + I (j) have 
been obtained from the classical group SUn + I by contrac
tions and analytical continuations of the group parameters. 
It has been shown that all these groups are described in the 
unified way by introducing n parameters j = (jl,j2, .•. Jn ) 
each of which were equal to the real, dual, or imaginary 
units. We have built the Jordan-Schwinger representation of 
the group under consideration. The only contractions of the 
Jordan-Schwinger representations permit of the unified de
scription. In the case of analytical continuations each of the 
Jordan-Schwinger representation is built in a particular 
way. 
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The symplectic Cayley-Klein groups are defined as the groups that are obtained by the 
contractions and analytical continuations of the classical symplectic groups. The Jordan
Schwinger representations of the groups under consideration are discussed based on the mixed 
sets of creation and annihilation operators of boson or fermion type. The matrix elements of 
finite group transformations are obtained in the bases of coherent states. 

I. INTRODUCTION 

The previous papers t
•
2 ofthis series (hereafter referred 

to as I or II and whose equations will be subsequently quoted 
by their number preceded by I or II) was devoted to a consi
deration of the Jordan-Schwinger representations of the or
thogonal and unitary Cayley-Klein groups. In this conclud
ing paper we discuss the case of the symplectic Cayley-Klein 
groups. The symplectic groups and their representations are 
used in different branches of physics.3

•
4 The unitary repre

sentations of the symplectic Sp (n,R) and pseudosymplectic 
Sp (p,q) groups have been regarded in Refs. 5-7. The oscilla
tor representation for the orthogonal and symplectic groups 
was discussed by Lohe and Hurst. 8 The present paper is or
ganized as follows. In Sec. II we describe the symplectic Cay
ley-Klein groups as the groups which are obtained from the 
classical symplectic one's by the contractions and analytical 
continuations of the group parameters. We construct their 
Jordan-Schwinger representations and calculate the matrix 
elements of the finite group transformations in coherent 
state bases. In Sec. III we regard in detail two groups of low 
dimension Sp I and Sp2 U). The main statements of the work 
are briefly discussed in the conclusion. 

II. THE SYMPLECTIC CAYLEY-KLEIN GROUPS 

First we briefly review the necessary information about 
the symplectic group. As is well known3

, the symplectic 
group SPn includes all transformations of 2n-dimensional 
space Rn XRn under which the following bilinear form is 
invariant: 

Spn: Rn XRn --Rn XR n, 
(2.1) 

n 

[x,y] = L (XkY-k -x-kYd, 
k~t 

where {xk,x _ k} is the Cartesian coordinates inRn XR n. In 
the space of infinitely differentiable functionsJR n XRn--R 
the group SPn acts as g:j(x,y) --j(gx,gy) and their genera
tors are in the form 

(2.2) 

where a,p = ± 1, ± 2, ... , ± n, aa = a laxa, ca = signa, 
i.e., ca = 1 for a> 0, ca = - 1 for a < 0 and Ca = 0 for 
a = O. The generators (2.2) are not independent. Theysatis
fy the symmetry condition 

XaP = -cacpX_p._a' (2.3) 

Then, as independent generators we choose the following 
n (2n + 1) generators: 

XJtJt(x) =xJtaJt -x_"a_", p,= 1,2, ... ,n 

X"._"(x)=2x,,a_ Jt , p,= ±1,±2, ... ,±n, 

XV" (x) = xvaJt - c"x -Jta _ v' 

X"v(x) =x"av - cJtx_va_", V= 2,3, ... ,n,Ip,1 <v. 
(2.4) 

The generators (2.2) of Spn satisfy the commutation rela
tions 

[Xup,Xa,p'] = Da'pXaP' - Dap'Xa,p + cacpD_p',pXu',_a 

(2.5) 

We may write the generators (2.2), (2.4) in the matrix 
form using the relation 

(2.6) 

where a = (at,a2, ... ,an,a_l,a_2, ... ,a -n) is the row matrix, 
x = (Xt,X2,,,,,Xn,x_l,X_2'''''X _ n) T is the column matrix, 
and the product in Eq. (2.6) is the ordinary matrix product. 
Then the generators XaP are a 2n-dimensional matrix. The 
independent generators (2.4) are characterized by the non
zero matrix elements as follows: 

(X"")"'' = 1, (X"")_"._,, = -1, p,= 1,2, ... ,n, 
(X". -I') -1'.1' = 2, P, = ± 1, ± 2, ... , ± n, 

(Xv,,)Jtv=l, (Xv,,)-v,-Jt= -cp , 

(X"v)v" = 1, (X"v) -".-v = - c,,' 

(2.7) 

v = 2,3, ... ,n, Ip, I < v. 

Following Refs. 1 and 9, let us regard the map 

t/!: Rn --Rn (j), 
k 

t/!x k = x k II jm' k = 1,2, ... ,n, 
m~2 

(2.8) 

wherej = U2,j3, ... jn) and each of the parametersjm maybe 
equal to the real unit 1 or to the Clifford dual unit or to the 
imaginary unit i. Here Lk ;60, Lm ;60, LkLm = LmLk;60 for 
k ;6m, but Li = L;" = O. Division by a dual unit is not de
fined, but division of a dual unit by itself is equal to the real 
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unit tk/tk = 1. We agree throughout the paper that 
n!:, = aim 1 for a > h. Some of the applications ofthe dual 
numbers in geometry can be found in Refs. 10 and 11. 

The symplectic Cayley-Klein group SPn U) is de
fined12•

13 as the transformation group of 2n-dimensional 
space Rn (j) X Rn (j) leaving invariant the following bilinear 
form: 

SPn (j):R" (j) XRn (j) -R" (j) xRn (j). 

[x,y] kt, CQ./m )(XkY_k -x-kYd· (2.9) 

In accordance with our approach we obtain the generators of 
SPn (j) by the transformations of the generators of SPn' 
From the definition of the generator 

X(x) i ~I ak , 
k -n aa 0=0 

where x' = g(a)x, g(O) = 1, g(a)E SPn (j). xeRn (j) 
XR" (j), using the map (2.8). we have the transformation 
law in the form 

( 

max{lal.IP I} )_ 
Xap(x) = II jm Xap(tf!x)· 

m = ,+ min{lal.IPI} 
(2.10) 

Here tf!x is given by Eq. (2.8), where the upper limit of the 
production is equal to Ik I for negative k. The generators 

( 

max{lal.IP I} ) 
Xap (t/Ix) II j~n(lal-IPI) xaap 

m ,+ min{lal.IPI} 

( 

max{lal.IPI} ). 

II j '-sign<lal-IPll E E X a map -P -a 
m = I + min{lal.IPI} 

(2.11) 

are the Inonu-Wigner'4 singular transformed generators 
(when some parametersjk are equal to the dual units). Us
ingEqs. (2.10) and (2.11) we obtain the generatorsXaP (x) 
ofSpn (j) in the form 

XaP (x) = (Jl/~ +sign(lal IPI) )xaap 

- (IIq 
j,,-sign(lal-1PIl)E E X a map -P -a' 

m=p 
(2.12) 

wherep 1 + min{lal,IP I}, q = max{lal,IP I}. They also 
satisfy the symmetry condition (2.3). The independent gen
erators ofSp" (j) are obtained from Eq. (2.4) by transforma
tions (2.10) or directly from Eq. (2.12) and are given as 
follows: 

Xpp (x) xp,ap, - x _p,a _I"" ft = 1.2, ... ,n. 
Xp,._p,(x) 2xp,a_p" ft ±1,±2 .... ,±n, 

XVI'" (x) ( IT j;")Xvap, - Ep,X _p,a - v' 
m=' + II"'I 

(2.13) 

Xp,v(x) =xp,av - ( IT j;")Ep,x_va_p" 
m=' + II"'I 

1ft I < v, v = 2,3, ... ,n. 

From Eq. (2.10) we have 

XaP (tf!x) (i!/,; I)Xap (x). 
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Substituting in Eq. (2.5) the generators X aP for their expres
sions by XaP we immediately find the commutation relations 
ofSp" (j) 

[X",p,x",.p. ] = ( b jm)( TI jm){( tt j,; 1)8a.pXaP. 
m - PI m = pi m - Pl 

( 
q: ) - })p/'; 1 8ap .Xa .p 

+ (Jt/,; ')EaEp8_p .. pXa .. _a 

+ ( U /,; ')EPEa .8a •• _ a X -p,p' }. (2.14) 
where m-P3 

PI = 1 + min{lal,IP I}, ql = max{lal,IP I}, 

pi = 1 + min{la'I,IP'I}, q; = max{la'I.IP'I}, 

P2 = 1 + min{lal,IP'I}, q2 = max{!al,IP'I}, 

p~ = 1 + min{la'I,IP I}, q~ = max{la'I,IP I}, 
P3 = 1 + min{lal,la'I}. q3 = max{lal,Ia'I}, 

pj = 1 + min{IP I,IP'I}. q3 = max{IP I,IP'I}. 

At last the independent matrix generators ofSp" (j) are ob
tained from Eq. (2.13) using Eq. (2.6). Their nonzero ma
trix elements are as follows: 
(Xp,p,)p,p, = 1, (Xp,p,)_p,._p, -I. ft= 1.2, ... ,n, 

(Xp,._p,) _1"'.1'" = 2, ft = ± 1, ± 2, ...• ± n, 
v 

(XVI'" )p,v = II 1m. (XVI"') -v.-p, = - Ep,. 
m =, + II"'I 

v 

(Xp,v)vp, = 1, (Xp,v)_p,,_v = -Ep, II j;", 
m= 1 + II"'I 

Iftl < v, v = 2.3, ... ,n. 

(2.15 ) 

The general element Z(rJ) = !.rapXaP (j) of the alge
brasPn (j). where the sum is doing over all independent gen
erators, is mapped by exponent into the finite group transfor
mation E:(r.j) = exp Z(rJ). 

The Jordan-Schwinger representation of Sp" (j) is pro
vided by the operators [cf. with Eq. (1.4.3.)] 

XaP(j) = tji+XaP(j)tji, (2.16) 

where 

k = 1,2, .... n, 

(2.17) 

Here t/J is identical, whenjm = 1, tm, and for the imaginary 
values of parameters j we use the well known properties of 
the annihilation and creation operators: ia ± k = a ~ k' 

ia ~ k = €a ± k' Then Eq. (2.17) may be written in the form 

(;) (~2(t;) -t/J~j~») (a~) = W-I(j)(i~)' 
(2.18) 

where t/J1(j), t/J2(j) are 2n-dimensional diagonal matrices 
with the following nonzero matrix elements: 
(t/J,)±I.±' 1, (t/JI)±k,±k = ± 1,ifn!.':~Jm ±rand 
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r is a positive real or dual number, (t/ll) ± k, ± k = 0 other
wise; (t/l2)±I,±1 =0, Ct/l2)±k,±k =O,ifCt/lI)±k,±k = ± 1 
and (t/l2) ±k,±k = + l,ifn~~2jm = ± ir· The4n-dimen
sional matrix 'I' (j) has the property 'I' (j) = ('I' - I (j ) ) T • 

The finite group transformation is represented by the 
operator 

Vg (r,j) = exp{ - Z(r,j)} = exp { - L rapXap (j)}. 

The kernel of the operator Vg (r ,j) in a coherent state basis is 
obtained quite analogous to the case of orthogonal or unitary 
groupS.I,2 When the Cayley-Klein groups SPn (j) are ob
tained from Spn only by contractions (jk = 1, Lk , 

k = 2,3, ... ,n) the kernel is given by 

U(u*,I3,r,j) = exp{u*E( - r,j)f3}, (2.19) 

[see Eq. (1.4.S)], where u*=(aT, ... ,a~, a!I, ... ,a!n), 
13 = (fJl,· .. ,fJ n , fJ _\> ... , fJ _ n ). When the groups SPn (j) are 
obtained from SPn by both contractions and analytical con
tinuations the kernel is given by Eq. (1.2.7), where the ma
trices 5,1/,1/ I are expressed through the matrix E (r,j) by Eqs. 
(1.4.11) witht/ll(j) andt/l2(j) as in Eq. (2.1S). 

III. EXAMPLES 

We shall discuss in detail the groups SPI and SP2(j). 
Only for these groups we are able to obtain the explicit form 
of the finite group transformation matrix E(r,j). 

A. SP1 group 

The simplest symplectic group SPI is the transformation 
group of the two dimensional space RI XR I which leaves 
invariant the bilinear form [x,y1 = XIY_I - X_IYI' The 
three independent generators ofSPI are given by Eq. (2.7) in 
the form 

and satisfy the commutation relations 

[Xll,xl, _ I ] = - 2XI, _ I' [Xll,X _ 1,1 ] = 2X _ 1,1> 

[XI, _I'X _ 1,1] = - 4Xll , (3.2) 

The general element of the algebra SPI is given by the matrix 

2s2 ) 
- r2 ' 

(3.3 ) 

and the finite transformation matrix E is 

E(rl,s) =expX(rl,s) =E'chp+X(shp)lp 

= (ChP+ r 1
s

:

p 

2S
ZS

:
P

), (3.4) 
shp shp 

2s1-- chp-rl--
p p 

where pZ = ~ + 4s ISZ' 
Following (2.16), the Jordan-Schwinger representa

tion of Sp I is provided by the operators 

(3.5 ) 
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The kernel of the operator Vg (r1,s) = exp{ - X(rl,s)} in a 
coherent state basis is given by Eqs. (3.4), (2.19) or explicit
lyby 

U(u*,I3,rl ,s) = exp{(aTfJ\ + a! IfJ-l )chp 

- (shp)lp[r l (aTfJl - a!d3_1) 

+ 2s la! IfJI + 2s2aTfJ_ d}. (3,6) 

B. SP2(i) groups 

The group SP2 (j) (we omit the index 2 from the param
eter j2) consists of all transformations of R z (j) X R2 (j) leav
ing invariant the bilinear form [x,y] =XIY_I -X_IYI 
+ l(x2Y-z - X-:zY2)' The ten independent matrix genera

tors ofSp2(j) are given by Eq. (2.15) as follows: 

Xu ~ (~ ~ ~ [ V X" -, ~ (~ ~ ~ V 
XU~(~ ~ ~ V X"~(~ ~ ~ j) 
X,_, ~(~ ~ ~ V 

~ ;.) 
j[ V' 

~ ~ V X-"~U ~ ~ V 
(3.7) 

Let us observe that each of the sets of generators 
A I = {XWXI, _ I'X _ I,d and A2 = {X22,xz, _ 2,x _ 2,2} 
form the subalgebra ofsp2(j) isomorphic to the algebra SPI 
with the commutators (3.2) and [A\.A 2 ] = O. Then 
A = A I ED A 2 is the subalgebra of SP2 (j). The other nonzero 
commutation relations of SP2(j) are obtained from Eq. 
(2.14) in the form 

[XII 'X12 ] = - X IZ, [Xll ,X2 d = X 21 ' 

[XII ,x2,_.] = -X2,_I' [Xll ,X-1.z] =X_I,Z, 
[XI, _I>Xz.] = 2X2, _ I> [XI, _ l,x -1,2] = - 2X12, 

[X -I,I,x2,-I] = 2Xzl ' 
(3.Sa) 
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[X22,x12] = X 12' [X22,x2d = - X 21' 

[ X 22,x2, - I ] = - X2, - I , [ X 22,x _ 1,2] = X - 1,2' 
[X2,_2,x12] =2X2,_I' [X2,_2,X_ I,2] = -2X2» 

[X_ 2,2,x21] = -2X_I,2' [X- 2,2,x2,-d =2XJ2.(3.8b) 

[XI2,x2d =/(X22,-XJJ ), [XI2,x2,_I] = -/XI,_I' 

[XJ2,x-I,z1 =/X_ 2,2, [X21 ,x2,-d = -/X2,_2> 

[X21 ,x-I,2] =/X_ I,I,[X2,_I,x_I,2] = -/(XJ1 +X22 )· 

(3.8c) 

For j = L we conclude from Eq. (3.8c) that the set 
T= {XJ2,x21,x2,_ l,x _ 1,2} is the commutative ideal ofthe 
algebrasp2 (L), since it follows from Eqs. (3.8a), (3.8b) that 
[T,A de Tand [T ,A2] C T, i.e., [T,A] C T. Then the struc
ture of the algebra SP2 (L) is the semidirect sum SP2 (L ) 
= reA = TEt(A I ~A2) and for the contracted group 

Sp2(t} we obtain the structure of the semidirect product 
SP2(L) = eT (1< (SPI XSPI)' It must be emphasized that un
like the case of unitary groups,2 the contracted symplectic 
groups are not the inhomogeneous groups in the sense of 
Refs. 15 and 16 since the last one's have the structure 
R 2n (1<SPn' 

The general element of the algebra SP2 U) may be written 
in the form 

XU) =7IX II + 72X 22 +SIXI,_I +S2X2,_2 +WIX_I,I 

+ wzX -2,2 + UIX I2 + U2X _ 1,2 + VIX 21 + V2X2,_ I 

(

71 /VI 2WI /U2) 
_ U I 72 U2 2W2 
- 2s1 /V2 - 71 - /UI . 

V2 2s2 - VI - 72 (3.9) 
We shall obtain the finite group transformation matrix au) 
by the Cayley-Hamilton 17 theorem. The characteristic 
equation det (XU) - A' E) = 0 of the matrix XU) is the fol
lowing biquadratic equation: 

A 4 _ pA 2 + q = 0, 

p = r + 4(s,W) + 2/(u,v), 

q = (ri + 4slwl )( ~ + 4S2W2) + 1'(U,V)2 + 2/(7172U2V2 
- 7 172U IVI - 271UIU2S2 - 271VIV2W2 - 272U2VISI 

- 272UIV2WI + 2v7s1W2 + 2U~WIS2 
- 2~WIW2 - 2U~SIS2)' (3.10) 

LetA 2 = Z, thenzI,2 = !(p ± ~p2 - 4q) and the roots ofEq. 

(3.10) areasfollows:A I,2 = ± JZ;, A3,4 = ±,f"i;. The ma
trix aU) = exp XU) is given by the Cayley-Hamilton 
theorem in the form 

au) = (p2_4q)-1/2{E'(zlch,f"i; -z2chJZ;) 

+ XU) '(ZI (Z2) - 1/2sh,f"i; - Z2(ZI) - 1/2shJZ;) 

+X2U)'(chJZ; -ch,f"i;) +X3 U)'«ZI)-1/2 

(3.11) 

where the matrices X 2 U) and X 3 U) are characterized by the 
matrix elements 
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(X2(i»kk = (X 2(i)Lk._k 

= ti + 4SkWk + /(u,v), k = 1,2, 

(X2(i»21 = UI(71 + 72) + 2(S I U 2 + V2W 2 ), 

(X2(i)L 1,-2 =/(X2U»21' 

(X 2(i»_2,_ I = VI(71 + 72) + 2(UzS2 + V2WI), 

(X 2(i»12 =/(X2U)L2,_ I' 

(X 2U)L2,1 = V2(71 - 72 ) + 2(U IS2 - VIS1), 

(X 2U)LI,2 = - /(X 2U)L2,Jt 

(X 2U»2,_1 = U2(72 - 71) + 2(u 1wI - VIW2), 

(X 2U»I,_2 = - /(X 2U)h._ Jt 

(X 2U»I,_1 = (X 2U)L 1,1 = (X 2U»2,_2 

= (X 2U)L2,2 = O. 

(X 3 U»JJ = - (X 3U)L 1,-1 

= 71 [ri + 4s I W I 

+ 2/(u,v)] + /[72(U IVI - U2V2 ) 

+ 2(U IU2S2 + VIV2W2)], 

(X 3(i»22 = - (X 3 (i»_2,_2 = 7d~ + 4S2W2 

+ 2/(u,v)] +/[71 (UIVI - U2V2 ) 

+ 2(U IV2W1 + U2VISI)]' 

(X 3 U»21 = UI [ri + 7172 + ~ + 4(s,w) + /(u,v)] 
+ 2(71V2W2 + 72UzSI - 2VISIW2), 

(3.12) 

(X 3 U)L2,1 = V2[ri - 7172 + ~ + 4(s,w) + /(u,v)] 

+ 2(71UIS2 + 72V1S1 + 2UzS1S2) , 

(X 3 U»2, _ I = U2 [ri - 7172 + ~ + 4(s,w) + /(u,v)] 

+ 2(71VIW2 + 72UIWI + 2V2WIW2)' 

(X 3 U)L2,_1 = -vl[ri +7172+~ +4(s,w) +/(u,v)] 

- 2(71UzS2 + 72V2WI - 2U IS2WI), 

(X 3 U)LI,1 =2sI[ri +4s l wI +2/(u,v)] 

+ 2/(72UIV2 + V~W2 - UiS2)' 

(X 3 U)L2,2 = 2s2[~ + 4S2W2 + 2/(u,v)] 

+ 2/(7IVIV2 + V~WI - visl)' 

(X 3 U»I,_1 = 2wI [ri + 4sIwI + 2/(u,v)] 

+ 2/(72U2V1 + U~S2 - viw2), 

(X 3 U»2,_2 = 2wd~ + 4S2W2 + 1/(u,v)] 

+ 2/(7IU1U2 + U~SI - uiwl ), 

(X 3 U)LI,_2 = -/(X3 U»21' 

(X 3 (i»12 = - /(X 3U)L2._I' 

(X 3 (i»I,_2 =/(X3 U)h._I' 

(X 3 U)LI,2 =/(X3 U)L2,1' (3.13 ) 

According to Eq. (2.19) the matrix a U) is only needed 
to obtain the kernel of the finite transformation operator of 
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SP2U),j = 1,£ in the Jordan-Schwinger representation. We 
shall not write out this kernel. 

IV. CONCLUSION 

In this series of papers we have defined the orthogonal, 
unitary, and symplectic Cayley-Klein groups as the groups 
which are obtained from the classical one's by the Inonu
Wigner contractions and analytical continuations. It has 
been shown that all these groups are described in the unified 
way by the introducing n parameters j = Ulj2 •... jn) each of 
which were equal to the real, dual. or imaginary units. It 
must be emphasized that all Cayley-Klein groups in each 
series depend on the same number of independent group pa
rameters as the corresponding classical groups. 

Using the well-developed theory of quantum systems 
with the quadratic in creation and annihilation boson or fer
mion operator Hamiltonians. we have built the Jordan
Schwinger representations of the groups under considera
tion. The matrix elements of the Jordan-Schwinger repre
sentation of the finite group transformation operator in a 
Glauber coherent state basis are obtained with help of the 
finite transformation matrix E. In the case of contractions 
these matrix elements are completely defined by the matrix 
E and in the case of both contractions and analytical contin
uations we have introduced the map \(I (j) that transform the 
matrix E into the matrix S,TJ,'T/J. The last case includes a 
nonlinear operation of obtaining the inverse matrix S - I and 
therefore for the matrix elements we have the more compli
cated equations, as in the first case. For the boson represen
tations the matrix elements under consideration are the gen
erating functions for the matrix elements in discrete Fock 
bases. The last matrix elements are expressed in terms of 
Hermite polynomials of several variables with zero argu
ments. 
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The Jordan-Schwinger representations of groups are 
closely connected with the properties of stationary quantum 
systems whose Hamiltonians are quadratic in creation and 
annihilation operators. The replacement of a group param
eters r by (illi) fr, where t is a time variable, transforms the 
matrix elements of the finite group operator into the Greens 
function of corresponding quantum systems. Thus, the uni
fied description of the Jordan-Schwinger representations of 
the Cayley-Klein groups gives us opportunity to investigate 
the sets of the stationary quantum systems. 
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The group table for the icosahedral group I is constructed by using the isomorphism between 
the group I and a subgroup of the permutation group S12' The single-valued irreducible 
representation~ and Cle~ch-Gordan (CG) coefficients of I are calculated by a computer code 
based on the elgenfunctlOn method. The irreducible matrix elements for all the 60 group 
elements are ~ven explicitly in the form of ~m/n [exp(it,6) )P[2 cos t,6 ]q[2 cos 2t,6)', where m, n, 
p, q, and rare mtegers and t,6 = 21T/5. The Clebsch-Gordan coefficients ofI are all real 
under a new phase convention for time reverse states and tabulated in the form of ~m/n. 

I. INTRODUCTION 

The icosahedral group I is the most complicated point 
group and has been the subject of many studies. 1-6 The dis
covery of the quasicrystal, or the icosahedral crystals,7 has 
revived the interest in the group. Early works2

-4 are mainly 
concerned with the construction of the S03 U subduced ba
sis, namely the linear combinations of the spherical harmon
ics adapted to the symmetry of the group I. Although the 
primitive character of the group has been known for a long 
time, its irreducible matrices are not readily available except 
for three generators of the group. 1,4 Using the 03H subduc
tion coefficients given by McLellian,4 Goulding5 calculated 
the 3jm-symbol of the group I, and later Pooler6 calculated 
both the 3jm- and 6j-symbols of I. All the above studies are 
based on the fact that the group I is a subgroup of the rota
tion group S03 and use the subduction to construct the irre
ducible representations and 3jm-symbols of the group I from 
their counterparts of the group S03' 

Conscious of the fact that there is no universal and sim
ple m~thod for finding characters and irreps of a finite group, 
Chen developed a new approach to group representation 
theory which, in tum, gives rise to a new method, the eigen
function method (EFM) for calculating characters, irreps, 
CG coefficients, isoscalar factors, etc. The EFM has been 
successfully applied to point groups, permutation groups, 
unitary groups, and space groups (for an extensive review 
the reader is referred to the monographS and Ref. 9). Re
cently, a versatile space group program package based on the 
EFM·has been written by two of us lO that can be used to 
~o~pu~e ab initia the single- and double-valued irreps (pro
Jective meps) of the 32 point groups (little cogroup of the 
230 space groups), as well as the point group or space group 
CG coefficients. The program is written in FORTRAN-77 and 
implemented on the IBM-PC. The only input is the name of 
the space group or the point group and the wave vector to be 
considered [for point groups one only needs to set the wave 
vector to be (0,0,0)]. It is quite interesting to use the same 
program with minor modifications to calculate all the irreps 

a) Permanent address. 

and. CG coefficients of the most complicated point. group, 
the Icosahedral group I. In this paper, the irreducible repre
sentations and CG coefficients of the group I are constructed 
solely from the group table ofl without invoking any knowl
edge of the group S03' 

II. RETROSPECT ON THE EFM 

The essence of the EFM is best illustrated II in the three
dimensional rotation group S03' According to the terminol
ogy in Refs. 8 and 9, the Casimir operator J2 ofS03 is called 
the first kind of complete set of commuting operators 
(CSCO-I) ofS03, which is a CSCO in the class parameter 
space. The eigenfunction of J2 in the class parameter space is 
proportional to the complex conjugate of the primitive char
acter. The operator set (J2, Jz) is called the second kind of 
CSCO (CSCO-II) ofS03, whose eigenfunction Ijm) gives 
the S03 =>S02 irreducible basis. The operator set (J2, Jz, Jz) 
is called the third kind of CSCO (CSCO-III), which is a 
CSCO in the group parameter space, where Jz is the Casimir 
operator of the subgroup S02 of the intrinsic group SO 
which is commuting and anti-isomorphic with the rotatio~ 
group S03 and describes the rotation of a system (such as a 
deformed n~cleus) around its intrinsic (body fixed) axes." 
Physically, Jz is the third component of the angular momen
tum in the intrinsic coordinate system, II usually denoted by 
J3• The eigenfunction of the CSCO-III is the complex conju
gate of the irreducible matrix ofS03, D ~k (a,/3,r)*. 

It was shown that the above approach can be extended 
to any compact group.S,9 For a finite group G, the Casimir 
operator J2 is replaced by the CSCO-I of the finite group G, 
denoted by C, which is a linear combination of a few class 
operators of G and is the analogy of the Casimir operator in 
Lie ~roups. The eigenvectors of C in the class space are pro
portIOnal to the complex conjugate of the character vectors. 
The characters are obtained by further using the normaliza
tion condition for the character stemmed from the orthogo
nal theorems of the characters. Suppose G(s) is a canonical 
subgroup chain ofG, and C(s) is an appropriate linear com-
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bination of all the CSCO-I's of the subgroups contained in 
G(s). Then, (C,C(s)) is the CSCO-U ofG and its eigenvec
tors give the irreducible basis of G. Similarly suppose that 
G(s) is the corresponding subgroup chain of the intrinsic 
group G, which is commuting and anti-isomorphic with the 
group G. Note that G(s) has the corresponding operator set 
C(s}. Then, (C,C(s},C(s» is the CSCO-III ofG, whose ei
genvectors (after proper normalization and using the stan
dard phase convention8

•
9

) in the group space give the com
plex conjugate of the irreducible matrix vector {D;b (R J ), 

D;b(R2 }, ... ,D;b(R IGI }}, where v, a, and b are the eigenval 

ues ofC, C(s), and C(s), respectively, whileR J, R 2, ... , R iol 
are the elements of the group G of order IGI. In practice it is 
very convenient to linearly combine the operators C, C(s}, 
and C(s) into a single operator K which is a CSCO in the 
group space and can be served as the CSCO-III ofG. Having 
done this, we only need to solve the eigenequation of a single 
operator K to find the irreducible matrices of G. 

The prerequisite condition for the application of the ei
genfunction method is that the group table is known. In the 
following section we describe a way to construct the group 
table of the group I. 

III. GROUP TABLE 

A regular icosahedron (icosahedron for short) has 12 
vertices, 20 faces (which consist of identical regular trian
gles), and 30 edges. The rotation axes of the group I consists 
of 6 fivefold axes (joining the two opposite vertices), A5j 

(j = 1,2, ... ,6), 10 threefold axes (joining the centers oftwo 
opposite faces), A3j (j= 1,2, ... ,10), and 15 twofold axes 
(joining the midpoints of two opposite edges), A 2j 

(j = 1,2, ... ,15). The vertices of the icosahedron, the centers 
of the triangles, and the midpoints of the edges are indexed as 
in Figs. 1 and 2, and the rotation axes are listed in Table I by 
listing the indices of the vertices, centers, or midpoints 
through which they pass. 

The rotation operators of the group I are denoted by 

C;:j (j= 1,2, ... ,6; m = 1,2,3,4), 

C~j (j=1,2, ... ,1O; m=I,2), (I) 

C2,j (j = 1,2, ... ,15). 

Together with the identity, they form the group of I with 
order 60. The group elements are denoted by R i , 

i = 1,2, ... ,60. 
For constructing the group table, it is convenient to use 

the permutations ofthe 12 vertices fo the icosahedron under 
the rotations, which form a subgroup of the permutation 
group S12' to replace the rotation operations. (The isomor
phism between the group I and the subgroup of Sl2 is shown 
in the first table in the Appendix.) With this as input, the 
group table of the group I is generated by the computer by 
using the multiplication rule of the permutation group and is 
shown in the second table in the Appendix. 

IV. THE CSCO-I AND CHARACTERS 

From the group table, the program 10 will find the class 
operators and the class multiplication tables, the CSCO-I 
and the primitive characters. For a detailed description of 
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3 

12 

FIG. 1. The large size integers label the 12 vertices and the small size inte
gers the centers of the 20 faces. 

the program, the reader is referred to Ref. 10. 
The five class operators of the group I are found as fol

lows: 
6 13 

C,=E=R
" 

C2=L(CL+CL)=LR;. (2a) 
j= 1 ;=2 

6 ~ 

C3 = L(CL+CL)= L R;, 
j= 1 i= 14 

ID 45 
(2b) 

C4 = L(CL+CL)= LR;. 
j= J i=26 

12 

FIG. 2. The large size integers label the 12 vertices and the small size inte
gers the midpoints of the 30 faces. 
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TABLE I. The rotation axes of the group I. Here m _ n denotes an axis 
going from the point m to the point n, its positive direction being toward the 
point n. 

Fivefold axes Threefold axes Twofold axes 

A~.I 9-1 A3,I 17-1 A2.1 22-1 
A,.2 10-2 A3,2 16-2 A2.2 21-2 
A,,3 11-3 A3,3 20-3 A2.3 25-3 
A,.. 7-4 AM 19-4 A2,4 24-4 

A", 8-5 A3" 18-5 A2" 23-5 
A, .• 12_6 A3,6 14-6 A2,6 28_6 

A3,7 15-7 A2,7 27-7 
A3.8 11-8 A2,8 26-8 
A3.9 12-9 A2,9 30_9 

A3,IO 13-10 A2,IO 29_10 

A2,II 16-11 
A2.12 17_12 

A2.13 18-13 
A2.14 19-14 

A2,1' 20-15 

15 60 

Cs = L C2• j = L R;. (2c) 
j= I ;=46 

The CSCO-I of the group I is found as C = C2• In the class 
space spanned by CI,oo.,Cs, the representation matrix of C2 is 
found to be 

12 0 0 0 
5 1 5 0 

D(C2 ) = I 1 5 5 (3) 

3 3 3 3 

0 4 4 4 
By diagonalizing D ( C2 ), we obtain five distinct eigen

values that can be served as the irrep label and five character 
vectors that are well known and not listed here. The corre-

spondence between the eigenvalues of C2 and the Mulliken 
notation is as follows: 
The eigenvalues of C2: 

12 8 cos( 1T15) 8 cos(31T15) - 3 O. 

The Miilliken notation: 

A TI T2 G H. 

V. THE CSCO-III AND IRREDUCIBLE MATRICES 

The subgroup or subgroup chain G(s) used for classify
ing the irreducible matrices can be specified either by the 
user according to one's need or by the computer. We 
choose the cyclic group Cs = (E,C~,l>CL,CL,C~,I) 
= (RI,R2,R\4>RIS,R3) as the subgroup G(s). Once G(s) is 
specified, the programiOwill find the CSCO-I ofG(s). In our 
case it is trivial, since any element of Cs except the identity 
can be chosen as its CSCO-1. The operator C ~.I = R2 has 
been chosen as C(s) and its rotation axis is chosen as the z 

axis, 

C(s) = R2 = Rz (21T15) = exp( - 21TiJj5). (4a) 

The corresponding intrinsic operator is C(s) = C ~,I 
= R2 • The program will find a single operator as the CSCO
III K of the group I with the result 

K = 7C + C(s) + 9C(s). (4b) 

From (4) and (2a), and the group table, the program will 
find the representation matrix of the CSCO-II1 K in the 
group space, and its 60 eigenvectors corresponding to the 60 
distinct eigenvalues. With proper normalization and taking 
complex conjugate, they yield all the irreducible matrix ele
ments of the group I. The program contains a subroutine to 
check that the calculated matrices do form a representation 
of the group. The rows and columns of the matrices are in
dexed according to the eigenvalue exp( - 21TJ-liI5) of C(s), 
where J-l is the eigenvalue of Jz modulo 5. The values of the 
integer J-l along with its index a for different irreps are listed 
below: 

irreps A TI 
(1,0, - 1) 

(1,2,3 ) 

T2 
(2,0, - 2) 
(1,2,3,) 

G H 

J-l: (0) (2,1, - 1, - 2) (2,1,0, - 1, - 2) (5) 

a: (1) ( 1,2,3,4) ( 1,2,3,4,5). 

The original output of the matrix elements are complex deci
mals. To convert the complex decimals to the exact values, 
we use the following procedure. From the character table 
and the matrices for the generators of the group I given in 
Ref. 4, we use the ansatz that the entries are of the following 
form: 

~mlnzPpqQr, (6a) 

where m, n, p, q, and r are integers, and 

(
.21T) /5 - 1 21T 

z=exp IS ' P=--2-=2cos s ' 
/5 + 1 41T Q= ----=2cos-. 

2 5 
(6b) 
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Among the 60 X 60 entries, besides 0 and 1, there are only 30 
distinct values, 10 being real and 20 complex, denoted by 
capital and small letters, respectively. With the help of a 
computer, all of the 30 decimal values are converted into the 
form of (6) and are listed in Table II. The irreducible matrix 
elements of the group I are given in Table III. 

VI. THE CSCO-U AND CG COEFFICIENTS 

The eigenfunction method for the CG coefficients is dis
cussed in Refs. 8-10. Here we only give some key points. Let 
Iv;a;), i = 1,2, be the two irreducible bases. By using theCG 
coefficients they can be linearly combined into another irre
ducible basis, 
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TABLE II. The symbols used in Table III. 

A 
1 

,f5 

B 

-AQ 

D 

-,[2A 

E 

AP 

e 
-Ez 

f Dr 
s 

Mr 

IVTa) = L (v1a 1'V2a2IvTa)lv.a.)V2a2)' 
Q.Q2 

g 
Dz- 1 

Mz 

h 
Er 

U 

Lz- 1 

(7) 

L 

,[6A 2 

j 
Bz- 1 

V 

Lz-2 

M N 
_2A 2p _2A2Q 

k m 
_Az- 1 Ar 

w y 
Hz- 1 Gr 

(8) 
where the first factor in the right-hand side is the CG coeffi
cient and T is a multiplicity label, T= 1,2, ... ,(V1V2V). Ac
cording to Sec. II, I vTa) is necessarily an eigenfunction of 
the CSCO-II, (C,C(s», with the eigenvalues v and a. There
fore, the CG coefficients result from a diagonalization ofthe 
representative matrix of the CSCO-II in the product basis, 

where a can be understood either as the eigenvalue 
exp( - 21TftiI5) or its index ordered in Eq. (5). Solving the 
eigenequation (8) we can get the eigenvalue (v,a) and its 

TABLE III. The single-valued irreducible representation of the icosahedral group. 

NU 8 b 

(1,1) 
(l,I) 
(2,1) 
(3,1) 
(l ,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 
(l,1 ) 
(2,1) 
(3,1) 
(l,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

4 (1,1) 
(2,1) 
(3,1) 
(4,1) 
(l ,2) 
(2,2) 
(3,2) 
(4,2) 
(l, 3) 
(2,3) 
(3,3) 
(4,3) 
(l ,4) 
(2,4) 
(3,4 ) 
(4,4 ) 

5 (l, 1) 
(2,1) 
(3,1) 
(4,1) 
(5,1) 
(l ,2) 
(2,2) 
(3,2) 
(4,2) 
(5,2) 
(l ,3) 
(2,3) 
(3,3) 
(4,3) 
(5,3) 
(l ,4) 
(2,4) 
(3,4) 
(4,4) 
(5,4) 
(l, 5) 
(2,5) 
(3,5) 
(4,5) 
(5,5) 
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1 
1 
o 
o 
o 
1 
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o 
o 
o 
1 
o 
o 
o 
o 
1 
o 
o 
o 
o 
1 
1 
o 
o 
o 
o 
o 
1 
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o 
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o 
1 
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o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
1 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

a 
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o 
1 
o 
o 
o 
a* 
d 
o 
o 
o 
1 
o 
o 
o 
d* 
d 
o 
o 
o 
o 
a 
o 
o 
o 
o 
a* 
o 
o 
o 
o 
d* 
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o 
o 
o 
o 
o 

o 
o 
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l 
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o 
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a" 
o 
o 
o 
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d* 

a* 
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o 
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d* 
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o 
1 
o 
o 
o 
o 
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1 
b 
f 
h 
D 
A 
D 
h" 
f* 
b* 

b* 
D 
h 
f* 
A 
f 
h* 
D 
b 

b* 
f* 
h* 
D 
A 
D 
h 
f 
b 

h* 
f 
A 
f* 
h 
D 
b" 

b" 
g 
E 
g 
A 
g" 
E 
g" 
b 

g" 
E -. 
glr f* 
A A 
g f 
E -e* 
g g" 
b* b* 

b* 
f f* 

-e -e* 
g* g 
A A 
g g" 

-e* -e 
f* f 
b b" 

b* 
g* 

-0* 
f 
A 
f* 

e* e 
-g -D 

e e* e e* e* e* e 

J j 
-D -g* 
-A -A 
-D -g 

j* j* 
-g* -D 

e e" 
k k* 

-g* -D 
j* j* 

-D -g 
-A -A 
-D -g* 

j j 
-g -D 

-f* -f 
B B 

-fir -f 
-A -A 
-f -f* 

B B 
-f -f* 

e* e e* 
k* k k* 

-h* 
j* 

-f* -8 -8.-f 
-b -b -b* -b* 
-8* -f -f*-g 
-A -A -A -A 
-8 -f* -f _g* 
-b* -b* -b -b 
-f _g* -8 -f· 

e* e* 
k* k* 

-E -E e* 
-b* -b 

e* -h* 
j -b 
k k 

e -h -h 
j" -b* j 
k* k*-A -A -m -m* -m* 

-h -h* 
m* m* 

m m* 
-b j -b* 
-b* j*-b 

m* m* 
m* 

-h* e* 
k* k* 
j* -b* 
e -h 
k* k 

m 
-h 

k 
j .* k 

n* n* 

e* -h -h* -E ." -E 

m" 
m* A 

m m* m m* 
A -k. -k* -I. -k 

jif j* 

j j 
j -b* 8 -b 
j* -b B -b* 

A A -I. -k -k* -k* 
m* m m* 
e -h*-h 
k -A -A 

-b j* j 
-h* -h* -h 

k* k k* 

m* m. m 
-E e* -E 
-m'" -m* -m -m 

-b -b* B 
e* -E -E 
k* I. k* 
n n* n" 

q* r* 
n* 
r* q" N q 

u* v* 
s H 
p* p* 
q* N 
P p" 

u u* L Y y" 
t* s* t* t 

H .* w w w* w* H H P P 
r· q* r r* N q 
p p* p'" p 

-v* -L -v -L 
p* p 

-u* 
p* 

_yO 

-L 
F 

-L 
L 
s* 
y* 

-y 

p* 

w" 
t 
u* 
q* 
n* 

Y y* y* 
t. s* t 

u* L 
-v -L 

F F 
-v* -L 

u L 
t 
y* Y 

-L -v* 
P p 
q r* 
w* w 
&* t* 
L 
r* 

-v* -u 
F 

-u* 
u* v* 
t* t* 
Y G 

-L -u* 
p* 
q" r 

H . 
L Y* 

n" 

t* 
y* 

-u" 
F 

n* n* 
s* H 
u* v* 

H 

y 

t 
G 

_yO 

-u -u* 
p* p* 
r* N 
H p* 
t* H 
y y* 

r* q 
n* n* 

-u* -u 
F F 

-u* 
y y* 

H H 
n" 

_yO 

P p* 
q* q 
p* p 

s* 
u" 

n* 

-u* 

_yO 

F 

u" 
s* 
n" 

P 
H 
y 

q* 
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m" 
p 

s" 

n* 
H 
n' 

k* 
-j 

A 
h* 

-j ,. 
p* 
t 
U 

r* 
G 

- j" 
m" 
p 
t" 
u" 
r 
G 
t" 
n" 

k k*-k 
b* _j* -E 

-k* -m* -m 
-h* _j* b 

m" 
h* -eo 
b" - j* - j 
m* m m* 

p* 
t* 

y* L 
r* 

n* 

q* 
y 
s* 
n 

q 
y* 

m 
p* 
s* 

r 
y* 
t * 

k 
B 

-h 

k -k -k 
j* 

-E 
-m* -m 

y* 
N 
y* 
t* 
w* 

u 
H 
w* 

r* 

-eO 
b" - j 

-1.* -it. 
w* 

n" 
t* 

u* 
q* 
n* .* y' 

-u* 
p" 
N 
u* 

_yO 

p" 
q 

-v* -v -u* -L 
w* 

n' 
-L 

w" 
_yO 

y 
-u* -L 

y* 
-y 

p* p 
q* 
y* 

H H w* y* 
t* 

_yO 

F 

u* 
N 
p* 

-u* 

-u* -v 
F 

_yO 

q 
p* 

_yO 

-u 
F 

-u* 
y* 
q* 
p 

_yO 

u* 
r* 
H 

n* n* n* 
M s* H t* 

n* n* n G 
q q" 
v* u* u* 
M s* H s t* 
p* P p* 

r* 
u* 

q* 
L 

r' 
y* 

q 
L 

H 

-L -u 
F 

-u* 
y* 

-u* -L 
u* 

-y 

F 
_yO 

F 
-v* -L 

L 
r 
H 

_yO -L 
n n* 

r* 
w* 

-L 

t* s s* 
y* y* y 

r* q q* 
L L 

s* t* 
p* p* p* 

F 
-L 

q* 
w* 

-u* 

-u* 
y* 
t 

Y 
H 

n* w* 
t N 
Y w 
r* H 
v* u* v 

r* N 
y* Y 

p* 
q* r 
u L 

-v* -L 
F 

u* 
q 

P 
-L 

y* 

r* 

s* 
w* 

F 
-L 

L 
r* 
p 

_yO 

U 

t* 

-8 

E 
- j* 
-k 

w* 
t* 
y" 
N 
y* 
H 
y" 

-u* 

r* 

_yO 

u* 

w* 

Y 
H 

'y 
N 
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TABLE III. (Continued) 

NU a b 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 411 50 51 52 53 54 55 56 57 58 59 60 

1 
-h 
-f* 

1 
-h 
-g* 

8 
-g -g* 
-A -A 

1 1 1 1 1 1 1 1 
-h* -j* -j -j* -j -h* -h -j -j* -h* -h 
-g f* f glll D -D -f g D -f 

B E -e -b -b -e* -e* j* 
-g f* D -f* -0 D g* -g* 
-A A A -A -A A A -A 

-g 
j* 

-f* 
-A 

1 
- j* 

g 
h 
f 
A 

1 
- j 

f* 
h 
g* 
A 

1 
-8 

g* 
h 

1 1 
o -E 

1 
o 
o 

1 
-8 

f* 
-e 

f 
A 

1 1 
-8 -E 

f -g 
-e* -b* 

f* _g* 
A -A 

·1 
o 
o 

1 
-E 
-0 

1 1'.1 1 
-8 -E 0 -E 

D -f* 0 
E j*-a 

-g' 
-b 

o -f O-g 
A -A -1 -A 

(1,1 ) 
(1,1 ) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(J ,3) 
(2,3) 
(3,3) 

-g* -g -&* f f* g* -f -0 0 g -g -f f* g g* 

o -f 
-1 j 
o -f* 

-1 -A 
o -f 

-d 
o 

-1 
o f* f -g 

-a* 
o 

-1 
o 

-d* B 
o -0 

-I -A 
o -0 

-8 
g 
h' 
g* 
A 
g 
h 
g* 

-foIl 0 
j -a* 

-g* 
j* 8 BEE -e* -e* -b* -b* -e -e j j h* 

g* 
- j 

h* h* -1 j* -d* -e* -e -b -a 
o 
o 
o 
o 

-d 
o 
o 
o 
o 

8 
-0 

-b* 
-f -g -g* f f* g D -D -f* g* 0 -f* -g* f g o -f* o f f* -g' D -f 0 -g 
-h* -h* -h -j -j* -j -j* -h -h* -j* -j -h -h* - j* -B o -E 

o -8 
o 

o -8 -8 -E -E -8 -8 -E 0 -E 
3 (1,1) 

(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

- j - j -j'" -h -h* -h -h* -j* -j -h* -h -j* -j -h -h* -E o -E -E -8 -8 -E -E -8 0 -8 
g* f 
h* 

f* -g* -g -f -0 D g -f'" -0 g 
EBB -b -b -e* -e* -b* -b* h 
f* -g* -g -0 -f* g* D -D -f f 
A -A -A -A -A A A -A -A 

f* 
h 
g* 
A 

-f* -g* -f g 0 -g* -g f* o 
E 

-f* -D g* 0 
h -d 

f 
j j j -1 

o 
h* -R* -b -b*-e 

U -g -g* f 
-doll -a j* -e* 

f* 
A 
f 

f* 
A 
f 
h 

-g -f -f* g* 
A 
g 
h 

o 0 D -f -D o 
A 
f* 
E 

-A -A -A -1 -1 -A -A A -1 -1 
o 

A -A -A -1 
o 

g 
- j* 

f* 
- j* 

f -g -g* -D -f g 0 -D -f* f* 
E 8 B -b* -b* -e -b -b h* 
f -g -g* -f* -0 0 g* -f -0 g* 

-j -h* -h -h* -h -j -j* -h -h*-j 

g 
h* 
f 

- j* 

_g* -foIl 
j* j* 

-f -g 
-h* -h 

-f 0 
j* 

-f* 
-E 

-1 
o -g* -g f* 0 

-a -boll -b -e*-d 
o -g -g'" 0 
o -E -E -8 0 

o 
-8 

-f* 
j 

-f 
-E 

-0 
8 

g* 

-0 g 
-E -8 

4 (1,1) 
(2,1) 
(3,1) 
(4,1) 
(1,2) 
(2,2) 
(3,2) 
(4,2 ) 
( 1,3) 
(2,3) 
(3,3) 
(4,3) 
(1,4 ) 
(2,4) 
(3,4) 
(4,4 ) 

-k -k -It· -m* -m -mil' -It. -k -m* -k* -k -m -m* -A 

o 
o 
o 
o 
o 

g* 
-8 

A 
b 

o -A -A A 0 

-a* 
o 
o 
o 
o 
o 

-A -A 
e* -E 

8 

h* -d* 
o 
o 
o 
o 
o 

A 

-e 
f* 

-8 
A 

- j* 

5 (1,1) 
(2,1) 
(3,1) 
(4,1) 
(5,1) 
(1,2 ) 
(2,2) 
(3,2) 
(4,2) 
(5,2) 
(1,3) 
(2,3)' 
(3,3) 
(4,3) 
(5,3) 
(1,4 ) 
(2,4) 
(3,4 ) 
(4,4) 
(5,4) 
(J ,5) 
(2,5) 
(3,5) 
(4,5) 
(5,5) 

-8 b' b e* e -h e* b* -j -h* e -8 - j* -E -h 
8 
k 

h -e 
A 

-e* -b* -b -b j* h -e* -b* j h* E j* 
k m* 

- j* 
A -A -A -m -k -It -m* -m* 

b* b e* e e -h* - j* b e*-h 
-til -m -m'" -k. -It -k. -k -m* -k -k* 

k -A -A A A -k. -k. -til -k -k 
-e* -b -b* j* -b -ell! h 
-e 

k'" -A 
-e* -b* -b j -b* h* 

j -b* 
j'" -b 

-k* -k* -A A A -k -k -m'" -m. -til· -m* -m 
-j b b* 

m A A 
tJ,* -e* -e 

-8 b b* 
-k* -k.* -k 

w 
M 
u* 
r* 
y* 
t 
Y 

-v 
w 
N 

-u 
F 

-u* 
v* 
N 
w* 

s* 
v* 
q* 
G 
s* 
Y 

-u* 

q 
v* 

w* 

s 
y* 

q* 

-u* -u 
F 

v 
q* 
H 

-u* 
v* 

-k -k· -k -k. -m. -k* -k 
e e* e* -h - j b* 

-A -A -m* -m. -k. -It. 
-b -b* -b'A 

e* -h'" 
-m* -m 

y y* 
q q* 
u* 
s* 
H 
q 
w* 

q* 
v 

-m* 
y 
r* 
v* 

p 
q* 
w* 

-m 
y* 
q 
L 

-v'" -u'" -L 
G G n'" n* 

s* t 8 

L 
-v* -L 

h* -e -b 
b - j* -h 

-k -k*-m 
w* II y* 
s* t* 

r* 

y* 
-L 

q 
u* 

-v 

n 
s 
y 

-v* 
p 
r* 
L 

-L 

s* 
p* 
q 

n 
t* 
L u* 

-v 
F 

-v* 
F F 

-L 
u* L 

F F 
-u* -v'll -L 

-L 
F 

-L 
L 

s* 
G 

t* 
v* 
s* 
n 

u 
q* 
p* 

L 
r 
p* n* 

-h* 
-m 

j* 
e* 

-m* 
y 
q* 
L 
t* 
p* 
r* 
w* 

-L 

s* 
v* 

-u* 
F 

-v* 
y* 
t* 
Y 

-u 

y* 
-u* -v* -L 

w* 
r* 
p* 
t* 
L 
q* 
Y 

-L -v 
y* 
s* 
n* 
q* 

-u* 
n* 

-L 

u 
H 
w* w* 

y 
s* 
G 
q* 
v* 
s* 

w 
q* 
H 

u 
q* 
y* 

w* 
q 
H 
s* 
u* 

q 
p* .* 
r 
y* 

Y 
t* 
n* 

w* w 
q* 
p 

u* v* 
r* 

w* 
q 
y* 

- j 
-m* 

k* 
E 
E 
k 

m 
-8 
-m 

k* 
h* 
h 
k 

-h* -E 
-k* -k 

m 
8 
8 
m* 

m 
j* 
j 

-m _m* -k 
-h - j* -8 

m* 
-k* 
-E 

m* m* 
h 

-8 
-k 

w* 
H 

y 
t* 
y* 

-v* 
w* 
N 
v* 

-u* 

N 

t 
y* 
r* 
u* 
H 

E 
- j 
-k* 

w 
t 
v 
N 

Y 
H 

w* 

u* 

-v* 
u 
r* 

-u* 
y* 
H 
y* 
N 
v* 
t' 
w* 

k* 
j 

-E 

k* 
8 

-h* 
-m.'" -m 

y y* 
N r* 

w* 

Y 
H 
u 

-v* 
F 

u* 
H 
y* 

-u* 
v 
r* 
w* 
t* 
v* 
N 
y* 

u* 
H 

v* 
-u* 

F 

v 
t* 
y* 

-v* 
v* 
N 
w* 
H 
u 
r 
y 

degeneracy d, which is just the coefficients (V I V2V) in the 
CG series. For the eigenvalue (v,a) we can obtain the 
(VI V2V) orthogonal eigenvectors, 

{(v1al,v2a2IvTa)}, T= 1,2, ... ,(vlv2v). (9) 

To ensure that the CG coefficients with the same vand T 

but different a have the correct relative phase, we use the 
same procedure as used in Sec. III of Ref. 10 for the space 
group CG coefficients. 

We can choose a single operator M as the CSCO-II of 
the group I. Once the CSCO-III, K, of a group G is found, 
the CSCO-II of G is readily obtained by deleting the C(s) 
term in K. Then the set of eigenequations (8) can be replaced 
by a single eigenequation of the operator M. From (4) it is 
known that the CSCO-II of the group I is 

M= 7C+ C(s). (10) 

The CG coefficients of the group I are calculated by the 
subroutine CG in the space group program package \0 and 
the results are given in Table IV. The meaning of the table 
heading is as follows: NU, the index of the irrep; a, the com-
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o -h* -h - j 0 
o j j* h 0 

-8 
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b* 
-b -e* 

-1 
o 
o 

-1 
o 
o 

m* -1 

e 
-b* 

k 
e* 
A 
m 

-b* 
-b 

m* 
b* 

-A 
k 

-e* 
k* 

-A 
b 

-a* -m -m* 
o -h -h* 
o A A 

-k* -d* -a A 
-8 - j* 0 0 

-A 0 0 -A 
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o j j* h 0 
o j * j h* 0 
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-d 
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-A 

k* -A 
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-b 8 
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A 

m -d 
b 0 

-A 0 
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o 
o 

-e* 
-e 

k -a* 
o 
o 

h* 
-k 
- j 
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-m 
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h 
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v* 
s* 

o 
o 
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y' 
-L 
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-u* 
y 
s* o 

w 
q* 
u* 

n* 
t * 

a* 
o 
o 
o 
1 
o 
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o 
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o 
o 
o 
o 

-v 
F 

-v* 

q 
w* 

-v 
G 

y 
q 
u* 
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H 
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o 
o 
o 
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o 
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o 
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o 
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o 
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-v* -v 

F 
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H 
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u 
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n* 

r* 
p 
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u* 
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G 
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F 
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-u* 

t* 

v* 

a 
o 
o 
o 
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o 
o 
o 
o 
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o 
1 F 
o -L 
o L 
o N 
d H 
o -L 
o G 
o H 

G s* 
o 
o 
o 
o 

N 
L 
H 

v* 
-u* -L 

s* 

-L 
L 
H 

Y G 
-u* -L 

H H 
q N 
w 

s' 
v* 
q* 
G 

H 
H 
L 
N 

u 
-v* 

F 

u* 
q* 

-v* 
G 
s* 
y* 
q* 

o -u 
1 F 
o -u* 

v* o 
o 
a' 
o 
o 
o 
d* 
o 
o 
o 
o 

r* 
p* 

n* 
r* 
v 
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H 

ponent index of the irrep; MUL, the mUltiplicity label; xx, 
the double index a l a2• 

Notice that the CG series and CG coefficients are ob
tained simultaneously by the EFM. Collecting the first lines 
in each subtable, we have the CG series for the group I listed 
in Table V. 

As we see from Tables III and IV that although the 
irreducible matrices of the group I are rather complicated 
(i.e., the matrices are not spare ones and many matrix ele
ments are not square roots of simple fractions), the CG coef
ficients are rather simple with many zeroes and the nonzero 
elements being square roots of simple fractions. 

From Table IV, we see that the CG coefficients are all 
real. Besides the unitarity, they have the following proper
ties. 

(1 ) Due to Eq. (4a), C (s) can be replaced by the opera
tor J z with the eigenvalue Il modulo 5. Similar to the condi
tion m I + m2 = m for the S03 CG coefficients 
(jlmlj2m2Ijm), for the group I we have 

(jJ!..ld'lll2Ijll) = 0, unless III + 112 = Il (mod 5). (11) 
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TABLE IV. The CO coefficients of the icosahedral group. 

THE CG SERIES: 

NUI( 2)* NU2( 2) -- + 1* NU( I) + 1* NU( 2) + 1* NU( S) 

IRREP NUl *NU2 - 2 1\ 

CG COEFFICIENTS 

NU a 
I I 
2 1 

2 
3 
I 
2 
3, 
4 
S 

MUL II 
I 0 
I 0 
I 0 
I 0 
I I 
I 0 
I 0 
I 0 
I 0 

12 
o 
8 
o 
o 
o 
8 
o 
o 
o 

13 
A 
o 

-8 
o 
o 
o 
D 
o 
o 

21 
o 

-8 
o 
o 
o 
8 
o 
o 
o 

22 
A 
o 
o 
o 
o 
o 
E 
o 
o 

23 
o 
o 
o 
8 
o 
o 
o 
8 
o 

LIST OF SYMBOLS USED 

31 
A 
o 
8 
o 
o 
o 
D 
o 
o 

32 
o 
o 
o 

-8 
o 
o 
o 
8 
o 

33 
o 
o 
o 
o 
o 
o 
o 
o 
I 

A-SQRT( 1/3) B-SQRT( 1/2) D--SQRT( 1/6) 

THE CG SERIES: 

NUI( 2)* NU2( 3) + 1* NU ( 4) + 1* NU ( S) 

lRREP NUl *NU2 - 2* 3 

NU 
4 

CG COEFFI ClENTS 

MUL II 12 
I 0 0 
lOA 
I 0 0 
1 -B 0 
1 0 0 
1 0 -B 
I 0 0 
I 0 0 
I -A 0 

13 21 
o A 
o 0 

-B 0 
o 0 
o B 
o 0 
o 0 
A 0 
o 0 

22 23 
o 0 
o 0 
o 0 
o -A 
o 0 
o 0 
1 0 
o 0 
o B 

LIST OF SYMBOLS USED 
A-SQRT( 2/3) B-SQRT( 1/3) 

THE CG SERIES: 

31 
o 
8 
o 
o 
o 
A 
o 
o 
o 

32 
o 
o 

-A 
o 
o 
o 
o 

-B 
o 

33 
B 
o 
o 
o 

-A 
o 
o 
o 
o 

E-SQU( 2/3) 

NUl( 2)* NU2( 4) + 1* NU( 3) + 1* NU( 4) + 1* NU( S) 

IRREP NUl*NU2 - 2* 4 

NU 
3 

I 
2 
3 
4 

S I 
2 
3 
4 

CG COEFFICIENTS 

MUL II 
I 0 
I 0 
I A 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 

o 
o 
H 

12 13 
A 0 
o -B 
o 0 
D 0 
o 0 
o 0 
o 0 
F 0 
o 0 
o -8 
o 0 
o 0 

14 
o 
o 
o 
o 
o 

-D 
o 
o 
o 
o 

-E 
o 

21 
8 
o 
o 
E 
o 
o 
o 
G 
o 
o 
o 
o 

LIST OF SYMBOLS USED 

22 
o 
o 
o 
o 

-E 
o 
o 
o 

-D 
o 
o 
o 

23 
o 
o 
o 
o 
o 
E 
o 
o 
o 
o 

-0 
o 

24 
o 
o 

-8 
o 
o 
o 

-E 
o 
o 
o 
o 
G 

31 
o 
o 
o 
o 
o 
o 
o 
o 

-E 
o 
o 
o 

32 
o 
B 
o 
o 
o 
o 
o 
o 
o 

-8 
o 
o 

33 
o 
o 

-A 
o 
o 
o 

-D 
o 
o 
o 
o 

34 
-A 
o 
o 
o 
o 
o 
o 
H 
o 
o 
o 
o 

A-SQRT( 1/4) 8-SQRT( 1/2) D-SQ"T( 2/3) E--SQRT( 1/3) 
F-SQRT( 1/12) G-SQRT( 1/6) H-SQRT( 3/4) 

THE CG SERIES: 

NUI( 2)* NU2( S) + 1 * NU ( 2) + 1* NU ( 3) + 1 * NU ( 4) + 1 * NU ( 5) 

IRREP NlIl*NU2 • 2* 5 

CG COEFFICIENTS 

NU a 
2 I 

2 
3 
I 
2 
3 

4 I 
2 
3 
4 

HUL 11 
I 0 

o 
o 
o 
o 
E 
o 
o 
o 

-D 
o 
o 
o 
o 
o 

12 
o 
o 
o 

-E 
o 
o 
G 
o 
o 
o 
L 
o 
o 
o 
o 

13 
A 
o 
o 
o 
o 
o 
a 
E 
o 
o 
o 
N 
o 
o 
o 

14 
o 
8 
o 
o 

-F 
o 
o 
o 
o 
o 
o 
o 

-N 
o 
o 

IS 
o 
o 
D 
o 
o 
o 
.0 
o 
K 
o 
o 

-L 
o 

21 
o 
o 
o 

H 
o 
o 
o 
M 
o 
o 
o 
o 

LIST OF SYMBOLS USED 

22 
8 
o 
o 
o 
o 
o 
o 

P 
o 
o 
o 

23 
o 

-0 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

24 
o 
o 
8 
o 
o 
o 
o 
o 
J 
o 
o 
o 
o 

-P 
o 

2S 
o 
o 
o 
o 
o 
F 
o 
o 
o 
H 
o 
o 
o 
o 

-M 

31 
D 
o 
o 
o 
o 
o 
o 
K 
o 
o 
o 
L 
o 
o 
o 

32 
o 

-F 
o 
o 
o 
o 
o 
o 
o 
N 
o 
o 

A-SQ"T( 1/10) B--SQaT( 3/10) D--SQaT( 3/S) E--SQaT( 2/S) 

33 
o 
o 
A 
o 
o 
o 
o 
o 
E 
o 
o 
o 
o 

-N 
o 

34 
o 
o 
o 
o 
o 

-E 
o 
o 
o 
G 
o 
o 
o 
o 

-L 

3S 
o 
o 
o 
E 
o 
o 

-D 
o 
o 
o 
o 
o 
o 
o 
o 

F-SQaT( I/S) G-SQaT( 4/IS) H-SQaT( 2/IS) J--SQaT( 8/1S) K-SQaT( I/1S) 
L-SQaT( 1/3) M--SQRT( 2/3) '-SQRT( 1/2) P--SQRT( 1/6) 
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THE CG SERIES: 

NUI( 3)* NU2( 3) -- + 1* NU( I) + 1* NU( 3) + 1* NU( S) 

IRUP NUI*NU2 - 3 * 

NU 
I 
3 

CG COEFFICHNTS 

MUL II 
1 0 
1 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I I 
1 0 

12 
o 
B 
o 
o 
B 
o 
o 
o 
o 

13 
A 
o 

-8 
o 
o 
o 
D 
o 
o 

21 
o 

-B 
o 
o 
8 
o 
o 
o 
o 

22 
A 
o 
o 
o 
o 
o 
E 
o 
o 

LIST OF SYMBOLS USED 

23 
o 
o 
o 
B 
o 
o 
o 
o 
B 

31 
A 
o 
B 
o 
o 
o 
D 
o 
o 

32 
o 
o 
o 

-B 
o 
o 
o 
o 
B 

33 
o 
o 
o 
o 
o 
I 
o 
o 
o 

A-SQRT( 1/3) B-SQRT( 1/2) D-SQRT( 1/6) E--SQU( 2/3) 

THE CG SERIES: 

NUI( 3)* NU2( 4) 

IRREP NUl*NU2 • 3* 4 

+ 1* NU ( 2) + 1* NU ( 4) + 1* NU ( S) 

CG COEFFICIENTS 

NU a MUL II 12 
2 I 1 0 0 

2 1 0 0 
3 I -A 0 
I I 0 0 
2 I 0 0 
3 lEO 
4 1 0 -E 
I I 0 0 
2 I 0 0 
3 I 0 0 
4 I H 0 
S I 0 

13 14 
A 0 
o -8 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
F 0 
o 
o 
o 

21 22 23 24 31 
o BOO 0 
o 000 B 
o 0 -B 0 0 
D 0 0 0 0 
o D 0 0 0 
o 0 -D 0 0 
o 0 0 -D 0 

-E 0 0 0 0 
o GOO 0 
o 0 0 0 B 
o 0 GOO 
o 0 0 -E 0 

LIST OF SYMBOLS USED 
A-SQRT( 1/4) B--SQU( 1/2) D-SQRT( 1/3) 
F-SQU( 3/4) G-SQ"T( 1/6) H--SQRT( 1/12) 

THE CG SERIES: 

32 33 34 
o 0 A 
o 0 0 

-A 0 0 
o E 0 
o 0 -E 
o 0 0 
o 0 0 
o D 0 
o 0 H 
o 0 0 
F 0 0 
o 0 0 

E--SQRT( 2/3) 

NUI( 3)* NU2( S) + 1* NU ( 2) + 1* NU ( 3) + 1* NU ( 4) + 1* NU ( S) 

IIlREP NUl*NU2 - 3* 5 

CG COEFFICIENTS 

NU a 
2 I 

2 
3 
I 
2 
3 
I 
2 
3 
4 
I 
2 
3 
4 
S 

MUL II 
I 0 
I 0 
I -A 
I 0 
I 0 
I 0 
I 0 
I 0 
1 K 
I 0 
1 0 
I 0 
1 0 
I N 
I 0 

12 
o 
o 
o 
o 
o 
D 
o 
o 
o 
H 
o 
o 
o 
o 

-N 

13 
o 
o 
o 
E 
o 
o 
A 
o 
o 
o 
L 
o 
o 
o 
o 

14 
A 
o 
o 
o 
o 
o 
o 

-0 
o 
o 
o 
o 
o 
o 
o 

15 
o 

-B 
o 
o 
F 
o 
o 
o 
o 
o 
o 
o 

-L 
o 
o 

21 
o 
o 
o 
F 
o 
o 
G 
o 
o 
o 
M 
o 
o 
o 
o 

LIST OF SYMBOLS USED 

22 
B 
o 
o 
o 
o 
o 
o 
J 
o 
o 
o 
P 
o 
o 
o 

23 
o 
D 
o 
o 

-A 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

24 
o 
o 
B 
o 
o 
o 
o 
o 
J 
o 
o 
o 
o 

-P 
o 

2S 
o 
o 
o 
o 
o 
F 
o 
o 
o 
G 
o 
o 
o 
o 

-M 

31 
o 

-B 
o 
o 
F 
o 
o 
o 
o 
o 
o 
o 
L 
o 
o 

32 
o 
o 
A 
o 
o 
o 
o 
o 

-0 
o 
o 
o 
o 
o 
o 

33 
o 
o 
o 
o 
o 
E 
o 
o 
o 
A 
o 
o 
o 
o 

-L 

34 
o 
o 
o 
D 
o 
o 
H 
o 
o 
o 
N 
o 
o 
o 
o 

3S 
-A 
o 
o 
o 
o 
o 
o 
K 
o 
o 
o 

-N 
o 
o 
o 

A-SQRT( 2/S) B--SQRT( I/S) O-SQU( 3/S) E-SQRT( 1/10) F-SQRT( 3/10) 
G--SQRT( 8/IS) H-SQU( 1/IS) J--SQRT( 2/IS) K--SQRT( 4/IS) 
L-SQU( 1/2) M-SQRT( 1/6) N--SQRT( 1/3) P--SQU( 2/3) 

THE CG SERIES: 

NUI( 4)* NU2( 4) -- + 1* NU( 1) + 1* NU( 2) + 1* NU( 3) 
+ 1* NU( 4) + 1* NU( S) 

IRREP NUl*NU2 • 4* 4 

CG COEFFICIENTS 

NU a 
1 I 
2 I 

2 
3 
I 
2 
3 

4 I 
2 
3 
4 
I 
2 
3 
4 
S 

MUL 11 
I 0 
1 0 

o 
o 
o 
o 
o 
o 
o 
D 
o 
o 
o 
o 

12 
o 
o 
o 
o 
o 
o 
B 
o 
o 
o 
o 
o 
o 
o 
o 
F 

13 
o 
B 
o 
o 
o 
o 
o 
o 

-D 
o 
o 
o 

-F 
o 
o 
o 

14 
A 
o 

-A 
o 
o 

-A 
o 
o 
o 
o 
o 
o 
o 

-A 
o 
o 

21 
o 
o 
o 
o 
o 
o 

-B 
o 
o 
o 
o 
o 
o 
o 
o 

22 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
E 
o 
o 
o 
o 

LIST OF SYMBOLS USEO 

23 
A 
o 
A 
o 
o 

-A 
o 
o 
o 
o 
o 
o 
o 
A 
o 
o 

24 
o 
o 
o 
B 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

-F 
o 

A-SQRT( 1/4) B-SQRT( 1/2) D-SQRT( 1/3) 

31 32 33 34 
o A 0 0 

-B 0 0 0 
o -A 0 0 
o 0 0 0 
000 B 
o A 0 0 
o 0 0 0 
o 0 0 -0 

-D 0 0 0 
o 0 0 0 
o 0 -0 0 
o 0 0 F 

-F 0 0 0 
o A 0 0 
o 0 0 0 
o 0 E 0 

E-SQRT( 2/3) 

41 42 43 
A 0 0 
o 0 0 
A 0 0 
o -B 0 
o 0 -B 
A 0 0 
o 0 0 
o 0 -0 
o 0 0 
o D 0 
o 0 0 
o 0 F 
o 0 0 

-A 0 0 
o -. 0 
o 0 0 

F-SQRT ( 1/6) 
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44 
o 
o 
o 
o 
o 
o 
o 
o 

-D 
o 
o 
o 
E 
o 
o 
o 



                                                                                                                                    

TABLE IV. (Continued) 

THE CG SERIES: 

NUl ( 4) * NU2( 5) - - + 1* NU(2) + 1* NU( 3) + 1* NU( 4) i- 2* NU( 5) 

IRREP NUl. NU2 • 4* 5 

CG COEFFICIENTS 

NU a MUL 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 44 45 
2 I I 0 0 0 A 0 0 0 8 0 0 D 0 0 0 0 0 0 0 0 E 

2 1 0 0 0 0 F 0 0 0 G 0 0 G 0 0 0 F 0 0 0 0 
3 1 E 0 0 0 0 0 0 0 0 D 0 0 8 0 0 0 A 0 0 0 
I 1 0 0 -8 0 0 0 -E 0 0 0 0 0 0 0 -A 0 0 0 D 0 
2 1 0 0 0 0 G 0 0 0 -F 0 0 -F 0 0 0 G 0 0 0 0 
3 1 0 D 0 0 0 -A 0 0 0 0 0 0 0 -E 0 0 0 -8 0 0 

4 1 1 0 0 A 0 0 0 H 0 0 0 0 0 0 0 -H 0 0 0 J 0 
2 0 0 0 H 0 0 0 -A 0 0 0 0 0 0 0 0 0 0 -H 
3 -H 0 0 0 0 0 0 0 0 J 0 -A 0 0 0 H 0 0 0 
4 0 J 0 0 0 -H 0 0 0 0 0 0 H 0 0 0 A 0 0 

5 1 0 0 K 0 0 0 L 0 0 0 0 0 0 0 0 0 0 L 
2 0 0 0 0 0 0 0 -K 0 0 L 0 0 0 0 0 0 0 0 -L 
3 0 0 0 0 -K 0 0 0 K 0 0 -K 0 0 0 K 0 0 0 0 
4 L 0 0 0 0 0 0 0 0 -L 0 0 K 0 0 0 0 0 0 0 
5 0 -L 0 0 0 0 0 0 0 0 0 0 0 -L 0 0 0 -K 0 0 

5 1 0 0 0 0 0 -M 0 0 0 0 0 0 0 N 0 0 0 -M 0 
2 0 0 0 0 0 K 0 0 M 0 0 0 0 0 0 0 0 -M 
3 0 0 K 0 0 0 K 0 0 -K 0 0 0 -K 0 0 0 0 
4 M 0 0 0 0 0 0 -M 0 0 -K 0 0 0 -N 0 0 0 
5 0 H 0 -N 0 0 0 0 0 0 0 M 0 0 0 -K 0 0 

LIST OF SYMBOLS USED 
A-SQRT( 1/5) B--SQRT( 3/10) D-SQRT( 1/20) E-SQRT( 9/20) F-SQRT( 1/10) 

G--SQRT( 2/5) H-SQRT( 2/15) J--SQRT( 8/15) K-SQRT( 1/4) L-SQRT( 3/8) 

H-SQRT( 1/24) N-SQRT(2/3) 

THE CC snns: 

NUI( 5)" NU2( 5) -- i- I" NU( 1) + I" NU( 2) + 1* NU( 3) 
.. 2" NU( 4) .. 2" NU( 5) 

tRRE' NU1*NUZ • S* 5 

CG COEFFICIENTS 

NU . HUL 11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 
1 1 1 0 0 0 0 A 0 0 0 A 0 0 0 A 0 0 0 A 
2 I I 0 0 0 A 0 0 0 I 0 0 0 -8 0 0 0 -A 0 

2 1 0 0 0 0 D 0 0 0 E 0 0 0 0 0 0 0 -E 
3 1 0 0 0 0 0 0 0 0 0 A 0 0 0 B 0 0 0 

3 1 1 0 0 8 0 0 0 0 0 0 0 -8 0 0 0 0 0 0 
2 1 0 0 0 0 -E 0 0 0 D 0 0 0 0 0 0 0 -D 
3 1 0 -A 0 0 0 A 0 0 0 0 0 0 0 0 8 0 0 

4 1 1 0 0 -A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 
2 1 0 0 0 -8 0 0 0 A 0 0 0 -A 0 0 0 • 0 
3 1 0 0 0 0 0 0 0 0 0 -B 0 0 0 A 0 0 0 
4 1 0 -I 0 0 0 8 0 0 0 0 0 0 0 0 -A 0 0 

4 1 2 0 A 0 0 0 0 0 0 0 0 0 0 0 
2 2 0 0 -G 0 A 0 0 A 0 0 0 -C 0 
3 2 F 0 0 0 0 0 0 C 0 0 -A 0 0 0 
4 2 0 -C 0 0 0 -G 0 0 0 0 0 0 -A 0 0 
1 1 0 0 H 0 0 0 J 0 R 0 0 0 0 0 
2 1 0 0 0 J 0 0 0 K 0 0 K 0 0 0 J 0 
3 1 0 0 0 0 H 0 0 0 K 0 0 0 -8 0 0 0 K 
4 1 0 0 0 0 0 0 0 0 0 J 0 0 0 K 0 0 0 
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 
1 2 0 0 L 0 0 0 H 0 0 0 L 0 0 0 0 0 0 
2 2 0 0 0 H 0 0 0 0 0 0 P 0 0 0 H 0 
3 2 0 0 0 0 0 0 P 0 0 0 Q 0 0 0 
4 2 0 0 0 0 0 0 H 0 0 0 P 0 0 
5 2 N 0 0 0 0 0 0 0 0 0 L 0 

LI5T OF SYMBOLS USED 
A-SQRT( 115) I-SQRT( 3/10) D--SQRT( 2/5) E--SQRT( lil0) F-SQRT( 8/15 ) 
C-.SQRT( 1/30) H-SQRT( 2/7) J--SQRT( 3/7) <--SQRT( 1/14) L-SQ'T( 1/70) 
H-SQ"T( 4/105 ) N--SQRT( 7/15) P--SQ'T ( 8/35) Q-SQRT( 18/35) 

TABLE V. The CO series of the icosahedral group. 

A T, Tz G 

A A 
T, 
Tz 
G 

T, 
A+ T,+H 

Tz 
G+H 

A+T2+H 

G 
Tz+G+H 
T,+G+H 

A+T,+Tz+G+H 
H 
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43 
0 
0 
0 

-8 
0 
0 
0 
0 
0 

-A 
0 
0 
0 

-A 
0 
0 
0 
0 
< 
0 
0 
0 
0 
p 

0 

44 45 51 52 53 54 
0 0 A 0 0 
0 0 0 0 0 
0 0 -D 0 0 
0 0 0 -A 0 
0 -A 0 0 0 
0 0 E 0 0 
0 0 0 0 -B 
0 -I 0 0 0 
0 0 0 0 0 
0 0 0 8 0 
0 0 0 0 • 0 c 0 0 0 
0 0 0 0 0 
0 0 0 G 0 

-F 0 0 0 -A 
0 0 0 0 0 
0 0 0 0 0 
0 0 H 0 0 
0 0 0 J 0 
J 0 0 0 H 
0 0 0 0 
0 0 0 
0 
0 
H 

H 

H 
T,+Tz+G+H 
T,+Tz+G+H 
T,+T,+G+2H 

0 
0 
0 
0 
A 
0 
0 

0 
G 
0 
0 
0 
0 
0 
0 
0 
0 
N 
0 
0 
0 
0 

A + T, + Tz + 2G + 2H 

55 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-F 
0 
0 
0 
0 
0 
0 
0 
0 

• 
0 
0 
0 
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(2) Similar to the symmetries of the 3jm-symbols of the 
group I (Ref. 6), we have 

( vlJl I,V1Jl2 I V31',u3) 

= (_ )V,+v,+v,( _ )q(V,V,V,T) (V1Jl2,VIJlI IV31',u3) 

= ([ v
3
]1[ vtl ) 1/2( _ ) v, + v, + V,( _ )q(V,V,V,T) 

X (v3 - ,u3,V1Jl2IVI1' - ,ul)' (12a) 

where [v] is the dimension of the irrep v, the phase ( - ) v is 
defined by 

{
-I, {T1, T2, 

( - )" = 1, for v = A, G, H, (12b) 

and ( - )q(",,,,,,,T) equals - 1 if (VIV2V31') is (HHG 1) or any 
permutation of (HHG 1). 

(3) From Table IV we se that 

(VI - ,ul>V2 - ,u21v31' - ,u3) 

= 8", +", +", (VIJlI,V1Jl2 I V31',u3) , (13a) 

where 8", +", +", = - 1, if (VIV2V3) is one ofthe following 
triples: 

(TjTjTj ), (TI T2G), (HHTj ), (HHG), 
(13b) 

(GGTj ), (GGG), fori= 1,2, 

and 8", +", + v, = 1, otherwise. This leads us to introduce the 
following phase convention for the time reverse state: 

TI,uv) = 8v Iv - ,u), (14) 

8 = { - 1, fi = {TI' T2, G, 
v 1 or v A, H. ( 13a') 

Then the phase 8v , + v, + v, in Eq. (13a) can be expressed as 

8", + v, +", = 8v,fJ", 8v,. (13b') 

Q -Ii P Q 
D T'(R57 ) = _1_ -Iii -Ii 

1 Iii 1 -+ 

.J5 .J5 
P -Iii Q 

The transformed matrices are identical with Speiser's result. 

B. The CG coefficients 

the 3jm-symbols of the group I defined by Golding5 and 
Pooler6 are related to the CG coefficients by 

(18) 

Comparing our results with theirs it is seen that both are 
identical (including the multiplicity separation) up to abso
lute phases. The CG coefficients here are all real, while theirs 
are imaginary for the triples in (13b). The discrepancy 
comes from the different conventions for the phase of time 
reverse states. Instead of ( 14), they impose 

TI,uv) = Iv - ,u), (19) 

which, in turn, leads to the following symmetry for the CG 
coefficient ofI, 
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v. DISCUSSIONS 

A. The irrttducible representations 

Speiser I and McLellian4 have given the irreducible ma
trices for the three generators A, B, and C of the group I, 
where A is a 21T/S rotation about one of the fivefold axes that 
was chosen as the z axis, B is a 1T rotation about a twofold axis 
which was chosen as the x axis, and C represents the similar 
1T rotation whose axis is perpendicular to that of B. In our 
notation, they are 

A=R2 =Cb = R z (21T/S), 

B = R47 = C2,2 = Rx (1T), 

C=R57 =C2,12' 

(1S) 

The irrep labels A, T I , T2, G, and H are named r I' r 2' 
r 3' r 4' and r 5 in Ref. 4, respectively. The symbols z, P, and 
Q in (6) are designated E, a, and,B in Ref. 4, respectively. 
Comparing our Table II with Table I and Eq. (21) in Ref. 4, 
we see that the matrices of the three generators for all five 
irreps obtained by the EFM are exactly the same as obtained 
by McLellian. 

The irreps given here differ from that of Speiser I by a 
similarity transformation. For example, for the irrep T 1, if 
we make the following basis transformation e 1-+ e I' e2 -+ ie2, 

e3 -+ e3, then the matrices for R2 and R47 remain unchanged: 
Z-I 0 0 

0 1 0 , 
0 0 z (16) 

0 0 -1 

0 -1 0 

-1 0 0 

while the matrix of R57 undergoes the following transforma
tion: 

-Iii P 

1 Iii (17) 

-Iii Q 

(VI -,uI,V2 -,u2Iv31'-,u3) = (vlJll>v1Jl2IV31'V3)*· 
(20) 

Since the property (13a) is independent of absolute phase 
choices, the imposition of the symmetry (20) will force the 
CG coefficients for the triples in (13b) to be imaginary. 

C. The S03~1 subduction coefficients 

The S03:::> I:::> (;5 irreducible basis I j,Bv,u) can be ex
pressed in terms of the S03:::> S02 basis I jm), 

Ij,Bv,u) = I C(jm,,Bv,u)ljm), (21) 
m=p(mod5) 

where ,B is the label for distinguishing the multiple occur
rence of the irrep v of I in the irrep j of S03 and C( jm,,Bv,u) 
is called the subduction coefficient. (For j up to seven,,B is 
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redundant.4
) Under time reverse the basis I jm) transforms 

as 

Tljm) = ( - )j+mlj - m). (22) 

From (14) and (22) we have 

C(jm,/3vp,) = ( - ) j+ mOvC(j - m,/3v - p,)*. (23) 

McLellian calculated the subduction coefficients for j up to 
eight by using the projection operator method. Since the 
phase convention ( 19) is used in Refs. 4 and 6, their subduc
tion coefficients satisfy the following relation: 

C(jm,/3vp,) = (- )j+ mC(j-m,/3v-p,)*. (24) 

Therefore, their subduction coefficients differ from ours by a 
factor of i for the irreps T" T2, and G. Starting from the 
subduction coefficients for j = 1, 

(25) 

by using the following formula and the CG coefficients of the 
group I we can obtain both the subduction coefficients and 
S03::JI isoscalar factor (j~,V"j~2V211j/3V1"), recursively: 

L (j,/3,vd~2v211j/3vr) *C( jm,{3vp,) 
p 

2 

x (j,m"j2m2Ijm) II C(jim i,/3i viP,i)· (26) 
i=' 

Under our phase convention, the S03::JI isoscalar factors 
remain to be real. For example, the subduction coefficients 
for j = 1 - 4 and the isoscalar factors are listed below: 

lIT" ± 1) = ill ± 1), 11T,,0) = 110); 12H, ± 2) = ~ 12 ± 2), 12H, ± 1) = il2 ± 1), 12H,0) = 120); 

13T2' ± 2) = - ~3/513 ± 2) + iMI3 + 3), 13T2,0) = 130); 13G, ± 2) = - ~2/513 ± 2) - i~3/513 + 3), 

13G, ± 1) = - il3 ± 1); 14G, ± 2) = ±~14/1514 ± 2) ±~1/15i14+ 3), 14G, ± 1) = +f77I5i14 ± 1) ±~8/1514+4); 

14H, ± 2) = - ~1/1514 ± 2) + ~14/15iI4 ± 3), 14H, ± 1) - ~8/15iI4 ± 1) - ~7/1514 + 4), 14H,0) = 140); 

The phases forthe subduction coefficients C( jm, vp,) in 
(27) are more elegant than those of Refs. 4 and 6 in the sense 
that the coefficients C(jm = even, vp,) are all real, while 
C(jm = odd, vp,) are all imaginary. 

In summary, with the isomorphism shown in the first 
table in the Appendix, the program found the CSCO-I, 
CSCO-II, and CSCO-III of the icosahedral group I as well as 
their eigenvectors that give the primitive characters, the CG 

I 

(27) 

j 
coefficients, and all the irreducible matrix elements of the 
group I. It once again shows the power of the eigenfunction 
method. With the new phase convention for the time rever
sal state, the CG coefficients of the group I can be made to be 
real even though the bases are still complex as shown in 
(27). The introducing of the extra phase factor () v, + v, + v, in 
the symmetry (13a) is the only price one has to pay for real 
CG coefficients. 

APPENDIX: THE ISOMORPHISM BETWEEN I AND A SUBGROUP OF 512 AND THE GROUP TABLE OF I 

R2 =R 3-' CL 
R4 = R s- , C ~.2 

R6=R 7-' Cb 
R8 =R 9-' CL 
RlO=R 'I' C~.s 
R '2 = R i3 ' C ~.6 
R'4=R'5' CL 
R '6 = R i7 ' C ~.2 
R '8 = R '9 ' C ~.3 
R2o=R211 C~.4 
R22 = R 23 1 C ~.s 
R24 = R 25 1 C ~.6 
R 26 = R 27' CL 
R28 = R 29 1 C t2 
R30 = R 31' C t3 
R32 =R33 1 CL 
R34 = R 35 ' C ~.s 
R36 = R 37 1 C t6 
R38 = R 39

1 
Ct7 

(265,11,7) (34,10,12,8) 
(17836)( 45,11,12,9) 
(17,12,10,5) (28946) 
(128,12,11) (39,10,56) 
(164,10,11) (239,12,7) 
(12345) (789,10,11) 
(2576,11) (3,10,84,12) 
(18673)( 4,11,95,12) 
(1,12,57,10) (29684) 
(18,11,2,12) (3,10,695) 
(14,11,6,10) (2973,12) 
(13524) (79,11,8,10) 
(126) (357) (4,11,8) (9,10,12) 
(184) (236) (579) (10,11,12) 
(18,10) (295) (346) (7,12,11) 
(13,10) (29,11) (456) (78,12) 
(165) (24,11) (3,10,7) (89,12) 
(172) (35,12) (4,10,9) (6,11,8) 
(1,12,4) (283) (5,11,10) (679) 
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R40 = R 41' 
R42 = R 43' 
R44 = R 45 1 

R46 
R47 
R48 
R49 
Rso 
R s, 

RS2 
RS3 
RS4 
Rss 
RS6 
RS7 
RS8 
RS9 
R60 

Ct8 (17,11) (2,12,5) (394) (68,10) 

C~.9 (13,12) (287) (4,10,5) (69,11) 

C~.lO (15,11) (24,12) (398) (6,10,7) 

C2., (12) (3,11) (4,12) (58 ).(67) (9,10) 

C2.2 ( 19) (23) ( 47) (5,12) (68) ( 10,11 ) 

C2.3 ( 1, 12) (2, 10) ( 34) ( 58) ( 69 ) ( 7, 11 ) 

C2.4 (19) (2,12) (3,11) (45) (6,10) (78) 

C2.S (15) (2,10) (3,12) (47) (6,11) (89) 

C2.6 (16) (25) (3,11) (47) (8,10) (9,12) 

C2.7 (13) (26) (47) (58) (9,11) (10,12) 

C2.g ( 19) (24) (36) ( 58) (7,10) ( 11,12 ) 

C2.9 ( 19) ( 2, 10) ( 35) ( 46 ) (7, 12) ( 8, 11 ) 

C2. IO (14) (2,10) (3,11) (56) (70) (8,12) 

C2.11 (1,11) (2,10) (39) (48) (57) (6,12) 

C2.12 (17) (2,11) (3,10) (49) (58) (6,12) 

C2.'3 (18) (27) (3,11) (4,10)(59) (6,12) 

C2.14 (19) (28) (37) (4,11) (5,10) (6,12) 

C2. IS ( 1,10) (29) (38) ( 47) (5,11 ) (6,12) 

Uu, Ping, and Chen 1073 



                                                                                                                                    

0 
-.j .... 

~ 

~ 
!!l. 
?" 
"tJ 
~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 '9 50 51 52 53 54 55 56 57 58 59 60 '< 
!II 2 14 1 26 7 12 41 10 36 44 4 34 9 15 3 52 29 30 48 42 58 60 38 55 33 51 13 24 31 32 21 22 43 50 11 46 5 28 19 8 57 39 16 56 6 27 53 20 ~9 45 35 25 54 49 23 40 37 17 47 18 

3 1 15 11 37 45 5 40 13 8 35 6 27 2 14 43 58 60 39 48 31 32 55 28 52 4 46 38 17 18 29 30 25 12 51 9 57 23 42 56 7 20 33 10 50 36 59 19 54 34 26 16 47 53 24 44 41 21 49 22 < 4 36 6 16 1 28 9 12 43 2 38 26 11 57 40 17 5 53 31 32 49 44 60 51 35 46 3 52 13 24 33 34 23 14 45 58 8 47 7 30 21 10 59 41 18 37 29 54 22 56 15 27 25 55 50 4S 20 42 39 19 
l2- 5 10 27 1 17 3 39 37 7 42 13 8 29 34 51 4 16 45 60 57 41 49 33 30 53 12 52 6 47 40 19 20 31 32 25 2 46 11 59 15 44 58 9 22 35 26 38 56 21 55 24 28 18 48 54 50 14 36 43 23 
Co) 6 4 40 38 8 18 1 30 11 12 45 28 3 36 57 59 42 19 7 54 33 34 50 52 27 16 37 47 5 53 13 24 35 26 15 43 20 60 10 48 9 32 23 2 56 58 39 31 55 14 46 17 29 25 51 41 21 49 22 44 
~ 7 44 13 2 29 1 19 5 41 39 9 10 31 50 35 26 52 6 18 37 57 59 43 32 54 34 25 12 53 8 48 42 21 22 33 14 27 4 47 3 56 17 36 60 11 51 28 40 ~8 23 55 24 30 20 49 45 15 46 16 38 

Z 8 12 37 6 42 40 10 20 1 32 3 30 5 26 46 38 59 56 44 21 9 55 35 53 29 28 17 18 39 48 7 54 13 24 27 4 58 45 22 57 2 49 11 34 15 16 60 41 33 51 52 47 19 31 25 14 36 43 23 50 
0 9 41 11 36 13 4 31 1 21 7 43 2 33 56 45 46 27 28 53 8 20 39 59 34 55 14 35 26 25 12 54 10 49 44 23 57 3 16 29 6 48 5 58 19 38 15 52 30 42 60 50 51 24 32 22 18 40 37 17 47 

10 34 5 12 39 8 44 42 2 22 1 32 7 Sl 27 28 47 40 56 58 36 23 11 54 31 24 29 30 19 20 41 49 9 55 13 26 17 6 60 37 14 59 4 50 3 52 18 57 43 35 25 53 48 21 33 15 46 16 38 45 
~ 11 9 45 43 3 38 13 6 33 1 23 4 35 41 56 58 37 47 29 30 54 10 22 26 51 36 15 16 27 28 25 12 55 2 50 21 40 59 5 18 31 8 49 7 60 57 17 53 32 44 14 46 52 24 34 19 48 20 42 39 

~ 12 26 8 28 10 30 2 32 4 34 6 24 1 46 37 47 39 48 41 49 43 50 45 25 13 52 5 53 7 54 9 55 11 51 3 16 42 18 44 20 36 22 38 14 40 17 19 21 23 15 27 29 31 33 35 57 58 59 60 56 
III 13 7 35 9 27 11 29 3 31 5 33 1 25 44 50 36 46 38 47 40 48 42 49 12 24 2 51 4 52 6 53 8 54 10 55 41 15 43 17 45 19 37 21 39 23 14 16 18 20 22 34 26 28 30 32 60 56 57 58 59 
'< 14 15 2 51 41 34 57 44 46 56 26 50 36 3 1 25 31 32 20 39 17 18 28 23 43 35 9 55 21 22 58 60 16 45 4 27 7 24 48 10 37 19 52 40 12 13 54 42 47 6 11 33 49 59 38 8 5 29 53 30 
~ 15 3 14 35 57 50 37 56 27 40 51 45 46 1 2 33 21 22 42 19 29 30 24 38 16 11 36 23 58 60 17 18 52 6 26 13 41 55 20 44 5 48 25 8 34 9 49 39 53 12 4 43 59 47 28 10 7 31 54 32 CD 

16 58 28 17 4 52 43 26 59 36 47 46 38 20 30 5 1 25 33 34 22 41 19 15 45 37 6 27 11 51 23 14 60 57 18 42 12 29 9 24 49 2 39 21 53 8 13 55 44 48 40 3 35 50 56 54 32 10 7 31 CD 
0 17 42 52 5 16 27 59 46 39 58 29 37 47 32 24 1 4 35 23 14 44 21 31 40 18 8 28 3 38 15 60 57 19 20 53 10 26 13 43 51 22 36 7 49 25 12 11 50 41 54 30 6 45 56 48 55 34 2 9 33 

18 38 48 60 30 19 6 53 45 28 56 47 40 43 21 22 32 7 1 25 35 26 14 17 37 59 20 39 8 29 3 52 15 16 57 23 54 44 12 31 11 24 50 4 41 49 10 13 51 36 58 42 5 27 46 9 33 55 34 2 
19 60 31 44 53 7 18 29 56 47 41 39 48 23 33 34 24 1 6 27 15 16 36 42 20 22 54 10 30 5 40 17 57 59 21 50 25 2 28 13 45 52 14 38 9 55 12 3 46 43 49 32 8 37 58 11 35 51 26 4 
20 30 58 40 49 57 32 21 8 54 37 48 42 28 16 45 23 14 34 9 1 25 27 19 39 18 59 56 22 41 10 31 5 53 17 6 43 15 55 36 12 33 3 24 46 38 50 2 13 52 47 60 44 7 29 26 4 11 35 51 
21 48 43 57 33 36 54 9 20 31 58 41 49 18 38 15 35 26 24 1 8 29 17 44 22 56 23 14 55 2 32 7 42 19 59 40 11 46 25 4 30 13 37 53 16 45 51 12 5 47 60 50 34 10 39 28 6 3 27 52 
22 55 39 32 60 42 50 59 34 23 10 49 44 25 29 30 18 37 15 16 26 11 1 21 41 54 19 20 56 58 14 43 2 33 7 24 47 8 45 17 51 38 12 35 5 53 40 46 4 13 31 48 57 36 9 27 52 28 6 3 
23 33 60 49 45 59 35 38 55 11 22 43 50 31 19 20 40 17 27 28 24 1 10 36 14 21 56 58 15 16 51 4 34 9 44 54 18 42 3 47 25 6 32 13 39 48 37 52 12 7 41 57 46 26 2 29 53 30 8 5 
24 52 32 53 34 54 26 55 28 51 30 25 12 17 42 19 44 21 36 23 38 15 40 13 1 29 10 31 2 33 4 35 6 27 8 47 22 48 14 4~ 16 50 18 46 20 39 41 43 45 37 5 7 9 11 3 58 59 60 56 57 
25 29 55 31 51 33 52 35 53 27 54 13 24 39 22 41 14 43 16 45 18 37 20 1 12 7 34 9 26 11 28 3 30 5 32 19 50 21 46 23 47 15 48 17 49 44 36 38 40 42 10 2 4 6 8 59 60 56 57 58 
26 46 12 52 2 24 36 34 16 14 28 51 4 37 8 29 7 54 21 22 59 56 18 35 11 27 1 25 9 55 43 50 38 15 6 17 10 53 41 32 58 44 47 57 30 5 31 49 60 40 3 13 33 23 45 20 42 39 19 48 
27 5 51 13 46 35 17 15 29 37 25 3 52 10 34 9 36 23 59.56 19 20 54 6 28 1 26 11 16 45 47 40 53 8 24 7 14 33 58 50 39 57 31 42 55 2 43 60 48 32 12 4 38 18 30 22 44 41 21 49 
28 16 30 47 12 53 4 24 38 26 18 52 6 58 20 39 10 31 9 55 23 14 56 27 3 17 8 29 1 25 11 51 45 46 40 59 32 19 2 54 43 34 60 36 48 42 7 33 50 57 37 5 13 35 15 21 49 22 44 41 
29 39 25 7 52 13 47 27 19 17 31 5 53 22 55 2 26 11 38 15 56 58 21 8 30 10 24 1 28 3 18 37 48 42 54 44 51 9 16 35 60 46 41 59 33 34 4 45 57 49 32 12 6 40 20 23 50 14 36 43 
30 28 20 18 32 48 12 54 6 24 40 53 8 16 58 60 22 41 2 33 11 51 15 29 5 47 42 19 10 31 1 25 3 52 37 38 49 56 34 21 4 55 45 26 57 59 44 9 35 46 17 39 7 13 27 36 43 23 50 14 
31 19 33 41 25 9 53 13 48 29 21 7 54 60 23 14 51 4 28 3 40 17 58 10 32 44 55 2 24 1 30 5 20 39 49 56 35 36 52 11 18 27 57 47 43 50 26 6 37 59 22 34 12 8 42 38 45 15 46 16 
32 24 42 30 22 20 34 49 12 55 8 54 10 52 17 18 60 57 14 43 4 35 3 31 7 53 39 48 44 21 2 33 1 25 5 28 59 40 50 58 26 23 6 51 37 47 56 36 11 27 29 19 41 9 13 46 16 38 45 15 
33 31 23 21 35 43 25 11 54 13 49 9 55 19 60 57 15 16 52 6 30 5 42 2 34 41 50 36 51 4 24 1 32 7 22 48 45 58 27 38 53 3 20 29 59 56 46 28 8 39 44 14 26 12 10 47 18 40 37 17 
34 51 10 24 44 32 14 22 26 50 12 55 2 27 5 53 19 20 57 59 16 45 6 33 9 25 7 54 41 49 36 23 4 35 1 52 39 30 56 42 46 60 28 15 8 29 48 58 38 3 13 31 21 43 11 37 17 47 18 40 
35 13 50 33 15 23 27 45 25 3 55 11 51 7 44 21 57 59 17 18 53 8 32 4 26 9 14 43 46 38 52 6 24 1 34 31 56 49 37 60 29 40 54 5 22 41 58 47 30 10 2 36 16 28 12 39 19 48 20 42 
36 57 4 46 9 26 21 2 58 41 16 14 43 40 6 27 13 24 54 10 42 19 47 50 23 15 11 51 33 34 49 44 59 56 38 37 1 52 31 12 20 7174828 3 25 32 39 18 45 35 55 22 '60 30 8 5 29 53 
37 8 46 3 58 15 42 57 5 20 27 40 17 12 26 11 43 50 22 41 754251847 6 16 45 59 56 39 48 29 30 52 1 36 35 49 14 10 21 13 32 51 4 23 44 31 24 28 38 60 19 53 34 2 9 33 55 
38 43 18 59 6 47 11 28 23 4 60 16 45 21 48 42 8291324 55 2 44 46 15 58 40 17 3 52 35 26 50 36 56 49 30 39 1 53 33 12 22 9 19 20 5 25 34 41 57 37 27 51 14 31 54 32 10 7 
39 22 29 10 47 5 60 17 44 59 7 42 19 55 25 12 28 3 45 46 14 43 9 20 48 32 53 8 18 37 56 58 41 49 31 34 52 1 38 27 50 16 2 23 13 24 6 15 36 33 54 30 40 57 21 35 51 26 4 11 
40 6 57 45 20 56 8 48 3 30 15 18 37 4 36 23 49 44 10 31 13 24 51 47 17 38 58 60 42 19 5 53 27 28 46 11 21 50 32 41 1 54 35 12 14 43 22 7 25 26 16 59 39 29 52 2 9 33 55 34 
41 56 9 14 31 2 48 7 57 19 36 44 21 45 11 51 25 12 30 5 37 47 16 22 49 50 33 34 54 10 20 39 58 60 43 15 13 26 53 1 40 29 46 18 4 35 24 8 17 38 23 55 32 42 59 6 3 27 52 28 
42 32 17 8 59 37 22 58 10 49 520392452 6 38 15 50 36 2 33 13 48 19 30 47 40 60 57 44 21 7 54 29 12 16 3 23 46 34 43 1 55 27 28 45 14 9 25 53 18 56 41 31 51 26 4 11 35 
43 21 38 58 11 16 33 4 49 9 59 36 23 48 18 37 3522512 32 7 39 14 50 57 45 46 35 26 55 2 22 41 60 20 6171328 54 1 42 31 47 40 27 24 10 19 56 15 51 34 44 53 30 8 5 29 
44 50 7 34 19 10 56 39 14 60 2 22 41 35 13 24 53 8 40 17 46 38 4 49 21 55 31 32 48·42 57 59 36 23 9 51 29 12 18 5 15 47 26 45 1 25 30 37 16 11 33 54 20 58 43 3 27 52 28 6 
45 11 56 23 40 60 3 18 35 6 50 38 15 9 41 49 20 39 5 53 25 12 34 16 46 43 57 59 37 47 27 28 51 4 14 33 48 22 8 19 13 30 55 1 44 21 42 29 24 2 36 58 17 52 26 7 31 54 32 10 
46 37 26 27 36 51 58 14 17 57 52 15 16 8 12 13 9 55 49 44 39 48 53 45 38 3 4 35 43 50 59 56 47 40 28 5 2 25 21 34 42 41 29 20 24 1 33 22 19 30 6 11 23 60 18 32 10 7 31 54 
47 59 53 39 28 29 38 52 60 16 19 17 18 49 54 10 12 13 11 51 50 36 41 37 40 42 30 5 6 27 45 46 56 58 48 22 24 7 4 25 23 26 44 43 31 32 1 35 14 21 20 8 3 15 57 33 55 34 2 9 
48 18 21 56 54 41 30 31 40 53 57 19 20 38 43 50 55 2 12 13 3 52 46 39 42 60 49 44 32 7 8 29 37 47 58 45 33 14 24 9 6 25 15 28 36 23 34 1 27 16 59 22 10 5 17 4 11 35 51 26 
49 54 59 20 23 58 55 43 32 33 42 21 22 53 47 40 45 46 51 4 12 13 5 41 44 48 60 57 50 36 34 9 10 31 39 30 38 37 35 16 24 11 82517181526 1 29 19 56 14 2 7 52 28 6 3 27 
50 35 44 55 56 22 15 60 51 45 34 23 14 13 7 54 48 42 37 47 52 6 12 43 36 33 41 49 57 59 46 38 26 11 2 25 19 32 40 39 27 18 24 3 10 31 20 17 28 1 9 21 58 16 4 5 29 53 30 8 
51 27 34 25 14 55 46 50 52 15 24 35 26 5 10 31 41 49 58 60 47 40 30 11 4 13 2 33 36 23 16 45 28 3 12 29 44 54 57 22 17 56 53 37 32 7 21 59 18 8 1 9 43 38 6 42 39 19 48 20 
52 17 24 29 26 25 16 51 47 46 53 27 28 42 32 7 2 33 43 50 60 57 48 3 6 5 12 13 4 35 38 15 18 37 30 39 34 31 36 55 59 14 19 58 54 10 9 23 56 20 8 1 11 45 40 49 22 44 41 21 
53 47 54 19 24 31 28 25 18 52 48 29 30 59 49 44 34 9 4 35 45 46 57 5 8 39 32 7 12 13 6 27 40 17 20 60 55 41 26 33 38 51 56 16 21 22 2 11 15 58 42 10 1 3 37 43 23 50 14 36 
54 53 49 48 55 21 24 33 30 25 20 31 32 47 59 56 50 36 26 11 6 27 37 7 10 19 22 41 34 9 12 13 8 29 42 18 23 57 51 43 28 35 40 52 58 60 14 4 3 17 39 44 2 1 5 16 38 45 15 46 

c: 55 25 22 54 50 49 51 23 24 35 32 33 34 29 39 48 56 58 46 38 28 3 8 9 2 31 44 21 14 43 26 11 12 13 10 53 60 20 15 59 52 45 30 27 42 19 57 16 6 5 7 41 36 4 1 17 47 18 40 37 
C 56 45 41 50 48 44 40 19 15 18 14 60 57 11 9 55 54 10 8 29 27 28 26 59 58 23 21 22 20 39 37 47 46 38 36 35 31 34 30 7 3 53 51 6 2 33 32 5 52 4 43 49 42 17 16 1 13 25 24 12 - 57 40 36 15 21 14 20 41 37 48 46 56 58 6 4 35 33 34 32 7 5 53 52 60 59 45 43 50 49 44 42 19 17 18 16 3 9 51 54 2 8 31 27 30 26 11 55 10 29 28 38 .J 22 39 47 12 1 13 25 24 "tJ 58 20 16 37 43 46 49 36 42 21 17 57 59 30 28 3 11 51 55 2 10 31 29 56 60 40 38 15 23 14 22 41 39 48 47 8 4 27 33 26 32 9 5 54 52 6 35 34 7 53 18 45 50 44 19 24 12 1 13 25 5' 59 49 47 42 38 17 23 16 22 43 39 58 60 54 53 8 6273526 34 9 7 57 56 20 18 37 45 46 50 36 44 21 19 32 28 5 11 52 55 4 10 33 29 30 3 51 2 31 48 40 15 14 41 25 24 12 1 13 !P 60 23 19 22 18 39 45 47 50 38 44 59 56 33 31 32 30 5 3 52 51 4 2 58 57 49 48 42 40 17 15 16 14 43 41 55 53 10 6 29 35 28 34 11 7 54 8 27 26 9 21 20 37 46 36 13 25 24 12 1 
III 
~ 
Q. 

0 
~ 
CD 
~ 

0 
-.j .... 



                                                                                                                                    

I A. Speiser, Die Theorie der Gruppen von Endlicher Ordnung (Dover, New 
York, 1937). 

20. Laporte, Z. Naturforsch. 3., 447 (1948). 
3N. v. Cohan, Proc. Cambridge Philos. Soc. Math. Phys. Sci. 54, 28 
(1958). 

4A. G. McLellian, I. Chern. Phys. 34,1350 (1961). 
5R. M. Golding, Molecular Phys. 26, 661 (1973). 
6D. R. Pooler, I. Math. Phys. Gen. 13, 1197 (1988). 

1075 J. Math. Phys., Vol. 31, No.5, May 1990 

7D. Levine and P. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984). 
81. Q. Chen, Group Representation Theory for Physicists (World Scientific, 
Singapore, 1989); A New Approach to Group Representation Theory 
(Science and Technology, Shanghai, 1984). 

91. Q. Chen, M. I. Gao, and G. Q. Ma, Rev. Mod. Phys. 57, 211 (1985). 
IOJ. L. Ping, Q. R. Zheng, B. Q. Chen, and I. Q. Chen, Compo Phys. Com

mun. (1989). 
III. Q. Chen, F. Wang, and M. I. Gao, I. Phys. A 16,1347 (1983). 

Liu, Ping, and Chen 1075 



                                                                                                                                    

Decomposition of the enveloping algebra of .?t3 
Daniel E. Flath 
Department of Mathematics. University of South Alabama. Mobile. Alabama 36688 

(Received 15 August 1989; accepted for publication 20 December 1989) 

The adjoint representation of J~ on its universal enveloping algebra * is explicitly 
decomposed. The result is expressed as a presentation by generators and relations of the 
commutant in * of the raising operators in J~. Application is made to the analysis of the 
representations End ( W) for finite-dimensional simple W. 

I. INTRODUCTION 

Applications of representation theory often rest on rath
er detailed knowledge of the decomposition of tensor prod
uct representations. A special but important case is the de
composition of the representations Ende ( W) for irreducible 
W. When W is a finite-dimensional irreducible representa
tion of a simple Lie algebra f?, Ende ( W) is a quotient of the 
universal enveloping algebra Uk' of f?, and so a good first step 
is the explicit decomposition of the adjoint representation of 
f? on Uk'. 

For f? = Jt;, this program is very easily carried out, 
leading to the following elegant, classical statement. Let 
( r, W) be a finite-dimensional irreducible representation of 
Jt;. The vectors of highest weight in Ende (W) [that is, 
commuting with r(E12 )] are precisely the nonzero vectors 
ofthe form r(E12 ) n , n = 0,1,2, .... 

In this paper we consider the next case, that of Jt;. Our 
main result, a completely explicit decomposition of the ad
joint representation of Jt; on its universal enveloping alge
bra, is formulated in Sec. II and proved in Sec. III. As appli
cations, we deduce some corollaries in Sec. IV, including the 
analog of the Jt; statement mentioned above. Corollaries 3 
and 4 are special cases of a very general theorem of Kostant. ) 

For a related approach to the representations 
Home ( V, W) of Jt;, see Ref. 2. The simplicity of the rela
tions in Corollary 6.7 of Ref. 2 may be contrasted with the 
complexity of the relations (8)-(12) in the present paper. 
This is perhaps an indication that for some problems the 
universal enveloping algebra is not the most appropriate or 
convenient tool available. 

II. THE DECOMPOSITION OF THE ENVELOPING 
ALGEBRA 

Let f? = Jt; denote the Lie algebra of 3 X 3 traceless 
complex matrices. Let Uk' be the universal enveloping alge
bra of f? We view Uk' as the space of a f? representation p via 
the adjoint action: 

p(x)a = [x,a], for XEf?, aEUk'. 

In order to decompose the representation p it is enough 
to determine the space f!lj of highest weight vectors in Uk'. 
Because f!lj is the set of aEUk' such that 
p(E12 )a = p(E23 )a = 0, the space f!lj is a subalgebra of Uk', 
the commutant of {E)2,E23 }. (By Eij we mean the 3 X 3 ma
trix whose only nonzero entry is the (fih, which equals 1.) 

We introduce a notation H),H2 for two elements of f?: 

(1) 

An element AEUk' is of weight (p,q) if [H),A] = pA and 
[H2,A] = qA. In this paper all weights (p,q) are integral in 
the sense that p,qE1... 

We next list six elements (2)-(7) of Uk' which lie in f!lj: 

B) = E 13, 

B2 = 3E12E23 + (H) - H2)EI3, 

12 = ~(H)2 + HIH2 + H/) + HI + H2 

+ E2IE12 + E31E 13 + E32E23, 

13 = j, H I3 + ~ HI2H2 - ~IH/ - j,H/ + E32E2IE\3 

+ E31E12E23 + ~E31 (HI - Hz)EI3 + jE21 

(2) 

(3) 

(4) 

X (HI + 2H2)E12 - jE32 (2HI + H2)E23 + E21E12 

- E31EI3 - E32E23 + j(H l
z - H/) + j(HI - H2), 

(5) 

C I = E32E13z - E23E122 + H2E 12E I3, (6) 

C2 = - E21E 132 + E 12E2/ + H IE23E 13. (7) 

The elements B I and B2 are of weight ( 1,1),12 and 13 are 
f? invariants of weight (0,0), C I is of weight (3,0), and C2 is 
of weight (0,3). 

We give 16 relations (8)-(12) in f!lj satisfied by the 
above six elements: 

[B2,Ctl = 3BICI, 

[B2,C2] = - 3BIC2, 

[CI,C2] = -BI312-BI2B2+jBIB/. 

(8) 

(9) 

( 10) 

The 12 remaining brackets between the six elements 

(2)-(7) are zero, (11) 

CIC2 = - B)3(/2 + 13) + jB1
2B2(/2 - 2) + ~BIB/ 

- f,B/. (12) 

Theorem: (i) The commutant of {E 12,E23} in Uk', f!lj, is 
generated by the six elements (2)-(7). (ii) The ideal of reI a
tions in f!lj among the elements (2)-(7) is generated by the 
16 relations (8)-(12). 

III. THE PROOF 

We will begin the proof by establishing the sufficiency of 
the 16 relations. 

Lemma 1: The four commuting elements B I,B2'/2,13 are 
algebraically independent. 

Proof We will denote by A the element of the symmetric 
algebra Sym(f?) on f? that is the image of AEUk' under the 
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canonical linear isomorphism from ~ to Sym (9') whose in
verse is symmetrization [from the Poincare-Birkhoff-Witt 
(PBW) theorem]. 

One actually shows that the four elements 0 1,02'/2'/3 
are algebraically independent. 

By symmetrizing, one verifies the following which is in 
fact how 12 and 13 were found: 

01=EI3 , 

O2 = 3EI2E23 + (HI - H2)E13 + ~EI3' 
- 2 2 12=!(HI +HIH2+H2 ) 

(13) 

(14) 

+ E2IE\2 + E3IE\3 + E32E23, (15) 

73 = i.;H13 + Vi/H2 - ViIH/ - f-,H/ + E32E2IE\3 

+ E3IEI2E23 + !E31 (HI - H2)E13 

+ !E21 (HI + 2H2)E\2 - !E32 (2HI + H2)E23• 

(16) 

It is now an easy exercise to show that 0 1,02'/2'/3 are 
algebraically independent even after specializing HI' H2, and 
E21 to zero. • 

Let 9f be the algebra generated by elements (2)-(7). 
We want to show of course that 9f = qj. 

By using the given relations one sees that C is spanned as 
a vector space by elements of the form: 

BlaB/I/I/CleC2~ with e/= 0. (17) 

Lemma 2: The elements ( 17) are linearly independent. 
Prool The element (17) has weight (a + b + 3e, 

a + b + 3j) and so a dependence must express itself among 
elements with fixed e and! But since ~ has no zero divisors, 
Lemma 1 makes such a dependence impossible. • 

The 'proof that 9f = qj, or equivalently, that the 17 
subrepresentation of ~ generated by qj is all of ~ , is based 
on dimension considerations. 

We recall the canonical filtration on ~. The space ~ n 

is the subspace of ~ spanned by elements that are products 
of at most n elements of 17. By the PBW theorem, 

( ~ n). (n + 7) dim -- = dIm Symn (f7) = 7 . 
~n-I 

(18) 

Let dim (a,b,c,d,ej) be the dimension of the irreducible 
17 representation generated by the element ( 17). By the Weyl 
dimension formula, for an element of weight (p,q), 
dim = ~(p + l)(q + l)(p + q + 2). 

The proof of the theorem is now completed straightfor
wardly by induction, showing that l: dim = C t 7), where 
the sum is over a,b,c,d,eJ such that a + 2(b + c) 
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+ 3 (d + e + j) = nand e/ = 0. One must consider each of 
the six residue classes of n mod six separately. • 

IV. CONSEQUENCES 

Let X be the set of elements of the form (17) with 
c=d=O. 

Corollary 1: The algebra B is a free C[I2,!3] module for 
which X is a basis. 

The elements 12 and 13 act as scalar multiplications on 
each irreducible 17 module. We deduce the following corol
lary: 

Corollary 2: Let (r, W) be a finite-dimensional irreduci
ble Jt; representation. The set {r(x) IxEX} spans the space 
of highest weight vectors in the Jt; representation 
Ende ( W). 

Define qj (p,q) to be the subspace of elements of qj of 
Jt; weight (p,q). 

Let V(p,q) be a finite-dimensional irreducible Jt; repre
sentation of highest weight (p,q). It is defined only when 
(p,q) is dominant, that is, when p,q>O. 

The elements (17) are all of dominant weight. For 
qj (p,q) to be nonzero, we must have p == q (mod 3), which is 
the condition that (0,0) be a weight of V(p,q). In that case, 
the number of elements of X of weight (p,q) is easily seen to 
bemin{p + l,q + l}, which by Ref. 2 equals the multiplicity 
of the weight (0,0) in V(p,q). 

Corollary 3: (i) qj(O,O) = C[I2,!3]. (ii) qj(p,q) is a 
free C[I2,!3] module of rank equal to the multiplicity of the 
weight (0,0) in the J t; module V(p,q). 

Corollary 4: Let W be a finite-dimensional, irreducible 
Jej representation. Then the multiplicity of V(p,q) in 
Ende (W) is bounded (independently of W) by the multi
plicity of (0,0) in V(p,q). 

It is in fact known2 that if p + q - 1 <min{r,s}, then the 
multiplicity of V(p,q) in EnddV(r,s» exactly equals the 
multiplicity of (0,0) in V(p,q). 

Corollary 5: If p + q - l<min{r,s}, then the set 
{r(x) IxEX, weight x = (p,q)} is a basis for the space of 
highest weight vectors of weight (p,q) in EnddV(r,s». 

We will not comment here on the linear dependences 
that arise among the r(x) when (r,s) does not satisfy the 
hypothesis of Corollary 5. 

'B. Kostant, Am. J. Math. 85, 327 (1963). 
20. E. Flath and L. C. Biedenharn, Can. J. Math. 37, 710 (1985). 
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In this paper all unitarizable irreducible highest weight representations of the infinite
dimensional Lie algebra A", , which is a completion and central extension of the general linear 
Lie algebra gl"" are considered. Within each representation space a basis is introduced and 
expressions for the transformations of the basis under the action of the Chevalley generators 
are written. 

I. INTRODUCTION 

Since it was defined in 1981,.·2 the algebra A", and, in 
particular, its highest weight irreducible unitarizable repre
sentations, turned out to be a useful tool in several areas of 
theoretical physics. In this respect we mention the results of 
the Kyoto school on the theory of integrable field equations 
and solitons (see Refs. 1, 3-6) and the interpretation of the 
Dirac positron theory in terms of the infinite wedge space 
representations of A", . 7,8 In a more indirect way the algebra 
A '" has applications in the theory of two-dimensional statis
tical systems, quantum string theory, etc. (see the review 
article9 and the references therein): This is due to the cir
cumstance that A 00 contains as subalgebras the infinite-di
mensional Heisenberg algebra, the Virasoro algebra. and 
other Kac-Moody algebras (for a systematic exposition of 
the relations of A '" to these algebras and their applications 
see Ref. 8). 

The criterion for selecting highest weight representa
tions usually comes from natural physical requirements. In 
the known interesting examples, the algebras under consi
deration contain observables whose spectrums should be 
bounded from below for some physical reasons: In two-di
mensional field theories this is the energy operator, in string 
theory this is the mass spectrum operator, etc.9 In most cases 
the representation space plays the role of a state space; there
fore, it has to be accomplished with a scalar product, so that 
the observables are self-adjoint operators. This leads to the 
requirement that the representation be unitarizable. 

In order to be more concrete let us give an example. 
Take a free spinor field locked (for simplicity) in a finite 
volume. The field is characterized by the operatorsf~A' cor
responding to the creation ( v = +) or annihilation 
( v = - ) of a particle with a charge 1/ = ± 1 and all other 
(discrete in this case) indices AEN (see the notation at the 
end of this section) and which satisfy the Fermi anticommu
tation relations 

(r~J;}=!(V-E)28ij' V,E= ± or ±1, 

iJEl,\O(l,\O= ± 1, ± 2, ... ). 
(1.1 ) 

The state space is the usual Fock space cI> "" (1), character
ized with a vacuum 10): 

f;-IO) = 0, ViEl'\O. (1.2) 

a) On leave of absence from the Institute for Nuclear Research and Nuclear 
Energy, blvd. Lenin 72, 1184 Sofia, Bulgaria. 

It is known 10 that any n pairs of operatorsf;± , ... J;± generate 
, n 

the simple Lie algebra so(2n + 1) -;;=Bn of the rotation 
group. If iEl'\ 0, then f;± generate an infinite-dimensional 
Lie algebra B"" : 

B"" = lin.env.{frIY} - f;r~= [fUJ] liJEl'\o,v,E = ±}. 
( 1.3) 

As an ordered basis in the Cartan subalgebra H of B"" one 
can take all generators II 

(1.4 ) 

Then 

N+ =lin.env.{[f;- Jl]Jk'liJ,kEl'\O, kj} (1.5) 

is a Borel subalgebra in Boo and Eqs. (1.1) and (1.2) yield 

( 1.6) 

Hence, the vacuum is a highest weight vector in cI> "" (1), 
with a weight (. .. ,!, ... ,!,~,~, ... ,!, ... ). Moreover, the usual sca
lar product in cI> "" (1) is contravariant with respect to the 
antilinear anti-involution w: B"" -+ B "" defined by w( f/ ) 
= f;- and, therefore, the representation of the infinite-di
mensional simple Lie algebra B"" , realized in the ordinary 
Fermi-Fock space, is a unitarizable highest weight irreduci
ble representation. The relation of the Fermi field to B"" has 
far-reaching consequences: It leads to generalized statistics, 
namely the para-FermP2 statistics, with state spaces, that 
are irreducible B"" modules. Also, in this case, imposing re
quirements that the vacuum be unique and nondegenerate 
and the Hermiticity condition w(j/ ) = f;- to hold, one 
comes to the conclusion 13 that the Fock spaces cI>(p), pEN 
have to carry highest weight unitarizable representations of 
B"" corresponding to one of the highest weights ( ... ,pl 
2, ... ,pI2,pI2,pI2 .... ,pI2, ... ), pEN. For physical reasons (for 
instance, to have the four-momentum well defined in the 
£ock space) one is forced to enlarge B"" to its completion 
B"" . However. sinceB"" has no representations in cI>(p) (see 
the beginning of Sec. III B for an idea why this happens) one 
has to go further to the central extension ofB"" (which in the 
Fermi case is equivalent to the normal ordering postulate). 

Our motivation for studying the highest weight unitari
zable representations of A "" originates from an attempt to 
introduce new quantum statistics. Our interest is based on 
the observation that the statistics of the spinor fields admits a 
logically self-consistent generalization such that the creation 
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and annihilation operators of the field generate the algebra 
gl", (instead of B", ).14 Exactly as in the example considered 
above, one shows that the gl", representations, which are 
physically admissible, should be necessarily highest weight 
unitarizable representations and that rigorous results along 
this line, free of divergences, can be obtained on the grounds 
of the completion and central extensionA", of gl", [see Sec. 
IIIB].15 

The highest weight unitarizable irreducible modules of 
A 00 have been classified by Kac and Peterson.7 Any highest 
weight irreducible module V( [M]) is characterized with its 
signature [ = the coordinates of the highest weight] 

[M] == [ ... ,Mp, ... ,M -I ,Mo,MI, ... ,Mq, ... ] 

=={MjIMjeC, ieZ}. (1.7) 

The module V( [M] ) carries a unitarizable representation of 
A '" if and only if ( see the notation at the end of this section) 

M j - MjeZ+, 'tIkjeZ; 

there exists p < qeZ, such that Mp _ k = Mp, 

Mq+ k = M q, 'tIkeN; 

( 1.8a) 

(1.8b) 

all coordinates M j are real numbers MjeR. (1.8c) 

Thus far explicit expressions for the transformation of the 
basis under the action of the generators of A"" are available 
for the fundamental representations,2 i.e., those correspond
ing to weights (1.7) such that M j = 1 for i<.m and M j = ° 
for i > m, meZ. In the present paper we introduce a basis and 
write expressions for its transformations for every module 
V( [M]) whose signature [M] satisfies conditions (1.8a)
(1.8c). 

Recently, 16 we have studied the class of highest weight 
irreducible modules of gl"" with signatures obeying condi
tion (1.8a). Here we shall use essentially those results. 
Therefore, in Sec. II we give a resume of the necessary results 
from Ref. 16. In Sec. III A (as a convenient intermediate 
step) we construct all unitarizable irreducible highest 
weight representations ofthe Lie algebra a", . The latter is a 
central extension of gl", . In Sec. III B we construct all uni
tarizable irreducible highest weight modules of A"" . 

Throughout the paper we use the following abbrevia
tions and notation: 
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LA, LA's-Lie algebra, Lie algebras, 

lin. env. {X}-the linear envelope of X, 

C-the complex numbers, 

R-the real numbers, 

Z-all integers, 

Z+ -all non-negative integers, 

N-all positive integers, 

[M] = {Mj lieZ, MjeC}, 

Lij =Mij -i, 

(x,Y)o = X,Y, (x,y) I = Y,x, 

If p<.qeZ, then 

[p,q] = {k Ip<.k<.q, keZ}, 
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( 1.9) 

( 1.10) 

( 1.11) 

( 1.12) 

and 

B(x) = {I, for x;;;. 0, 
0, for x<O, 

S(iJ) = {I, 
-1, 

for i<.j, 

for i>j. 

(1.13 ) 

(1.14 ) 

II. HIGHEST WEIGHT IRREDUCIBLE gl"" MODULES 

The infinite-dimensional general Lie algebra gl"" can be 
defined as the set of all squared infinite matrices such that 
each matrix has only a finite number of nonzero entries, i.e., 

gl"" = {(Aij) liJeZ, all but a finite 

number of AijeC are zero}. (2.1 ) 

The Lie bracket on gl"" is the ordinary matrix commutator. 
A convenient basis in gl", is given with the set of all Weyl 
matrices Eij, iJ,eZ, where Eij is a matrix with 1 on the ith 
row, thejth column, and zero elsewhere. The commutation 
relations on gl"" read as 

[Eij,Ek/ ] = 6jk Ei/ - 6/iEkj , iJ,k,ieZ. (2.2) 

In Ref. 16, we have constructed a class of highest weight 
irreducible gl"" modules ~ corresponding to the "Borel" 
subalgebra 

N + = lin. env. {Eij Ii <jeZ}. (2.3) 

By definition this means8 that each gl", module Ve~ con
tains a unique (up to a multiplicative constant) vector xA , 

the highest weight vector, with the properties 

EijXA = 0, 'tIi <jeZ, 

Ejjx A = Mjx A' 'tI ieZ. 

(2.4 ) 

(2.5) 

Any two modules VI and V2 from ~ and corresponding to 
different signatures {M I] =I [M2] carry nonequivalent rep
resentations. The signature [M] of Ve~ uniquely labels the 
module. Therefore, we set V== V( [M] ). The possibility that 
there might exist a nonequivalent module to the V( [M]) 
irreducible highest weight gI", module with the same signa
ture is not excluded. However, if such a module exists, it 
cannot be from the class ~. 

We now proceed to describe more precisely the modules 
from ~. 

Definition 1: Let 

[M] == [ ... ,Mp, ... ,M_I,Mo,MI, ... ,Mq, ... ] == 
{Mj I MjeC, ieZ} (2.6) 

be a sequence of complex numbers such that 

M j - MjeZ+, 'tIkjeZ. (2.7) 

A pattern (M) consisting of all complex numbers 

M j,2k+fJ-1> 'tIkeN, B=O,I, ie[I-B-k,k-I], 
(2.8) 

which satisfy the following conditions: 

there exists N( [(M) lEN such that 

M j,2k+ 8-1 = M j, 'tI2k + B - I;;;.N([ (M)], 

B=O,I, ie[I-B-k,k-I], (2.9) 

M j+ 8- I,2k+8 -Mj,2k+8_ l eZ+, 
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M i,2k+ 8-1 - M i+ 8,2k+ 8 EZ+, VkEN, 

0=0,1, iE[I-0-k,k-l], (2.10) 
is called a Cpattern (corresponding to [M]), 

... , ... , M_I' 

... , M I _ 8- k,2k + 8-1' ... , M- I,2k +8-1' 

(M) = 

M -1,3' 

M -1,2' 

where kEN, 0 = 0,1. 

The entries M i•2k + 8 _ I are said to be coordinates of the 
C pattern: It is convenient to order them as indicated in the 
pattern below, writing as a first row the sequence [M]: 

... , 

M o,2k +8-1' M I ,2k + 8-1' ... , Mk +O-I,2k +0-1 

M 03, MI3 

M02 

MOl 

(2.11 ) 

Proposition 1: To each sequence (2.6) there corresponds an irreducible highest weight gloo module V( [M]) with a 
signature [M]. The basis r( [M]) in V( [M] ) consists of all C patterns corresponding to [M]. 

The transformations of the Cbasis r( [M]) of V( [M] )ElY under the action of the generators Ek,k' VkEZ and E_ k,k- v' 
Ek-v,_k' Vv=O,I, kEN were given in Ref. 16 [see Ref. 16, Eqs. (3.43) and (3.44)]. Using these generators and the 
commutation relations (2.2) one derives the transformations of the basis under the action of the Chevalley generators E k,k _ I , 

Ek_l,k' kEZ. To this end denote by (M) ± U,PJ and (M) ~ U:;JJ,p#q the Cpatterns obtained from the C pattern (M) by the 
replacements 

M/q --.M/q ± 1, M jp --'~p ± 1 

and let 

{ 

( - 1) v, for j = I, 
S(j,I;v) = 1, for ~ <I, 

- 1, for J> I. 
Then one has [see (1.11) ] 

(2.12) 

(2.13 ) 

E( -1.o>,.{M) = I (L_ I,2 - Lo,1 - ",,)(LO,2 - Lo,1 - ",,) 11/2(M) _ (-l)~[O,1 J' (2.14 ) 
k-I k+v-I 

E( -l)Vk_I',( _l)Vk +1'-1 (M) = - L L SU,I;v) 
j=l-k-v /=-k 

xl n~ .. j:-_\(Li,2k+ v - L j,2k+ v- I - ( - 1)v",,)n~~t~}(Li,2k+ v-2 - L j,2k+ v-I - ( - 1) v"") 1112 
n~#i~I_k_v(Li,2k+V_I -Lj,2k+v-I)(Li,2k+v-1 -Lj.2k+v-1 + (-1)1'+1 

xl n~= -k-v(Li,2k+ v+ I - L/,2k+ v + ( - 1)v(1 - ",,»n~;; ~ 1- k-v(Li.2k + v- I - L/,2k+ n + ( - l)v(1 - ""» 1112 
n~ .. j:-_IdLi,2k+v -L/,2k+v)(L;,2k+v -L/,2k+v + (-1)1'+1 

(M) -(-1)~+V[/,2kJ h k N -01 X -(-1)~+VU,2k-IJ' were E ,,,,,,v- , , (2.15 ) 

[

lkl+O(kl-1 Ikl-I ] 

Ekk (M) = L M;,2Ik 1+ 8(kl - L M;,2Ik 1+ O(kl - I (M), 
i= -Ikl ;= -lkl+I-O(kl 

(2.16) 

where kEZ and Moo = M -1,0 = 0. The gloo highest weight 
vector (M)o is the one from r( [M]) for which 

M;,2k + 0- I = M;, V kEN, 

0=0,1, iE[I-0-k,k-l]. 
(2.17) 

By lY we denote all gloo modules V( [M]) described by 
Proposition 1. The elements of lY are labeled by all possible 
sequences [M] that satisfy condition (2.7). 

Definition 2: We say that the signature 

[M]={M;liEZ; Mp -MqEZ+, Vp<qEZ} (2.18) 

of V( [M]) is real (resp., integer), if MoER (resp., MoEZ). 
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By lYR (resp., lYz) we denote all gloo modules from lY 
corresponding to a real (resp., integer) signature. Then 

lYZClYR ClY. (2.19) 

Let 11.1: A --.A be an antilinear anti-involution in the Lie 
algebra A, i.e., 

l1.I(a + b) = l1.I(a) + 11.1 (b) , Va, bEA, 

I1.I(Aa) = A *11.I(a), A * is the complex 

conjugate to AEe, 

11.1( [a,b]) = [11.1 (b) ,11.1 (a) ], Va, bEA, 

Tchavdar D. Palev 
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(2.22) 
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and let ( , ) be a scalar product in the A module V. The 
representation of A in V is said to be unitarizable8 if (we 
write the same letter a for aeA and for its representative as an 
operator in V) 

(ax,y) = (x,w(a}y), VaeA, x,yev, (2.23) 

i.e., if the scalar product is contravariant with respect to w 
(here we accept the more appropriate terminology from Ref. 
17; in Ref. 16 we have called the unitarizable representations 
unitary representations). One natural [also called " com
pact" in case of gl(n}] antilinear anti-involution on gl"" is 
given with Eqs. (2.20), (2.21), and 

w(Eij) = Eji' ViJEZ. (2.24) 

In Ref. 16 we determined all unitarizable irreducible highest 
weight gl"" modules corresponding to the compact anti-in
volution (2.24). It turns out that any such unitarizable mod
ule is one from the class iJ. More precisely (see Ref. 16), we 
have the following proposition. 

Proposition 2: The irreducible highest weight gl"" mod
ule V ([M]) carries a unitarizable representation of gl"" if 
and only if V( [M] }EiJR' The real form u"" of gl "" , which is 
a linear span (over R) of all generators i(Epq + Eqp}, 
(Epq - Eqp), p,qEZ is integrable to a (unitary) representa
tion of the corresponding group U"" if and only if 
V( [M] }EiJz. 

III. UNITARIZABLE REPRESENTATIONS OF A"" 

The Lie algebra A "" is a completion and central exten
sion of gl "" . The completion A"" of gl "" (see Ref. 8) consists 
of all square infinite matrices with the property that each 
matrix has a finite number of nonzero diagonals, i.e., 

A"" = {(Aij) liJEZ, Aij = 0 for all Ii - jl »O}. (3.1) 

The Lie bracket on A"" is also the usual matrix commutator. 
Clearly, gl"" is a subalgebra of A"" . Each element aeA"" can 
be represented as an infinite "linear combination" of Weyl 
generators: 

q "" 
a = L L AikEi,i+k' AikEC, iJeZ, p<qeZ. (3.2) 

k=pi=-"" 

The central extension A "" of A "" is a direct sum of A"", 
considered as a linear space, with a one-dimensional space 
Ce spanned on e: 

(3.3 ) 

In order to avoid possible confusion, we denote the vectors 
EijEgI"" , considered as elements from A "" , byeij' iJeZ. Then 
A "" , considered as a linear space, is a subspace of the direct 
space sum 

L EIlCeijEllCe 
i,jEZ 

consisting of all sums (for simplicity we skip Ell ) 

q "" 
a = L L Aikei,i+ k + Ae, Aik' AEC, 

k=p ;=-0:) 

i,keZ, p<qeZ. 

(3.4) 

(3.5) 

The Lie bracket [ , ] between any two elements of A "" is an 
(infinite) linear extension of the relations 
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[e,eij] = 0, ViJeZ, (3.6) 

[eij,ekl ] = {jjkej/ - {j/jekj + {jj/{jjk 

x [O( - i} - O( - j} ]e, ViJ,k,leZ. (3.7) 

In this article we study all unitarizable highest weight 
representations of A"" . More precisely, we construct all irre
ducible A "" modules V with the following properties. 

(i) Each module V contains a highest weight vector x A' 

i.e., the vector X A is annihilated by (the representatives of) 
the generators eij' Vi <jEZ, 

eijxA = 0, Vi<jEZ, (3.8) 

and is an eigenvector of all possible elements of the form 

"" L Aiejj + Ae, VA,).iEC, ieZ. (3.9) 
;= - 00 

(ii) Each module V is unitarizable with respect to the 
antilinear anti-involution w defined from (2.20), (2.21), 
and 

w(e} = e, w(eij} = eji , ViJEZ. (3.10) 

A. The Lie algebra a"" 

By a"" we denote the subalgebra of A 00 , which is a linear 
span of all eij' iJEZ, and e: 

a"" = lin.env.{eij,eliJEZ}, (3.11) 

i.e., it consists of all linear combinations 
q s 

L L Aikei,i+k +Ae, Aik,AEC, 
k=p i=r 

i,keZ, p<qeZ, r<sEZ. (3.12) 

This algebra is a central extension of gl"". As a convenient 
intermediate step we extend in this section each gl"" module 
V( [M] }EiJ to an a"" (highest weight irreducible) module. 

Proposition 3: The central extension a"" of gl"" is iso
morphic ( = ) to a (Lie algebra) direct sum EB of gl "" and 
Ce: 

a"" =gl"" EBCe. (3.13) 
Proof: Let Eij' iJeZ be the Weyl generators of gl"" in 

(3.13). Then the linear map f of gl "" EB Ce on a"" , which is a 
linear extension of the relations 

fee) = e, f(Eij} = eij + {jij [O( - i) + ale, ViJEZ, 
(3.14 ) 

is an isomorphism of gl "" EB Ce on a"" for every aEC. • 
We shall identify a"" with gloo EB Ce, a"" = gloo EB Ce. 

Then the a"" generators eijEgloo EB Ce read as 

eij = Eij - {jij[O( - 0 + ale, ViJEZ. (3.15) 

Let 1r be an irreducible representation of gloo in the lin
ear space V( [M] }EiJ. Setting 1r(e) = KEC, we enlarge 
V( [M]} to an irreducible gloo EB Ce = a"" module. The ex
pressions for the a"" generators e ij as operators in V read as 

( 3.16) 

Setting K = 50 - 51 and aK = 51' we write (3.16) as 

1r(eij} =1r(Eij) -{jij[(50-5I)O( -0 +5.], (3.17) 

1r(e) = 50 - 51' (3.18) 
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where So and 51 are arbitrary, but fixed complex constants. 
On the contrary, if Vis an irreducible a", module, then 

1T(e) is a constant, say 1T(e) = So - 51, and the relations 

1T(Eij) =1T(eij) +Dij[(So-SI)O( -i) +sd (3.19) 

tum V into an irreducible gl", module. Thus, we have the 
following corollary. 

Corollary 1: Every irreducible a '" module V can be ob
tained as an extension of an irreducible gl", module V. The 
restriction of every irreducible a '" module V to gloo is irredu
cible. 

Let Vbe an irreducible highest weight gl", module with 
a highest weight vector x A' Then [see (3.19) ] 

1T(Eij)xA =1T(eij)xA =0, Vi<jEZ. (3.20) 

Corollary 2: Every irreducible highest weight a", mod
ule V can be obtained as an extension of a highest weight 
irreducible gl", module V. The restriction of every irreduci
ble highest weight a", module V to gl", is an irreducible 
highest weight V module. 

The extension of a gloo module V( [M] )E~ to a highest 
weight irreducible a", module by means of relations (3.17) 
and (3.18) will be denoted as V( [M];SO,SI) and its basis
as r( [M];so.sl)' We denote by ~o all such possible exten
sions. i.e., 

(3.21 ) 

and by ~~ (resp. ~~) , the subset of ~o consisting of 
V([M];so,sl) with real (resp., integer) signatures [M] (see 
Definition 2) and real (resp., integer) 50,51' 

Let Vbe an arbitrary unitarizable [with respect to (j) as 
defined by (3.10)] highest weight irreducible a", module. 
Setting in (3.17) 50,51 as real numbers, we tum V into a 
unitarizablegl", module [Le., (2.24) holds]. Hence (Propo
sition 2), Vis a module from ~R' V = V([M ])E~R and its 
extension to an a", module V [by means of Eqs. (3.17) and 
(3.18) 1 with the same real So,S I gives 
V= V([M1;So'SI)E~~. We summarize. 

Corollary 3: Every unitarizable irreducible highest 
weight a", module V is an extension of a gl"" module 
V( [M ] )E~ R • The a", generators are defined as operators in 
V([M]) with Eqs. (3.17) and (3.18), where so,sIER. 
Hence, V= V([MJ;So,SI)E~~. 

From now on we simplify the notation and write Eij' eij 
instead of 1T(Eij)' 1T(eij)' Therefore, Eqs. (3.17) and (3.18) 
read as 

eij =Eij -Dij[(So-stlO( -i) +sd, e=so-si' 
(3.22) 

The transformation of the basis r( [M] ;50,51) in each 
V([M];So'SI)E~o is easily found from Eq. (3.22) and the 
transformation relations (2.14)-(2.16). Since eij = Eij for 
i#j, one has simply to replaceEby ein the lhs of Eqs. (2.14) 
and (2.15). The action of e kk' kEZ on any C vector 
(M)EV( [M];SO,SI) reads as 

[

lkl+(J(kJ-I 

ekk(M) = L Mj,2Ikl+8(kJ 
;= -Ikl 

Ikl-I 

- ') M;,2Ikl + (J(kJ -I 
;= -Iktt 1-8(kJ 

+ (51 - soW( - i) - sIl (M). (3.23) 
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B. Unitarizable representations of A 00 

Observe first that (apart from the trivial case Mi = 0, 
ViEZ) the gl", modules V( [MJ )E~ cannot be extended by 
linearity to Aao modules. Indeed, let (M)o be the V( [M]) 
highest weight vector [see (2.17)]. For (M)o Eq. (2.16) 
repuces to 

Eji(M)o = M .. (M)o, iEZ. (3.24) 

Therefore, the action of 

11 = L EjjEA", (3.25) 
ieZ 

on (M)o gives an undefined, divergent expression: 

II (M)o = [ .. =~co M .. ](M)o, (3.26) 

i.e., the Lie algebra A", has no nontrivial highest weight rep
resentations [with respect to the Borel subalgebra (2.3)]. 
This is the reason why (also in all physical applications) one 
has to go from the completion A 00 of gl "" to its central exten
sion A", (for the same reason-see Sec. I-one has to en
large B ao to its central extension). 

We now proceed to investigate which a", modules 
V( [M];so,sl) can be turned into A"" modules. 

Definition 3: We say that the a", module 
V([M];SO'SI)E~o [resp., thegl", module V([M])E~] is of 
a finite signature or, more precisely, of (p,q) signature and 
write [M1 = [M]p,q if there exist integers p < q such that 

Mp_ k =Mp>Mp+1> Mq_ 1 >Mq =Mq+k' 'tIkEN. 
(3.27) 

Let (M)o be the highest weight vector in the a"" module 
V( [M];SO,SI)' From (3.23) we find that 

ejj(M)o = [M .. + (51 - solO( - i) - sd (M)o, (3.28) 

Therefore, the action of I = ~r= '" ejjEA", on (M)o gives 

I(M)o = [i=t "" (M .. - So) + i~l (M; - 51) ] (M)o' 

(3.29) 

The expression in the square brackets of (3.29) is not 
divergent only in the finite-signature modules 
V( [M ]p,q;Mp.Mq). Thus we conclude with the following 
corollary. 

Corollary 4: The a", module V( [M];so,sl) cannot be 
extended to an A 00 module if it is not of a finite signature. 
The finite-signature module V( [M ]p,q;SO'SI) cannot be ex
tended to an A", module if So#Mp and 51 #Mq. 

It remains to investigate all finite-signature a"" mod
ules: 

~FS {V( [M ] p.q ;Mp ,Mq ) iP<:qEZ, 

Mp.MqEC, Mp -MqEZ+}C~o. (3.30) 

We now proceed to prove that each a"", module from ~FS can 
be extended by linearity to an A", module. To this end it 
suffices to show that the action of each k-diagonal element 
kEZ [see (3.5)], 

'" 
ak = .2: A .. ej,j+kEA ",. AjEC (3.31 ) 

;= - QO 

is well defined as an operator in every a"" module from ~FS. 
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Let (M)EV([M];So,sl) [resp., (M)EV([M])] be an 
arbitrary C-basis vector. If N=.N[ (M) ]EN is an integer, for 
which (2.9) holds, we write 

ekdM)N = ['~kM, - ,~~Ik M; -Mq ](M)N 

= (Mk -Mq)(M)N =0. 
(M)=.(M)N' (3.32) 
Proposition 4: Let (M)NEV( [M ]p.q;Mp,Mq). Then 

ekk(M)N =0, Vk.;;;min[p, - (N + 1)/2], 

ekk (M)N = 0, Vk> max[q,(N - 1 )/2]. 
(3.33) 

The proof of (3.33), if k.;;;min[p, - (N + 1)/2], is simi
l~. • 

From Proposition 4 we draw an immediate conclusion. 
Corollary 5: Every element 

"" 
ao = I A;eiiEA"", A;EC (3.35) 

i= - f$) 

Proof: From (3.27) we have that Mk = Mp, Vk.;;;p; 
Mk = Mq, Vk"#q. If k>max[q,(N - 1)12]' then k"#O, 
21k I + B(k) - I"#N and according to (2.9), 

M,,2Ik 1+ lJ(k) = M;. M,,21k 1+ lJ(k) _ I = M,. 

Then (3.23) yields 

(3.34) 

from the principal diagonal of A"" is defined as a linear 
operator in any finite-signature a"" module V( [M ] p,q; 
Mp,Mq )EjJFS. 

The action of ao on (M) N reads as 

{ 
'<max(q,1I2(N - I» [1'1 + 1J(i) - I 1'1- I 

ao(M) N = I A; I M k,21;1 + 1J(i) - I M k,21'1 + 8(i) - I 
'>min(p,-I/2(N+I» k= -Iii k= -lil+I-IJ(i) 

+ (Mq - Mp) B( - i) - Mq]} (M) N' 

We recall that [see (2.16) J Moo = M _ 1,0 = O. 
Proposition 5: Let (M) =. (M) NEV( [M ]P.q;SO,SI )EjJo and 

Q[(M)N] = max [ -p,q,(1!2)(N+ 1)]. 

Then 

ek,k-I (M) = e -k,-k-l (M) = ek_I,dM) = e_k_I,_k(M) = 0, Vk>Q [(M)N]' 

Proof: If k> Q[ (M)N], M~2k+'1-2 = M;o V1J = 0,1 and in (2.15) we can replace 

L,,2k+'1- 2' L i,2k+71- I' L,.2k+'1' L,,2k+7J+ 1 by L,=.M, -i. 

Consider the action of ek,k_1 = Ek,k_1 on (M)N=' (M). From (3.39) and (2.15) we obtain 

k - I k - I I II k - I (L L ) II k - 2 (L L ) 1112 
Ek.k_I(M) = - I . I SU,l) '''~:~k ,- j '=I-k ~- j 

1= -k J=I-k 1l,,.j=l_k(L, -Lj + I)(L; Lj ) 

I 
II7= _k(L, -L/ + 1)I17,.j~l_k(L; -LI + 1) 11/2 M -[/,2kl 

X k I ( ) - U2k - I I' 
I1,,.I= _ k (L, - L/ + 1) (L, - L/) , 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

The multiple 117,;:} _ k (L, - Lj ) in the numerator of (3.40) is different from zero only ifj = k - 1. Thus (3.40) reduces to 

E (M) = _ "\:' S(k-ll) ,,.1= -k, k-\ 
k-I I llk-I (D -L ) 1112 

k,k-I ~ , k 2 
{= -k I1,';:-I_k(L, -Lk_ 1 + 1) 

I 117= - k (L, - L{ + 1)1l7';:-12_ k (L, - L/ + 1) 1112 (M) - [/,2kl . 
X Ilk - I (D _ L 1) (L _ L ) - [k - 1,2k - II 

,,./=-k, 1+ , / 
(3.41) 

Since 117"1~ _ k (L, - Lk _ 1 ) #0 only if i#k - 1, we obtain [see (3.39)] 

Ek,k-l (M) = ILk - L k_ 1 + 111/2(M) = IZ= ::iZ~ II = O. (3.42) 

The proof for the other cases in (3.38) is similar. • Proposition 6: Let (M)=.(M)NEV( [M]p.q;Mp,Mq) and Q [(M)N] = max[ - p,q,I12(N + 1)]. Then 

eij(M)N=O, Vij>Q[(M)N]' 

eij(M)N = 0, Vij< - Q [(M)N]' 
(3.43) 

The proof is a consequence of (3.33), (3.38), and the identities 

eij = [[[ ... [[e",+ I ,e,+ 1,'+2 ],e,+2.'+3], ... ],ej-2J_I],ej_1J]' i<j, 

eij = [[[ ... [[e;,;_l ,e;_I,'_2 ],e'_2,,_ 3], ... ],ej+2J+ tl,ej+ IJ]' i>j. 

Proposition 7: Each finite-signature a"" module 
V( [M ]p,q;Mp,Mq) can be extended by linearity to an A"" 
module. 

Proof: Choose an arbitrary C-basis vector 
(M)NEV( [M ]p,q;Mp,Mq) and consider the action of a k
diagonalelementak [see (3.31)] on (M)N: 
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00 

ak (M) N = L Aiei,i + k (M) N' (3.44 ) 
;= - 00 

Proposition 6 tells us that ei,i + k (M) N can be different from 
zero only for those iEZ for which min(i,i + k) <Q[ (M) N] 
and at the same time max(i,i + k)"> - Q[ (M) N]' Setting 
min(i,i + k) = i + kO( - k) and max(i,i + k) 
= i + kO(k), we conclude that ei,i+k (M)N maydifferfrom 

zero only for those iEZ for which 

-Q[(M)N] -kO(k)<i<Q[(M)N] -kO( -k). 
(3.45 ) 

Then (3.44) reduces to 
Q[(M)Nl- klJ( - k) 

adM)N = L Aiei.i+dM)N· (3.46 ) 
i~ -Q[(M)Nl-klJ(k) 

Every ei,i+ k (M) N is a (finite) linear combination ofC-basis 
vectors and, therefore, the same holds for ak (M) N' Finally, 
since any aEA 00 is a finite sum of k-diagonal elements and AC, 
i.e., 

q 

a = L ak + AC, p<qE'l, AEe, 
k~p 

(3.47) 

a(M)N is well-defined vector from V( [M ]p,q;Mp,Mq). • 
From (3.46) and (3.47) we conclude that for any C

basis vector (M) and every aEA 00 there exists OEa 00 , so that 
a(M) = o(M). More generally, for every (M) and every 
polynomial P of elements from A 00 [considered as operators 

in V([M] p,q ;Mp ,Mq)] there exists a polynomial P of a 00 

generators, so that 

P(M) =P(M), (3.48) 

where P may depend on (M). 
Since the antilinear anti-involution (J) on A 00 and a 00 is 

one and the same, every unitarizable A 00 module has to be 
unitarizable with respect to a 00 • Therefore (see Corollary 3), 
V( [M ] p,q;Mp,Mq ) is unitarizable if and only if Mp,MqER 
(it suffices to assumeMoER). Denote by iY~s [see (3.30)] all 
such modules 

iY~s = {V( [M ]p,q;Mp,Mq) Jp<qEZ, Mp,MqER, 

Mp - MqEZ+}CiYFSCiYO. (3.49) 
Proposition 8: The highest weight irreducible A 00 mod-

ule V is unitarizable if and only if VEiY~s. 
Proof Let x A be the highest weight vector in V (with 

respect to gloo , a 00 , A 00 ). Denote by U [ A 00 ] and U [ a 00 ] 

all polynomials of the elements of A 00 and a 00 (considered as 
operators in V), respectively. Then 

V=U[Aoo]XA' 

The subspace 

Vo = U [a oo ]XA (;: V 

(3.50) 

(3.51) 

is an unitarizable highest weight irreducible a 00 module 
( Vo cannot be indecomposible since the representation of a 00 

in it is unitarizable). Hence (Corollary 3), Vo = V( [M]; 
50,51 )EiY~ and xA EV( [M ];50,51)' The action of A 00 is de-
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fined on V and, in particular, on X A == (M)oEVo' Then 
(3.29), Corollary 4, and Proposition 7 yield that 
Vo = V([M ]p,q;Mp,Mq )EiY~s. Now applying (3.48) and 
(3.51), we have 

V= U[Aoo ]XA (;:U[a oo ]XA 

(3.52) 

Therefore, V= V([M]p,q;Mp,Mq)EiY~s. • 
The class of all A 00 modules, which are in addition inte

grable, consists of all V([M ]p,q;Mp,Mq )EiY~, for which 
MoEZ. This is evident, for instance, from the observation that 
the subalgebra gl(2) CAoo has to be integrable in 
V( [M ] p,q ;Mp ,Mq) and in particular, on the subspace, 
which gl(2) generate from the highest weight vector (M)o' 
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To SU(2)q' the quantum deformation ofSU(2), the van der Waerden method for calculating 
the Clebsch-Gordan (CG) coefficients is genaralized. The polynomial basis for irreducible 
representations of SU (2) q' the relevant polynomial invariants, and the deduction of the q 
analog of the CG coefficients are given. 

I. INTRODUCTION 

Quantum deformations of Lie groups and Lie algebras 
or "quantum groups" I are new mathematical objects devel
oped in the theory of quantum integrable systems, where the 
Yang-Baxter equation plays a crucial role.2 The physical 
applications3 comprise factorizable S matrices; lattice statis
tical models at the critical temperature; string theory in par
ticle physics; and, more generally, conformal quantum field 
theories in two dimensions.4

•
5 There are also deep relations 

to the theory of knot invariants, Jones polynomials,6 and 
Hecke algebras.4

,5 

One of the simplest examples 7 of a quantum group is 
SU(2)q' the quantum deformation ofSU(2). In particular, 
the q analogs of the Racah 6j symbols are closely related4

,5,8 

to the crossing and braiding properties of conformal blocks, 
due to the bootstrap conditions. 9 The 3j and 6j symbols of 
SU (2) q have been explicitly given, 8,10 but it seems desirable 
to offer an alternative derivation of the general formula for 
Clebsch-Gordan (CG) coefficients that sheds light on dif
ferent aspects of quantum groups. 

The method we propose in this paper is inspired by the 
derivation of SU(2) CG coefficients due to van der Waer
den. II The method uses a polynomial basis5 for the represen
tations of SU(2)q' This requires the introduction of "q 
numbers" and a "q derivative" D. 12 With these devices, the 
relevant expressions are very similar for SU (2) and SU (2) q' 

where the irreducible representations are characterized by 
the same positive half-integer or integer j and the states are 
again characterized by - j<m < j. However, the polynomial 
invariants used by van der Waerden become more compli
cated as a result of the non-Leibniz properties of the q deriva
tive and the action of the SU(2)q generators on tensor prod
ucts. 

The paper is organized as follows. In Sec. II we recall the 
van der Waerden procedure for SU(2). In Sec. III we give 
the polynomial basis for SU (2) q and the expressions of the 
generators as q derivatives. From this we derive the commu
tation relations and show that one has to modify the action 
on the tensor product. In Sec. IV we discuss the SU(2)q 
invariants and deduce the CG coefficients. 

II. THE CG COEFFICIENTS OF SU(2) 

Van der Waerden's method II uses as basis vectors for 
irreducible representations of SU (2) the monomials in two 
variables sand t: 

T~ =sj+ mtj-m/{(j + m)!(j - m)!}1/2= Ijm).(2.1) 

These vectors form an orthonormal system with respect to 
the scalar product 

(/,g) = I (as,a, )g(s,t) Is= 1=0, (2.2) 

where as = a/as' The generators ofthe Lie algebra SU(2) 
are the differential operators 

J + = sa" J _ = ta.. J3 = !(sas - ta,) =!H. (2.3) 

One can also form the equivalent conjugate representation 
with the basis 

T~ =sH mtj - m/{ (j + m)!(j - m)!}1/2, (2.4) 

where the generators are given by 

'1+= -tas, J_= -Sat, H= -sa.+tc7t. (2.5) 

Here T~ is contravariant to Tjm because we can form the 
invariant 

j 

(SS+tt)2j = I 
m= -j 

(2j) !(s s)H m(t t )j - m 

(j + m)!(j - m)! 

= (2j)!I T~T~, 
m 

We can now form the invariant in six variables: 

1= (Slt2 - t ls2)n(sls3 + tl(3)n'(S2S3 + t2(3)n" 

(2.6) 

n=jl +j2-j, n l = -jl +j2+j, (2.7) 

n2=jl-j2+j, 

which can also be written as 

m=ml +m2• 

(2.8) 

Equating equal powers one easily obtains the CG coeffi
cients (j,m,j2m21 jm) up to a normalization factor depend
ing onj,jl' andj2' 

III. POLYNOMIAL BASIS FOR SU(2)q 

We restrict q to the real number 

O<q<1. 

One defines the "q number" [A] as 

[A] = (r/12 _ q-A12)/(qIl2 _ q-I/2), 

(3.1 ) 

[0] = O. 
(3.2) 

For q-+ 1, one finds [A] = A. The "q derivative" is defined 
byl2 
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Dxf(x) = [f(qI/2X) - !(q-II2X) ]!(qI/2X _ q-1/2X). 

(3.3 ) 

For q-- 1, (3.3) goes over into the usual derivative. 
It follows easily that 

Dxx" = [n]x"-I. (3.4 ) 

One finds a "q-Leibniz" rule since 

(q1/2X - q-1I2x )DA!(x)g(x» 

=! (qI/2X)g(qI/2X) _! (q-1/2X)g(q-1/2X) 

= (f(qI/2X) - !(q-1I2X»g(qI/2X) 

+ ! (q-1/2X){g(qII2X) _ g(q-II2X». 
Hence 

DA!(x)g(x» 

= (Dxf(x»g(qI/2X) + !(q-1/2X)Dxg(x) 

=!(qI/2X)Dxg(x) + (Dxf(x»g(q-1/2X). 

(3.5 ) 

We can now use these concepts to write a polynomial basis 
for the space of irreducible representations of SU (2) q that 
are again labeled by j = 0, ~, I, ... and the states labeled by 
-j<m<j: 

Ijm)q =sH mtj- m/{[j + m]![j - m]!}1/2=Qj
m' 

(3.6) 

where the only difference with the corresponding expression 
(2.1) for SU(2) is the replacement of (j + m) and (j - m) 

by their q numbers (3.2) and 

[n]!=[n][n-l]···[I], [0]!=1, [-n]!=oo. 
(3.7) 

However, the scalar product is now, in view of (3.4), given 
by 

(j,g) =! (Ds,D, )g(s,t) Is =, = 0' (3.8) 

so that the vectors (3.6) are again orthonormal. 
To obtain the generators SU(2)q, one simply replaces in 

J ± the usual derivative by the q derivative, while H remains 
unchanged: 

X+ = sD" X_ = tDs' H = sas - ta,. (3.9) 

Using (3.4) one easily calculates 

X± Ijm)q = [j+m]I12[j±m+ 1]I12Ijm± l)q, 
(3.10) 

H Jjm}q = 2mJjm}q. 

Notice that in the fundamental representation j = !, X ± are 
given by the same matrices asJ ± forSU(2). Thecommuta
tion relations 7 of SU (2) q are 

[H,X±] = ±2X±, (3.11a) 

[X+,X_] = [H]=(qHI2_ q -HI2)/(qll2_ q- 1/2). 

(3.llb) 

While (3.lla) follows easily from (3.5) and (3.6), we verify 
( 3 .11 b) using the q-Leibniz rule: 

[X+X_]g(s,t) = (sD,tDs - tDssD,)g(s,t) 

1086 

= sDsg(S,q-1/2t ) + qI/2stD,Dsg(s,t) 

- tD,g(q-II2S,t) - ql12tsDsD,g(s,t) 

=sDsg(S,q-1/2t ) - tD,g(q-1/2s,t). 
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Writingg(s,t) = s"tP'we obtain, using (3.4) and (3.2), 

[X+,X_]satP' = ([a]q-P'12 - UJ]q-al2)s"tp' 

or 

= [a - P ]s"tP' 

[X+,x _ ]sH mt j - m = [2m]sH mt j - m 

= [H ]sj+ mt j - m, 

which is (3.11 b). One obtains the same result applying 
[X +,x_] directly on s"tP' and using the identity 

[a][p + 1 ] - [a + I][P ] = [a - P ]. 

The commutation relations (3.11) are defined when the 
generators act on a vector space V spanned, for example, by 
the basis (3.6). It is now necessary to define the action of the 
generators on a tensor product V ® V. Here H is an ordinary 
differential operator and we try the usual definition 

H(!®g) = H!®g+!®Hg, !®gEV® v. (3.12) 

We write, when H acts on V® V, 

Il(H) =H®1 + I®H. (3.13 ) 

From (3.13) it follows that 

ll(qaH) =qaH®qaH. (3.14) 

Here Il(X ± ) should be defined in such a way that Il is a 
homomorphism of the algebra SU (2) q into 
SU(2)q ® SU(2)q' In particular, we require that 

[1l(X+ ),Il(X_)] 

= [1l(qH12) -Il(q- H12) ]!(qI/Z _ q-I/Z). (3.15) 

One finds, using (3.9) and (3.6), that a definition similar to 
(3.13) is not compatible with (3.15), but instead one has to 
define I 

Il (X ± ) = X ± ® qH 14 + q - H 14 ® X ± 

and, when acting on V ® V ® V, 

( 3.16) 

Il (3) (X + ) = X ± ® qH 14 ® qH 14 + q - H 14 ® X ± ® qH 14 

+q-HI4®q-HI4®X±. (3.17) 

The map Il is called a comultiplication and is an essential 
ingredient of a Hopf algebra. I 

The polynomial basis of V ® V will be given in terms of 
suitably normalized monomials in four variables: 

(3.18 ) 

on which the generators act, in agreement with (3.13) and 
(3.16),as 

H = Sl as, - tl a" + S2 as, - t2 as, =HI + Hz, 

X = s D qH,/4 + q - H, /4S D + I I, 2 I:!' (3.19) 

X_ = t IDs,qH,/4 + q-H,/4tzD s,. 

A short calculation shows that (3.19) satisfies (3.15). 

IV. SU(2)q INVARIANTS AND CG COEFFICIENTS 

As a result of the modified actions (3.16) and (3.19) of 
X ± on tensor products and as a result of the q-Leibniz rule 
(3.5) for the q derivative D, the SU(2)q invariants differ 
from those of SU(2). With two covariant doublets (Slt l ) 

and (S2t2) we can form the invariant 

H. Ruegg 1086 



                                                                                                                                    

12 = ql/4SIt2 - q-1/4t1S2 (4.1) 

and if one of the doublets is the contravariant (/353 ), 

I; = ql/4SJ53 + q-1/4tI/3. (4.2) 

In (4.2) the generators ofSU(2)q are, instead of (3.19), 

H =SI as, - tl at, -53 as, + 13 a., =.HI + H3, 
X = S D ,.H,/4 - q - H,/41 D- (4.3) + t t. 'I . 3 S.l' 

X - t D qH,/4 _ q-H,/~ D: 
- - I s. 3 I," 

However, the nth powers of 12 or I; are no longer invar
iant because of (3.4). This can be cured if one defines a q
binomial formula 

(ax + by); =. ± (n) (ax)n- 1'(by)1', 
1'=0 v q 

(4.4) 

[n]! (4.5) 
[v]![n - v]! 

Then the result of a q derivation is 

Dx (ax + by); = [n]!(ax + by); - JDx (ax + by) (4.6) 

and now (/2); and (/;) ~ are invariant. 
Next, in agreement with (4.3), we define a conjugate 

tensor 

Qjm =.5j+ mlj - m/{[j + m]![j - m]!}1/2='q(jml. 
(4.7) 

Taking into account (4.2) and (4.4), we have to modify 
the SU (2) expression (2.6) in the following way in order to 
obtain an SU(2)q invariant: 

(q1/4s153 + q-1/4tlt3)~ 

= I( .+2
j 

) (qI/4sJ53)j+m(q-1/4tI/3)j-m (4.8) 
m ) m q 

= [2j]!I qm/2Q~ (Sltl)Q~ (53/3). 
m 

One verifies explictly that (4.8) is invariant under (4.3). 
We now have the necessary elements in order to write 

the q analog of the van der Waerden invariants (2.7) and 
(2.8), consisting in three factors of six variables. There are 
two difficulties. (i) The variables (s"t,), (S2,t2), and' (53,/3) 
live in three different Hilbert spaces, so one has to apply the 
comultiplication a (3) [( 3.17)] (ii) Each variable appears in 
two factors; hence one must use the q-Leibniz rule (3.5). As 
a consequence, a product of invariant factor is not invariant. 
The invariant polynomial 13 turns out to be 

13 = (qOs,t2 - q-atIS2);(q-a'sI53 + qa,tI/3)~' 
x (qa's253 + q-a,t2/3);', 

a=!U+1), n=jl+j2-j, 

a2 = ! U2 - 1). n2 = j 1 - j2 + j, 

a l =!UI + 1), n l = -jl +j2 +j. 

(4.9) 

(4.10) 

Taking into account (4.8),13 can be written, up to a normali
zation factor j U [j2 j), as 

13 = I U,mlj2m2Um) qQ~, Q~, Q~qm/2 
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From (4.11) one easily obtains the q-CG coefficients, 
which are very similar to the SU (2) CG coefficients 14 except 
for q factors and replacement of numbers by q numbers. We 
obtain, using (3.6), (4.4), and (4.7), 
(j1md2m2Ijm)q =jUlj2j)qIl4nN+ [12U,m,-j,m,) 

x I (_)1'q -1I21'ND -I, 
1';.0 

N=jl +j2+j+ 1, j3=j, m3=m, 

D= [v]![j[ +j2-j-v]![j[-m[-v]! 

X [j2 + m2 - v]! [j - j2 + m [ + v]! 

X [j - jl - m2 + v]!. 

(4.13) 

This agrees with Ref. 8 and 10 if the normalization factor is 
taken to be 
jU[j2j) = {[2j+ l][nd![n2]![n]!([N]!)-J}1I2. (4.14) 

ACKNOWLEDGMENTS 
I would like to thank Cesar Gomez for his lectures on 

quantum groups and Philippe Zaugg for useful comments. I 
also thank Professor H. D. Doebner for his invitation to the 
8th International Workshop on Mathematical Physics
Quantum Groups and Geometry, Clausthal, July 1989, 
where the main results of this paper were presented. 

This research was partially supported by the Swiss Na
tional Science Foundation. 
'V. Drinfeld, Dokl. Akad. Nauk USSR 283,1060 (1985); M. Jimbo, Lett. 
Math. Phys. 10, 63 (1985) and 11, 247 (1986); E. Sklyanin, Usp. Mat. 
Nauk, 214, N2 (1985); V. Drinfeld, Proceedings of the International Con
gress on Mathematicians, Berkeley, edited by A. M. Gleason (AMS), 
Providence, 1987), p. 798; S. L. Woronowicz, Publ. RIMS Kyoto Univ. 
23, 117 (1987); Yu. I. Manin, Quantum Groups and Non-commutative 
Geometry (CRM, Montreal, 1988). 

2L. Faddeev and L. Takhtajan, Russ. Math. Surveys 34, N5, 11 (1979). 
3Fora review and references see H. J. de Vega, Int. J. Mod. Phys. A4, 2371 
(1989). 

4A. Kohno, Ann. l'Inst. Fourier 37, fasc. 4 (1987); G. Moore and N. Sei
bergCommun. Math. Phys. 123, 177 (1989); G. Moore and N. Reshetik
hin, Nucl. Phys. B 328,557 (1989) and references therein. 

5L. Alvarez-Gaume, C. Gomez, and G. Sierra, Nucl. Phys. B 319, 155 
( 1989); L. Alvarez-Gaume, C. Gomez, and G. Sierra, Phys. Lett. 220, 142 
(1989); L. Alvarez-Gaume, C. Gomez, and G. Sierra, preprint CERN
TH5369/89 UGVA-DPT-3/605/89 (1989). 

hJ. Frohlich, in Nonperturbative Quantum Field Theory, edited by G. 't 
Hooft A. Jaffe, G. Mack, P. K. Mitter, and R. Stora (Plenum, New York, 
1988); N. Reshetikhin, LOMI preprints E-4-87, E-17-87 (1988). 

7p. P. Kulish and N. Reshetikhin, J. SOy. Math. 23, 2435 (1983) [Russian 
original in: "Zapiski Nauch" Semin LOMI 101, \01 (1981)]. 

MA. N. Kirillov and N. Reshetikhin, LOMI preprint E-9-88 (1988). 
9A. Belavin, A. M. Polyakov, and A. Zamolodchikov, NucI. Phys. B 241, 
33 (1984). 

IOB._Y. Hou, B.-Y. Hou, and Z.-Q. Ma, preprints BIHEP-TH-89-7-NWU
IMP-89-ll, BIHEP-TH-89-8 NWU-IMP-89-12 (1989); L. C. Bieden
ham, Invited paper at the 1989 Clausthal Summer Workshop on Math
ematical Physics (Quantum Groups) to be published in Proceedings 
( Springer-Verlag, Berlin, 1990). 

liB. L. van der Waerden, Die Gruppentheoretische Methode in derQuanten
mechanik (Springer, Berlin 1932) [English translation, Group Theory 
and Quantum Mechanics (Springer, Verlag, Berlin 1974)]. 

12F. N. Jackson, Q. J. Pure Appl. Math. 41, 193 (19\0). 
13An expression similar, but not identical to (4.9), using a different basis, 

has been obtained by A. Ch. Ganchev and V. B. Petkova, preprint IC/89/ 
158 (revised) (1989). 

'"A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 
U. P., Princeton, NJ, 1957), p. 45, Eq. (3.6.11). 

H.Ruegg 1087 



                                                                                                                                    

Infinite-dimensional algebras and a trigonometric basis for the classical Lie 
algebras 

D. B. Fairlie and P. Fletcher 
Department of Mathematical Sciences, University of Durham, Durham DH 1 3LE, England 

C. K. Zachos 
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 

(Received 15 August 1989; accepted for publication 18 October 1989) 

This paper explores features of the infinite-dimensional algebras that have been previously 
introduced. In particular, it is shown that the classical simple Lie algebras (AN,BN,CN,DN) 
may be expressed in an "egalitarian" basis with trigonometric structure constants. The 
transformation to the standard Cartan-Weyl basis, and the particularly transparent N -+ 00 

limit that this formulation allows is provided. 

I. INTRODUCTION 

This article is a further contribution to our investiga
tions of a class of infinite-dimensional Lie algebras whose 
structure constants are simple trigonometric functions. ) The 
generators of the basic algebra are indexed by two-vectors 
m = (m),m2) which, in the simplest case, are taken to lie on 
an integral square lattice, although in general the compo
nents need not be integral or even real. We also consider 
cases where they lie on a triangular lattice. The basic algebra 
is, in a convenient normalization, 

[Km+b,Kn+b] = (lIk)sink(mXn)Km+ n+b 

+ a·m 8m + n,O' ( 1.1) 

where mXn = m)n2 - m2n) and a,b are arbitrary two-vec
tors. Ifb is a lattice vector then Km can be redefined to elimi
nate it. In what follows, we shall assume that this is the case 
and this has been done. 

This algebra admits a superextension, but only if a = 0, 
i.e., there is no bosonic c-number central extension, by ad
joining the relations 

{Fm,Fn} = cos k(mXn)Km+ n, 

[Km,Fn] = (lIk)sin k(mxn)Fm+n' 
( 1.2) 

There are special cases of ( 1.1) that are centerless with 
m on a two-dimensional integral lattice and have k = 21TIN 
for some integer N. As this imposes a modulo-N arithmetic 
on the structure constants, the generators can be considered 
to be indexed by a toroidal integral lattice, in the sense that 
the generators Km + Na are identified with Km for all integral 
two-vectors a. The generators .% m resulting from this iden
tification, in a convenient normalization, satisfy the finite 
algebra 

[.%m,.%n] =sin(21TIN)(mxn).%m+n· (1.3) 

There is a particular realization of the superalgebra, in 
which Fm and Km are identified, going back to WeyJ2 and his 
correspondence rule, given by 

Km = (l/2ik)ei(2km,p+ m,X) = (llik)Fm, (1.4) 

where (X,P) are canonically conjugate quantum variables 
with [X,P] = i. Using the familiar Baker-Campbell-Hauss
dorf expansion, the product is 

(1,5) 

and therefore 

KmKn = (1/2ik)e2ik(m,n,-m,n')KnKm' ( 1.6) 

For the finite algebras (1.3) the relationship (1.6), evoca
tive of quantum groups, is familiar from the work of't Hooft 
and Belavin.3 Also see Refs. 4. Naturally, it satisfies (1.1) 
and (1.2). 

In fact, when N is odd, (1.3) is just the algebra of 
SU (N) xU ( 1 ). Although the fact that there exists a basis 
for SU (N) in which the structure constants are simple trigo
nometric functions has been recorded several times, it still 
elicits surprise, and there are as yet only a few articles5 deve
loping the theory of semi-simple Lie algebras from this maxi
mal grading "egalitarian" point of view, in which all the 
generators appear on the same footing. 

In this paper, we explore several features of the algebra 
( 1.1) and the finite algebras (1.3), as well as their N -+ 00 

limit, 

[Lm,Ln] = (mxn)Lm+n +a·m8m+ n,o' (1.7) 

This constitutes the algebra of infinitesimal area-preserving 
diffeomorphisms of the torus, SDiff( T 2

),6,7 which we have 
identified with that of SU ( 00 ). ) 

(i) We find the Casimir invariants of (1.1), and its relat
ed limit algebra ( 1. 7) . 

(ii) We explain how both algebras may be realized as 
algebras of differential operators on surface coordinates and 
show how they act as algebras of derivations. 

(iii) We transform the finite algebras to their Cartan
Weyl bases and demonstrate that for N even the algebra 
(1.3) is that of U (N 12 )4. 

(iv) We identify several subalgebras of (1.3) corre
sponding to SO(N) and USp(N) and express them in a simi
lar neat form. 

(v) We also consider algebras whose generators are in
dexed by a triangular lattice. 

(vi) Finally, we utilize the surface coordinate formal
ism to express gauge theories for SUe (0), SOC (0), and 
USp ( 00 ) and identify the Schild string action present within 
the Yang-Mills action. 

II. CASIMIR INVARIANTS 

The construction of Casimir invariants is modeled upon 
that for the finite algebras (1.3) discussed by Patera and 
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Zassenhaus.5 The quadratic Casimir is 

(2.1 ) 
m 

There are, in general, two Casimir invariants of each degree 
above the quadratic. They are the real and imaginary parts of 

" ikmXDK K K ~ e m n -rn-o'···' 
m,D 

" (IT ik<maxmp)K KKK ~ e m. rn:!··· mr -m.-m:!- ... -mr" 
rn •• m2.···.rnr a<{3 

(2.2) 

Taking the imaginary part, a generic coefficient will be of the 
form 

sin(k(mxn + mXp + nXP + ... ». 
By use of the addition formula for sines, this will always be 
reducible to terms with a typical sin k(mXn) factor. When
ever the remaining factor in such a term is symmetric in m 
and D, after use of the commutation relations to make Km 
and KD adjacent, it is easy to see that this contribution to the 
Casimir may be reduced to one of one degree lower, For 
example, in the case of the cubic, 

m,D 

(2.3 ) 
m,D 

Re-summing over m + D and m - D we see that the right
hand side diverges, without an infinite renormalization of 
Km. Such a renormalization, however, would make the co
sine-like contributions vanish. 

The Casimirs of ( 1.7) follow by a k --0 limiting proce
dure. Again there are apparently two for each degree: one of 
which can be reduced in degree as above, again with a diver
gent result. 

III. DERIVATIONS 

The algebra (1.7) is known to be, in a particular basis 
optimal for the torus, that of the generic area-preserving 
( symplectic) reparametrizations of a two-surface. Taking x 
and p to be local (commuting) coordinates for the surface, 
and I and g to be differentiable functions of them, a basis
independent realization for the generators of the centerless 
algebra is 6,7 

al a al a L j =-----=} 
ax ap ap ax 

[Lj,Lg] = L{f.g} , [Lpg] = {J,g}, 

where 

{J,g} = al ag _ al ag 
ax ap ap ax 

(3.1) 

(3.2) 

(3.3 ) 

is the Poisson bracket of classical phase space. The generator 
Lj transforms (x,p) to (x - allap,p + al lax). Infinitesi
mally, this is a canonical transformation generated by J, 
which preserves the phase space area element dx dp. This 
may be regarded as the flow generated by an arbitrary Ham
iltonian f For a small patch of two-surface, the functions 
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I(x,p) may be expanded in any coordinate basis. If the sur
face is a torus, the preferred basis is exp (inx + imp); if it is a 
sphere, spherical harmonics; if it is a plane, powers; and so 
on. Nevertheless, any coordinate basis will do for the infini
tesimal transformations effected by the algebra in a local 
patch. 

Another realization and application of this algebra ap
pears in the work of Case and Monge,8 which investigates 
the algebra of conserved currents of the Kadomtsev-Pet
viashvili equation. Their algebra is seen to be contained in 
( 1.1) with k --0, after a change of variables. 

We found a basis-independent differential operator real
ization of Kj , corresponding to (3.1): 

Kj=~/(X+ik~'P-ik~). (3.4) 
21k ap ax 

In the torus basis, this becomes 

K i (. k a. k a ) 
(m m) =-exp lmlx+ m 2 -+1m7P- m l -

PI U ~ ~ 

=_1_' exp(imlx + im7P) 
2k 

X exp(km2 ~ - kml ~), 
ax ap 

(3.5) 

somewhat analogous to the one-variable realization found 
by Hoppe.7 Note the triviality in this realization of the Casi
mir operators, as the indices of each of their terms sum to 
zero. 

Just as the algebra ( 1. 7) may be thought of as the Four
ier transform of the Poisson bracket algebra, (3.2), the alge
bra with general k is the Fourier transform of the "sine 
bracket" algebra 

[ Kj,Kg] = KSin{f,g} , (3.6) 

where the analog of the Poisson bracket in this case is the 
sine, or Moyal, bracket sin{J,g}. This is the extension of the 
Poisson brackets {J,g} to statistical distributions on phase 
space, introduced by Weyl2 and Moya1.9 It is generalized 
convolution that reduces to the Poisson bracket as Ii, re
placed by 2k in our context, is taken to zero: 

sin{J,g} = 4;;'~3 J dp' dp" dx' dx . I(x',p') 

xg(x",p")sin(lIk)(p(x' -x") 

+ x(p" - p') + p'x" - p"x'). (3.7) 

The argument of the sine above is 

J..- det (~ 
k 1 

p 

p' 

p" 

;,) = ~ J p'dq, 

x" 

(3.8) 

i.e.,2/k times the area of the equilateral phase-space triangle 
with vertices at (x,p), (x',p'), and (x",p"). The antisym
metry of I with g is evident in the determinant. The sine 
brackets satisfy the Jacobi identities, 10 just as their Fourier 
components (1.1) do, and thus determine a Lie algebra. 
These brackets help reformulate quantum mechanics in 
terms of Wigner's phase-space distribution. II 

The Poisson bracket {J,h} acts as a derivation for both 
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the Poisson bracket and the ordinary product/g, i.e., 

B(/g) = (B/) g+ g(B/), (3.9) 

where /)( /) = {f,h} for a given h. Similarly, the sine 
bracket acts as a derivation for the sine bracket and also for 
the cosine bracket as "product." 

/)cos(f,g) =cos(Bf,g) +cos(f,Bg), (3.10) 

where B( /) = sin{f,h}. The cosine bracket cos ( f, g) is the 
counterpart of (3.7) for the cosine. These relations are a 
simple consequence of the graded Jacobi identities for the 
respective algebras. [In the special case where h = p, (3.9) is 
just the Leibniz rule for the differentiation of a product.] 
The sine bracket relation with h = eap generates finite central 
differences. 

IV. CARTAN-WEYL BASIS 

We have already shown I that for N odd the algebra 
(1.3) describes U(N), and that for N even it contains a 
U (N /2) subalgebra. By finding the combinations of the 
%'s which form the Cartan-Weyl basis, we shall demon
strate that the full algebra in the N even case is U (N /2) 4 • 

Patera and Zassenhaus5 and Pope and StelIe l2 have 
transformed the algebra between the trigonometrical basis 
and the standard GL(N) basis. We, instead, exhibit the con
nection ofthe generators % m to the Cartan-Weyl basis hi 

and ea , where the hi are the members of the Cartan subalge
bra H, and a is in the root space ~. 

Here we shall carry out the transformation of the finite 
algebras (1.3) to the Cartan-Weyl basis, first for N odd, 
showing that it is SU (N) xU ( 1). The generator %0,0 fac
tors out of the algebra, as it commutes with the other N 2 - 1 
and cannot result as a commutator of any of them. This is the 
U ( 1) part of the algebra. 

The Cartan-Weyl basis for SU(N) has the following 
commutation relations, in the usual notation: 

{ 

Napea+p' 

[ea,ep ] = (ea,e_a)ha, 

0, 

[hoe,,] = a(h)ea, 

[hohj ] = 0. 

if a +/3E~, 

if a +/3= 0, 

otherwise, 

(4.1 ) 

(4.2) 

(4.3) 

In the case of N odd, the combinations of %'s that give this 
basis are 

N-I 
EP = ~ w 2j - q)P%. . w N = 1, 

q £.J 1,q-l' (4.4) 
j=O 

where q = ° andp = 1, ... ,!(N - 1) for the Cartan subalge
bra, and q = 1, ... ,N - 1 and p = O, ... ,N - 1, for the remain
ing generators. This may be shown by checking the commu
tation relations as follows: 

N-IN-I = L L W(2j-q,)p, + (2k-q,)p, 

j=O k=O 

xsin ~ (jq2 - kql)%j+k,q, + q,-j-k 

1 N-IN-I 
= ~ L L W(2j-q,)p, + (2k-q,)p, 

2l j=O k=O 

X (Cd jq, - kq, _ Cd - jq, + kq,)%. . 
J+ k,q, + q, -1- k' 

(4.5) 

Putting s = j + k and q = q I + q2 and then resumming, us
ing the invariance modulo N: 

1 (N - I s 2N - 2 N - I ) 

[E~:,E~:] =~ L L + L L 
2l s=O k=O s=N k=s-N + I 

XW(2s-2k-9,)P, + (2k-q,)p, 

X (Cdsq, - kq _ W - sq, + kq)% 
s,q- s 

1 N-I N-I 
= ~ L W(2s-q,)p,-q,p, L (W2k(p,-p,) -kq+sq, 

21 s=O k=O 

_ W2k(p,-p,) + kg-sq')%s,q_s' (4.6) 

Using ~f::::ci w ak = NBa,o, and then comparing with our 
expression for E ~, we obtain 

1 N-I 
[ E p, E P,] = - ~ Cd(2s- q,)p, - q,p'N(wsq'B 

q,' q, 2i s~o 2(p,-p,)-q,O 

- w - sq'B2(p, _PI) + q,o)% s,q-s 

= (N /2i) (E~: ! :~/282(P' _ p,) _ q,O 

X EP,-q,128 ) 
- q, + q, 2(p, -PI) + q,O , (4.7) 

where the q2/2 may be defined as an integer (as N may be 
added to the power of w to ensure that this power is even), so 
the halving of the index is defined by: 

q {q/2, q even, (4.8) 
2 (q + N)/2, q odd. 

And so 

{ 

± (N /2i)E p, ± q,/2 
q. +Q'2 ' 

[ EP, EP,] = (N/2i)(Ep,+q,12-EP,-q,/2) 
q.' q2 0 0' 

0, 

if 2(P2 - PI) = ± (ql + Q2)' 

if ql + q2 = ° = P2 - PI' 

otherwise, 

(4.9) 

which corresponds to (4.1). 

[Eg"E~'] = {o~ (N /2i)E~', if2(p2-PI) = ±q, 

otherwise, 
(4.10) 
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I 
showing the basis is diagonal (4.2), and 

[Eg',Eg'] = 0, (4.11 ) 

as required. 
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For the case N even. the situation is more complicated. 
This time four of the %'s disconnect into U ( 1 ) ·s. %0,0' 
% NI2,O' %O,NI2' and % NI2,N12' This leaves N 2 

- 4genera
tors. which we shall show span four commuting SU (N /2) ·s. 
There are slight differences between the cases (a) 
N=O mod 4 and (b) N=2 mod 4. but the principle ofcon
struction is the same. As before. the Cartan subalgebra is 
spanned by the elements whose indices sum to 0 mod N 12. 
Note that there are 2N - 4 such operators. after excluding 
the four U( 1 )·s. 

For (a). N=O mod 4. the generators in the Cartan
Weyl basis are 

I N-I 
ES'P=" " o/'j( _l)sU+a)+aU+I)%. . 

q £.. £.. J,q - J + aN 12 • 
a=Oj=O 

(4.12) 

and for (b), N=2 mod 4, 

. 21T (. .) Xsm - fJll - ]ql 
N 

I N-I 
E~P= I I o/'j( _l)sU+I)+(a+l)(j+l+p) 

a=Oj=O 

X%j,q_j+ aN12' (4.13 ) 

where the q labels the sum of the indices, q = O •... ,N 12 - I, 
and s.P take the values s = O.l.p = O ..... N - 1. Then for case 
(a) the elements E ~p for s = 0, I; q + P even, odd span the 
four commuting SU(N 12)·s. For case (b), the splitting is 
into those with s + q even, odd and P even. odd. 

That the above combinations are the generators of 
SU(N 12)4 in the Cartan-Weyl basis may be shown by 
checking the commutation relations in a similar fashion to 
the N odd case above. Commuting two of the E's gives an 
expression which may be resummed so that the coefficients 
of the %'s can be read off. The resummed expression for 
(a), with a=a l +a2• j=jl+j2' q=ql+q2' and 
p_ = PI - P2 is 

X ( - 1)(S, +s,)(a, +j,) +s,(a+j) +aU+ 1)% 
j,q-j+ (N12)a' (4.14 ) 

The separation into s = 0, I is evident as the only dependence 
of the coefficient of the % on a I is of the form 
( - I) (s, + s,)a,. so if Sl i=s2 then the two terms in that sum 
exactly cancel. When Sl = S2' the coefficient indexed by a,j 

becomes 

The /j's are both zero if PI + ql and P2 + q2 have different 
parity, showing the overall split into four commuting sub
spaces. This coefficient may be compared that in (4.12). and 
the commutator rewritten as 

( _l)s,(a+j)+aU+I)o/',jl. 

i 
N-I 

X I O)j,p- (O)j,q - jq, - 0) - j,q + jq,) 

j, =0 

= ( _l)s,(a+jl+aU + l)o/',j(N Ii) 

X (0) - jq'/jp_ + q,O - O)jq'/jp _ _ q,o)' 

I N-I I N-I 

Similarly for (b), 

[E~':P',E~~P'] = I I I I O)j,p-+p,j (_I)(S,+s,)(j,+l)+a,p_+aU+p,+I)+j(s,+I)+p_ 

a=O j=O a, =OJ, =0 

(4.15 ) 

( 4.16) 

This time, the coefficient of a I in the exponent is P _, so the space splits into P even, odd. The coefficient of the .3Y here is 

( _ 1),' + s, + (s, + a+ I)j+ a(p, + 1)0) p,j ~ Ni I ( _ I) j,(s, + S,)O)j,P .. (O)j,q - jq, - 0) -j,q+jq,) 

I j, = 0 

= ( - I )S, + s, + (s, + a + I) j + a(p, + 1)0) p,j(N Ii) (0) - jq'/jp_ + q.(s, + s,)(N 12) - O)jq'/jp _ _ q.(s, + s,)(N 12) ) 

(

O)(P,-q,(l +N12)j/j ) 
= N li( _ I)(s, +q, +p, + I) + U+ I)(s,+q,) + (a+ I)(j+ I +p,) Po. +q,(s, +s,)(NI2) . 

_ O)(p, + q,(l + N 12));/j 
p_ - q,(s, + s,) (N IZ) 

Both /j functions are zero if S I + q I and Sz + qz have different parity. In performing the above manipulations the fact that O)N 12 

= - 1 has been used. Thus, for PI =P2 mod 2, 

[ ES"P, ES"P,] = (Nli) ( _1),,+q,+p,+I(E S,p,-q,(l+NIZ) 
~ , ~ q 

X /j Es.P,+q,(l+NI2) /j ) 
p_+q,(s,+s,)NI2 - q. p_-q,(s,+s,)NI2 , ( 4.17) 
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where q=ql + q2 mod N 12, and s=q + ql + q2 mod 2, so 
that s + q=SI + ql =S2 + q2 mod 2. 

Saveliev and Vershikl3 have discussed infinite algebras 
of the type SDiff( T2) and their generalizations directly in 
the Cartan-Weyl basis. In our notation, the Cartan-Weyl 
basis for the infinite algebras L 's in (1.7) is 

EP ~ ipjL q = £.. e 112(q+j),(1I2)(q-j)' (4.18 ) 
j 

This result may be obtained by checking the commutation 
relation 

[E~:,E~:] =!(ql +q2)15'(PI -p2)E~~~~~P'+P') 

a 
-!(ql -q2)I5(PI-P2) -a E~~~~:P'+P'). 

'PI -

In Saveliev and Vershik's notation, 

Xq(j) = f:ao!(P)E~ dp. 

(4.19) 

(4.20) 

Thus, multiplying equation (4.19) by !(Pl)g(P2) and per
forming this integral transform yields precisely their equa
tion for the SU ( 00 ) commutator 

[Xq, (!),Xq, (g)] = X q , + q, (qzf' (PI + P2)g(PI + P2) 

- qd(PI + P2)g'(PI + P2»' 
(4.21 ) 

V.SUBALGEBRAS 
In this section, we exhibit all the (non exceptional) clas

sical Lie algebras in a 'trigonometrical' basis analogous to 
that ofSU(N). Since these can fit as subalgebras in SU(N), 
we can extract them from it, and hence SOC 00) and 
USp( 00) out of the limit SUe 00). To simplify the analysis, 
we introduce matrices J which satisfy (1.3), but with struc
ture constant 1T 1 N, instead of 21T IN. These matrices provide 
a basis for one of the four copies of U(N)4, and hence for 
SU (N) equally well for N even or odd. 

Consider matrices g,h (see Ref. 1), 

0 

0 (l) 

g=.JW 0 0 

0 0 

0 

0 0 

0 

0 
{l)2 

0 

0 

1 

o 
o 
o 

h= , g'" = h N = - I, 

o 0 0 

-1 0 0 

with (l) = e2TriIN,.JW = eTriiN. They obey the identity 

hg= wgh. 

(5.1 ) 

(5.2) 

Then there is a complete set of unitary N X N matrices 

(5.3 ) 

which satisfy 

Tr J(m,.m,) = 0, except for m I = m2 = 0 mod N, 
(5.4 ) 
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and span the algebra ofSU (N). Like the Pauli matrices, they 
close under multiplication to just one such, (a finite group), 
by virtue of (5.2): 

JmJn = (l)nx
m12Jm + n • (5.5) 

They therefore satisfy the algebra 

[Jm,Jn] = -2isin«1TIN)mxn)Jm+n' (5.6) 

It might appear that the fundamental period is 2N in
stead of N. However, note that, by virtue of the symmetry 

Jm+N(r.s) = (_1)(m,+l)s+(m,+I)rJm, (5.7) 

only indices in the fundamental cell N X N need be consid
ered. 

The subalgebras may be written as combinations of J 's 
which close on themselves. Those of most interest are, 

a =0, SO(N) 

a = m l , N even, USp(N) 

a = m2 , N even, SO(N) , 

a = m 1 + m2' N = 4M, USp(N) 

a = m l + m2, N = 4M + 2, SO(N) 

J ()QJ {a = 0, SO(N), 
m,.m, - - m,.m, a = m l + m2' N even, SO(N). 

As an example, consider the second case, with a = 0, N 
odd. We denote 

(5.8) 

The number of generators of these algebras is ( 1/ 
2)N(N - 1). The commutation relations are 

[J(m,.m, J' J(n"n, J] 

_ 2i (Sin(~/N)(mln2 - m2nl )Jlm , +n,.m,+n,1 ). 
- sm(1TIN)(m lnl - m2n2 )Jlm , + n,.m, + n, J 

(5.9) 

These algebras are presently shown to be SO(N). 
It is convenient to label the generators by q = m l + m2 , 

the sum of the indices. Those with q = 0 mod NaIl mutually 
commute, and this is taken as the Cartan subalgebra. Form
ing the Cartan-Weyl basis amounts to simultaneously dia
gonalizing the matrices which are the elements of the Cartan 
subalgebra in the adjoint representation, i.e., the matrices of 
structure constants on commutation of h with the ea's, 

(5.10) 

These matrices are block diagonal, with a block for each 
q = 1, ... ,N - 1, of size r = ~(N - 1). The blocks are all of 
the form, independent of q, of 

1 0 0 

0 1 0 0 

M= 
0 0 0 0 

( 5.11) r . . . 
0 0 0 0 

0 0 0 0 

Thus the combinations of the generators with a given q pro
portional to the eigenvectors of Mr are diagonal. 
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The characteristic polynomial, P" of M, is given (up to 
sign) by the recurrence relation 

(5.12) 

with Po = 1 and PI = A-I. This may be solved by writing 
A = 2 cos ¢, then 

P, = cos r¢ - [( 1 - cos ¢/sin ¢ ] sin r¢ 

= (llsin ¢ )(sin(r + 1)¢ - sin r¢) 

= (2/sin ¢ )cos(r + !)¢ sin(¢/2). (5.13) 

This vanishes when ¢ = ¢k = (2k - 1)1T/N, k = 1, ... , N. 
We define 

(5.14 ) 

so that P ~ = P, = O. Then the eigenvector of M, corre
sponding to the eigenvalue A k = 2 cos ¢k is 

(P~,P~,,,,,P~_1 ). 

Now it is clear that the combinations of generators that dia
gonalize the basis are 

,-I 

S~ = I pJJ [1I2(q+2j-I),1I2(q-2j+ I)]' 
j=O 

The Cartan elements are H a = J'a, _ a j' 

(5.15) 

Working out the commutation relations in this basis, 

[ 

,- I ] 

[Ha,s~] = J,a.N-aj,.I PJJ'(1I2)(q+2j-I)(1I2)(q-2j+l)j 
)=0 

,-I 

= I (sin ¢k) -I(sin(j + 1)¢k - sinj¢k)[ J'a. _ a l' J,( II2)(q+ 2j- 1).( 1I2)(q- 2j+ I) d 
j=O 

- 2i sin (1T/N)aq '~I (. (. 1 ),/,.k . ''/''k) = . k ~ sm} + 'I' - sm}'I' 
sm ¢ j=O 

X (J'(1/2)(q + 2j- I) + a,(1/2)(q- 2j+ I) - a) - J'(1/2)(q- 2j+ 1) + a(1/2)(q+ 2j- I) - a)' 

Now consider the coefficient of J'(1/2)(q + 21- 1).(1/2) (q - 21 + I) ). 
This is 

- 2isin(1T/N)aq (. (I ),/,.k • (I l),/,.k -----'----=- sm - a 'I' - sm - a - 'I' 
sin ¢k 

+ sin (I + a)¢k - sin (I + a - l)¢k) 

_ -4iSin(1T/N)aqcosa¢k(. l,/,.k . (I 1),/,.k) - sm 1'1' - sm - '1', 
sin¢k 

therefore, 

[Ha,s~] = -4isin(1T/N)aqcosa¢k 
sin ¢k 

,- I 

X I P7J 'II2(Q+21-I).1I2(Q-2/+ 1)) 
1=0 

= - 4i sine 1T/N)aq cos a¢k sk, 
sin ¢k Q 

showing that this is the diagonal basis. 
In a recent paper, a similar identification of some subal

gebras has been made by Pope and Romans. 14 They intro
duce a basis for SO(N) and another for USp(N) which are 
extensions of the 't Hoofe basis to make the identification. 
Furthermore, they identify the infinite limits of these subal
gebras with the group of diffeomorphisms acting on two di
mensional manifolds with different topology from the torus; 
in the one case a Klein bottle, in the other a projective plane. 

VI. TRIANGULAR LATTICES 

As was mentioned in the Introduction, it is possible to 
realize similar infinite algebras on other lattices. In this sec
tion we report results for triangular lattices. 

It is convenient to choose a system of barycentric co
ordinates, and index K by three integers m l , m 2, m 3, where 
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m I + m 2 + m3 = O. (Barycentric coordinates measure the 
perpendicular distances of any point from the edges of the 
fundamental reference triangle, as in the Dalitz plot.) 

For this case, the relations are 

(6.1 ) 

where k = 1T/N, and u is the vector (1,1,1). As before, we 
find finite algebras by identifying generators at lattice points 
equivalent modulo N in each index. When N=O mod 3 the 
generators whose indices are congruent modulo NaIl discon
nect into U ( 1 ) 'So This leaves a hexagonal lattice, and the 
algebras obtained are U(N /3)6. WhenN¢O mod 3, the fun
damentallattice vectors of points reduced mod N contains 
only one disconnected member, (0,0,0), and the remaining 
N 2 

- 1 points are associated with generators which close on 
SU(N). This situation is parallel with that for the square 
lattice. 

VII. LARGE NLiMITS, AND SU(oo) YANG-MILLS 

The two-index SU(N) basis considered here has a par
ticularly simple large N limit. As N increases, the fundamen
tal N X N cell covers the entire index lattice; the operators % 
are supplanted by the K's and, in turn, since k - 0, by the 
operators L of (1.7). 

More directly, it is immediately evident by inspection 
that, as N- 00, the SU(N) algebra (5.6) goes over to the 
centerless algebra (1. 7) ofSDiff( T2) through the identifica
tion: 

(7.1) 

An identification of this type was first noted by Hoppe7 in 
the context of membrane physics: He connected the infinite 
N limit of the SU (N) algebra in a special basis to that of 
SDiff(S2), i.e., the infinitesimal symplectic diffeomor-
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phisms in the sphere basis. A discussion of the group topol
ogy of SU (N), or SDitr( T 2) vs SDitr( S 2), or other two
dimensional manifolds for that matterl4 goes beyond the 
scope of this type of local analysis. In view of the SO(N) 
subalgebras described in (5.8) we may also simply identify 
the SO( 00) subalgebra with the Poisson bracket subalgebra 
whose shift potentials I are odd under interchange of x 
with p, corresponding to Hamiltonians which evolve even 
functions to even ones, and odd to odd ones. Likewise, 
USp( 00) is generated by shift potentials of the form 
exp(im 1x)sin(m2P - ml1T/2) , i.e., toroidal phase-space 
Hamiltonians odd under p---+ - p, Xl-+X + 1T. 

Floratos, Iliopoulos, and Tiktopoulosl5 utilized 
Hoppe's identification to take the limit ofSU (N) gauge the
ory. Their results are immediately reproduced without am
biguity, again by inspection, on the basis of the orthogonality 
condition dictated by (5.4) and (5.5); 

Tr JmJn = Nt>m + n,O -+ Tr LmLn = - [N 3/(21T)2]t>m + n,O' 

(7.2) 

As a result, for a gauge field AI' in an SU (N) matrix normali
zation with trace I, the analog of 

A)-< == (l/.,fFi)A ';:Jm -+ [21TI(iN 3
/
2)]A ';:Lm = A ';:Lm' 

(7.3 ) 

where summation over repeated m's is implied, and the 
gauge field A ';: is as defined above. As N -+ 00, the indices m 
cover the entire integer lattice, and hence we may define 

(7.4) 
m 

By Eq. (3.2), 

[A)-<,A,,] -+ [La",La,,] = L{a",a,J' (7.5) 

Hence, by virtue of the linearity of L in its arguments, 

(7.6) 

II''' = al'a" - a"al' + {al',a,,}. (7.7) 

The group trace defining the Yang-Mills Lagrangian den
sity is thus 

Tr F)-<vFI''' -+ - N 3/(21T)2p,;:"p I'~ m 

= - N 3/(l61T4
) f dx dp 

x L eix(m, + m,) + ip(m, + n,) 

m"m2 

n.,n2 

X pm"m,pn"n, 
JlV /-tv· (7.8) 

Thus, in the limit of the gauge theory, the group indices are 
surface ( torus) coordinates, and the fields are rescaled 
Fourier transforms of the original SU (N) fields; the group 
composition rule for them is given by the Poisson bracket, 
and the trace by surface integration. For SO ( 00) and 
USp( 00) the al"s must have the above-mentioned symme
tries. 

Now note that an intriguing connection to strings 
emerges, for the first time directly at the level 01 the action: 
for gauge fields independent of xl' (e.g., vacuum configura
tions), this Lagrangian density reduces to {al',a,,}{al',a,,}, 
the quadratic Schild-Eguchi action density for strings, 16 

where the au now serve as string variables, and the surface 
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serves as the world-sheet. This means that the classical vacu
um states of SU ( 00 ) Yang-Mills are equivalent to the con
figurations of the classical string. Whether a superstring fol
lows analogously from super-Yang-Mills is an interesting 
question. 

The Lagrangian (7.8) with the sine bracket supplanting 
the Poisson bracket is also a gauge invariant theory, pro
vided that the gauge transformation also involves the sine 
instead of the Poisson bracket, 

t>al' = al'A - sin{A,al'}' (7.9) 

and hence, by virtue of the Jacobi identity, 

t>11''' = - sin{A,JI'''}' (7.10) 

It then follows that 

t> f dx dp II''' II''' = - 2 f dx dp II''' sin{A,JI'''} = O. 

(7.11 ) 

At the moment, however, it is not clear what system is de
scribed by the corresponding space-time-independent La
grangian density sin{al',a,,}sin{al' ,a,,}. 
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All realizations of the Lie algebras p( 1,1), sim( 1,1), and conf( 1,1) are classified under the 
action of the group of local diffeomorphisms of R3. The result is used to obtain all second-order 
scalar differential equations, invariant under the corresponding Poincare, similitude, and 
conformal groups. The invariant equations are, in general, nonlinear, and the requirement of 
linearity turns out to be very restrictive. Group invariant solutions of some of the conformally 
invariant equations are obtained either by quadratures or by a linearizing transformation. 

I. INTRODUCTION 

A useful tool for obtaining exact analytic particular so
lutions of nonlinear partial differential equations is the 
method of symmetry reduction. 1-3 This method has recently 
been used to obtain solutions of various nonlinear multidi
mensional Klein-Gordon equations, invariant under Poin
care, similitude, or conformal groupS.4,5 The same method 
has yielded a large number of quite unexpected solutions of a 
quintic and cubic nonlinear Schrodinger equation in 3 + 1 
dimensions. 6, 7 

In this paper, we tum the question around and ask, 
"What is the most general equation invariant under a given 
local Lie group?" More specifically, in this paper, we con
centrate on second-order scalar equations, invariant under 
the Poincare group P(l,l), the similitude group Sim(l,l), 
and the conformal group Conf( 1,1 ) of ( 1 + 1) -dimensional 
Minkowski space. We request that these groups act as local 
point symmetries of the obtained equations and that their 
action on the space-time variables be the standard geometri
cal one. The action on the dependent variable F(x,t) is al
lowed to be general, restricted only by the requirement that 
the corresponding Lie algebra of vector fields satisfy the cor
rect commutation relations. 

Our motivation is multifold. First, we wish to determine 
how restricting fundamental symmetry requirements are, 
i.e., how general can the field equations of a classical relativ
istic field theory be. 

If we restrict ourselves to linear equations, then Poin
care invariance alone leads to the linear Klein-Gordon 
equation, or more generally, in 3 + 1 dimensions to the 
Bargmann-Wigner equations. 8 The intimate relationship 
between the theory of irreducible unitary linear representa
tions of the Poincare group and the solutions of relativistic al
ly invariant linear equations is well known. 8-10 

A sizable literature on nonlinear group representations 
exists, 11-14 in particular on representations of the Poincare 
group. This theory should be relevant for linearizing, or oth
erwise solving, nonlinear invariant equations. The second 
part of our motivation is to derive physically interesting non-

linear equations to which this nonlinear group representa
tion theory could be applied. 

Finally, all closed continuous subgroups of Poincare, 
similitude, and conformal groups of low-dimensional Min
kowski space are known. 15,16 They can hence be applied to 
obtain solutions of any equations invariant under these 
groups. 

This present paper is organized as follows. In Sec. II we 
obtain all realizations of the Lie algebras p ( 1,1 ), sim ( 1,1 ) , 
and conf(l,l) by vector fields in three variables (x,t,p). We 
classify these realizations up to arbitrary diffeomorphisms 
(x,t,p) -+ (x',t',F'). We also discuss the prolongations of 
these vector fields, up to second order, since we are, at this 
stage, interested in first- and second-order equations. In Sec. 
III, we obtain the differential invariants of the prolonged 
group action and hence also the invariant equations. We re
strict ourselves to the case of fiber preserving transforma
tions. Section IV is devoted to the relation between some of 
the obtained invariant equations and the theory of nonlinear 
group representations. In Sec. V, we apply the symmetry 
reduction method for getting solutions of some of the confor
mally invariant equations obtained in Sec. III. 

Throughout this paper, when invoking conformal in
variance, we restrict ourselves to the finite-dimensional Lie 
group conf( 1,1) - 0 (2,2) of (1 + 1) -dimensional Minkow
ski space. "Invariance" is always meant in the "strong" 
sense, i.e., if a second-order equation a = 0 is invariant un
der some one-parameter group exp AX, then this equation is 
annihilated by the second-order prolongation pr(2)X of X ev
erywhere, not only on the solution set of a. 

II. REALIZATION OF THE LIE ALGEBRAS 

A. The Lie algebras p(1, 1), sim(1, 1), and conf(1, 1) 
realized by vector fields 

The first step in the derivation of invariant equations is 
to realize the Lie algebra of the assumed symmetry group in 
terms of vector fields on the space X ® U of independent and 
dependent variables. In our case, X is the two-dimensional 
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Minkowski space with coordinates x,1 and U is the space of 
real scalar functions F(x,t). 

The vector fields will all have the form 

V = s(x,t,F)ax + r(x,t,F)at + ¢I(x,t,F)aF • (2.1) 

We shall denote the generators of translations, Lorentz 
boosts, dilations, and proper conformal transformations P,.", 
K, D, and C,." (IL = 0,1), respectively. Their commutation 
relations are the usual ones, namely, 

[Po,K) = PI' [PI,K) = Po, 

[Co,K) = CI , [CI,K) = Co, 

[P"",Cv ] = 2 (g,."vD - e,."vK ) , 

[P,.",D] =P,.", 

[C,.",D] = - C,.", 

goo = - gll = 1, eOI = - EIO = 1, IL = 0,1, (2.2) 

where all remaining commutators and all unlisted compo
nents of the metric tensor g,."v and antisymmetric tensor e,."v 

are zero. 
We shall classify realizations of the conformal Lie alge

bra conf(1, 1) and its similitude sim (1,1) and Poincare 
p(1,l) subalgebras up to diffeomorphisms, i.e., up to arbi
trary smooth invertible changes of variables: 

. x' =/(x,t,F), t ' = g(x,t,F) , F' = h(x,t,F). (2.3) 

We start by realizing the translations P,.". According to 
Lie's theorem on the straightenning out of vector fields (see, 
e.g., Ref. 1), we can always transform, say, Po into Po = at. 
Using a further transformation leaving Po unchanged, we 
can transform PI into PI = ax' From the commutation rela
tions (2.2), we find that K must have the form 
K = (x + '17o(F»at + (t + '171 (F»ax + A (F)aF • Perform
ing a transformation of the form x' = x + a(F), 
t '= t + {3(F), F' = y(F) with appropriate choice of a, {3, 
and y, we find that two classes of realizations ofp( 1, 1) exist. 
They can be represented by 

L[: {po=a" p[=ax ' K=xa,+tax }' (2.4) 

L 2 : {po=a" p[ =ax ' K=xa, +tax + FaF }. 

(2.5) 

Each of these realizations can be extended to realiza
tions ofthe similitude algebra sim ( 1,1 ) by adding a dilation 
operator D. Its form is dictated by the commutation rela
tions (2.2) and it can be simplified by transformations (2.3), 
leaving the already standardized algebras, L[ or L 2, invar-

K~ab= ({s~ab}, C1 = - [K,Co}, 

iant. The realization L[ leads to two possibilities, represent
edby 

SI: ({L l}, D = x ax + tat}, (2.6) 

S2: {{L 1}, D = x ax + I at + F aF }. (2.7) 

The realization L2 leads to a family of realizations: 

St,Q,b: {{L2}, D = (x + aF - b IF) ax 

+ U+aF+blF)ot +AFoF ), 

..teR, (a,b) = (0,0),(0,1),(1,0),(1,1) or (1, - 1). 
(2,8) 

If we wish the corresponding group transformations to be 
fiber preserving, i.e., such that the new space-time variables 
depend only on the old ones (and not on F), we must take 
(a,b) = (0,0) in (2.8). 

The obtained realizations of sim ( 1,1 ) can be further ex
tended to conf( 1,1) by adding the proper conformal trans
formations Co and Cl' Once the commutation relations 
(2,2) are satisfied, further transformations respecting the 
form of the sim ( 1,1) realizations can be performed. The cal
culations are rather lengthy, though entirely straightfor
ward, They were partly performed using a MACSYMA rou
tine. We present the results only, 

Starting from the realization SI' we obtain a single real
ization of conf( 1,1), The corresponding transformations are 
fiber preserving: 

K 1: ({SI}' Co = (x2 + t 2 )at + 2xtax, 

(2,9) 

Starting from S2, we obtain three inequivalent realiza
tions: 

K;: HSJ, CO = (x2 + t 2 + aF2 )ot + 2xtox + 2tFaF , 

C1 = - (x2 + t 2 
- aF2)ax - 2xtat - 2xFoF }, 

a = 0, + 1, - 1. (2,10) 

Fiber preserving transformations are obtained for a = 0 
only. 

The realization S t,Q,b leads to three types of realizations 
of conf(1,I). 

For A =1= ± 1, we obtain 

Co = [x2+t 2+2t(aF+bF- I) -Ua2(..t-1)-2F2+Ub 2(A+ 1)-2F- 2 -4ab(..t 2 -1)-l)at 

+ [2xt + 2t(aF - bF- 1
) - Ua2(A - 1) -2F 2 

- Ub 2(A + 1) -2F-2 + 4ab(A 2 - l)-l)Ox 

+ [2F(x + At) - 2(A + 1) (A - 1) -laF 2 + 2(A - 1) (A + 1) -Ib )aF }, (2.11) 

with (..t,a,b) as in (2.8). The corresponding transformations are fiber preserving if and only if a = b = O. In this case ..teR 
without restriction. 

For A = + 1, we obtain 

K!,c,e= ({S10b}, CI = - [K,Co), 

Co = [x2 + t 2 + 2btF- l + CF2 + !b 2F-2 + !be) at 

+ [2xt - 2btF- I + cF2 -!b 2F-2 - !be]ax + [2(x + t)F + eF2]aF }, 

(b,c,e) = (O,K,O),(O,K,l),(1,K,e), K = 0, + 1, - 1, eeR. (2,12) 
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Transformations (2.12) are fiber preserving iff b = c = 0, in which case we can put e = 1. 
For A. = - 1, we obtain 

K;,c,e = {{S 3- l ,a,o}, C
l 

= - [K,Co], 

Co = [x2 + t 2 + 2atF + !a2F2 + cF-2 -lae]at + [2xt + 2atF + !a2F2 - cF-2 + lae]ax + [2(x - t)F - !e]aF }, 

(a,c,e) = (O,K,O),(O,K,I),(l,K,e), K = 0, + 1, - 1, eeR. (2.13) 

Transformations (2.13) are fiber preserving iff a = c = 0, in 
which case we can take e = 1. 

The distinct fiber preserving realizations of conf( 1,1 ) 
areKl , K~, K~oo, K~t, andK~)l. 

B. Prolongation of the vector fields 

In order to construct invariant second-order partial dif
ferential equations, we need to know how the considered 
group acts on first and second derivatives Fx' Ft, F xx' Fxt , 
and Ftt , once we know its action on (x,t,p). Since our entire 
approach is infinitesimal, it is sufficient for us to know the 
prolonged infinitesimal group action. In other words, we 
need the second prolongations of all the vector fields ob
tained above. 

The general formula for the k th prolongation of a vector 
field is given, e.g., by Olver. l We are interested in the second 
prolongation of the vector field V given in (2.1) and we have 

Pr V = V + "/,,, a +,,/,t a +,,/,xx a + ,,/,xt aF +,,/,tt a . 
'f' Fx 'f' F, 'f' Fxx. 'f' xt 'f' Frr ' 

t/JX = Dx (t/J - SFx - rFt ) + sFxx + rFx" 

t/Jt=D,(t/J-sF" -rFt) +SFtx +rFtt ; 

t/Jxx = D"t/J" - (DxS)Fxx - (Dxr)Fxt ' 

t/Jxt = Dtt/J" - (DtS)F"" - (Dtr)F"" 

t/Jtt = Dtt/Jt - (DtS)Ftx - (Dtr)Ftt ; 

where Dx and Dt are total derivatives. 

(2.14a) 

(2.14b) 

(2.14c) 

Using Eqs. (2.14), we calculate the second prolonga
tions of all the vector fields PI' ' C I' ' K, and D for each realiza
tion obtained above. We obviously have 

pr(2) P/J = P/J' f.1, = 0,1. (2.15) 

The other prolongations are more complicated and we do 
not reproduce them here. In each case, we shall need pr(2) K, 
pr(2) D, and pr(2) Co. The expression for pr(2) C1 is not needed, 
since we have pr(2) C1 = - [pr(2) K, pr(2) Co] and hence any 
invariant of exp Co and exp K is automatically invariant un
derexp Cl' 

III. DIFFERENTIAL INVARIANTS AND INVARIANT 
EQUATIONS 

A. General comments 

The procedure used to obtain the invariant equations is 
standard. Thus letXa , a = I, ... ,N, bea basis for the Liealge
bra L of the symmetry group G, acting on the space X ® U. In 
our case, X ® U is the space {x,t,F} and all Xa have the form 
(2.1 ). The invariant equation will have the form 

/1 (x,t,F,F" ,F"Fx" ,F""Ftt ) = 0, 

where the function /1 satisfies 
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(3.1) 

pr(2) X a '/1 = 0, Va. (3.2) 

Thus all we have to do is to find the characteristics for the set 
of equations (3.2), in which all the arguments in (3.1) are 
viewed as independent variables. The characteristics will 
provide us with a set of elementary invariants 
I k (x,t,F,F/J ,F/Jv) (f.1" v = x,t), and the invariant equation is 

H(lI, ... ,IN ) =0. (3.3) 

We shall look for p(l,I), sim(l,I), and conf(l,I) in
variants for each realization of the corresponding Lie alge
bras found in Sec. II. The number of variables in (3.1) and 
(3.2) is 8. The algebras p(l,l) and sim(l,l) are solvable; 
the generic orbits of the corresponding prolonged group ac
tion are three and four dimensional, respectively. Hence we 
shall obtain five and four functionally independent invar
iants, respectively. The group conf(l, 1 ) - 0 (2,2) 
- 0 (2,1 ) X 0 (2,1) is semisimple. The genric orbits of the 
prolonged group action are six dimensional. We shall hence 
obtain two invariants. 

In view of (2.15) all in variants will be independent of x 
andt. 

B. Poincare invariant equations 
t. Realization Lf 

Consider first the more "natural" usual realization LI of 
p ( 1,1 ), given in (2.4). The second prolongation of the boost 
Kis 

pr(2) K = x at + tax - Ft aFx - F" aFt 

-2Fxt (aF +aF ) - (Ftt + Fxx)aF • (3.4) 
xx tI xt 

Translational invariance [see (2.15)] implies that /1 in 
(3.1) does not depend on x and t. Solving (3.2) for pr(2) K 
given in (3.4), we obtain five elementary invariants, namely, 

II =F, 12 = F; - F!, 13 =Ftt -Fxx' 

14= (Ft _Fx)2(F= +2Fxt +FI/)' (3.5) 

15= (Ft +F,,)2(Fxx -2Fxt +FII )· 

The most general P ( 1,1) invariant equation is hence 

H(lI,12,13,hI5 ) = 0. (3.6) 

Notice that (3.6) includes the linear Klein-Gordon equa
tion 

FI/ -Fxx =mF, meR, (3.7) 

where the mass m may, or may not, be zero. Other linear 
equations, not involving any parameters, are obtained by 
setting 14 = ° or Is = 0, yielding independently 

Ft - F" = 0, F"" + 2F", + F" = 0, 

Ft + F" = 0, F xx - 2F"t + Ftt = 0. 
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Notice that we also obtain a reasonably general first-order 
P ( 1,1) invariant equation, namely, 

F; - F; = h(F), (3.9) 

where h is an arbitrary function of F. In particular, (3.9) 
includes the physically interesting eikonal, or Hamilton-Ja
cobi, equation 

(3.10) 

2. Realization L2 

The realization L2 is less standard than L 1• Indeed, in 
this realization a scalar function F(x,t) transforms under 
Lorentz transformations with a certain weight, i.e., 

F'(x',t') = (expA)F(x' cosh A - t' sinhA, 

- x' sinh A + t' cosh A). (3.11 ) 

Skipping all details, we present the five elementary in
variants for the realization L2 of (2.5), namely, 

II = Fx + Ft, 12 = (Ft - Fx )F-2, 

(3.12) 

The invariant equation (3.6) again includes the linear mas
sive or massless Klein-Gordon equation (3.7), obtained by 
putting 13 = m. As a matter of fact, several linear equations 
are obtained, namely, 

11 =f.J" 12 =0, 13 =m, 14=0, 15=0. (3.13) 

A general first-order invariant equation is 

P, - Fx = F 2h(Fx + F,). (3.14) 

An eikonal type equation with no free (mass) parameter is 
obtained by putting II . 12 = O. 

C. Equations invariant under the similitude group 
sim(1,1) 

We now have to deal with three different realizations of 
sim(1,l), given in (2.6), (2.7), and (2.8). The realizations 
8 1 and 82 are the more standard ones, in that they incorpo
rate the L 1 realization of p ( 1,1), rather than L 2• The realiza
tion 8 ~ab is fiber preserving only for a = b = 0 and we re
strict ourselves to this case. In all three cases the additional 
dilational invariance reduces the number of functionally in
dependent elementary invariants to 4. We skip all details and 
simply present the invariants. 

1. Realization S1 

We have 

J I = F, J2 = (F; - F;)-I(Ftt - Fxx )' 

J3 = (Ft + Fx) -2(Ftt + 2Fxt + Fxx ), 

J4 = (Ft -Fx )-2(Ftt -2Fxt +Fxx)· 

Linear invariant equations are 

(3.15) 

J2 =0, J3E=0, J/=O, E= ± 1, (3.16) 

where J2 = 0 is the massless Klein-Gordon equation. Simi-
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larly (J2 ) -1 = 0 yields an eikonal equation with vanishing 
right-hand side. 

Notice that in realization 8 1 the group sim (1, 1) acts 
only on the independent variables, not on the function F. 

2. Realization S2 

Since 82 also contains L 1, the elementary sim(l,I) in-
variants will be constructed out of / 1, ••• ,15 of (3.5). We have 

J I = F; - F;, J2 = F(Ftt - Fxx )' 

J3 = F(Ft - Fx )2(Fxx + 2Fxt + Ftt ), 

J4 = F(Ft + Fx)2(Fxx - 2Fxt + Ftt ). 

(3.17) 

The massless Klein-Gordon equation is obtained by putting 
J2 = 0; an eikonal type equation is J I = o. Setting individual
ly JI = 0 for J i as in (3.17) we get a variety of invariant 
linear equations, 

Ft -Fx =0, F, +Fx =0, Ftt -Fxx =0, 
(3.18) 

Fxx + 2Fxt + Ftt = 0, Fxx - 2Fx, + Ftt = O. 

To explain the pronounced difference between (3.15) 
and (3.17), remember that in realization 82 the dilations act 
not only on (x,t) but also on the function F. 

3. Realization sr 
Calculating pr(2) D for D as in (2.8) with a = b = 0 and 

applying it to the p(1,I) invariants (3.12), we find it con
venient to consider the cases A i= 1 and A = 1 separately. 

(a) .1#1: The elementary sim(1,l) invariants in this 
case are 

J I = (F;-F;)(Ft +Fx )2/().-\)F-2, 

J2 = (Ftt - Fxx)(Ft + Fx )2/().- \)F-1, 

J3 = (Fxx + 2Fxt + Ftt ) (Ft + Fx) -2F, 
(3.19) 

J4 = (Fxx - 2Fxt + Ftt)(Fx + Ft )2()'+ 1)/().-I)F- 3• 

Massless Klein-Gordon and eikonal type equations are ob
tained by putting JI = 0 and J2 = 0, respectively. 

(b) A = 1: The elementary sim ( 1, 1) invariants are 

JI=F, +Fx' 

J2 = (Ftt -Fxx)(Ft -Fx)-IF, 

J3 = (Fxx +2Fxt + Ftt)F, 
(3.20) 

J4 = (Fxx - 2Fxt + Ftt ) (Ft - Fx) -2F. 

Massless Klein-Gordon and eikonal type equations are ob
tained as J2 = 0 and J 2- 1 JI = 0, respectively; J I = const is a 
linear first-order invariant equation. 

D. Conformally Invariant equations 

We have five realizations of conf(1,l) to deal with, 
namely, K 1, K~, K~oo, K~I, andK~I. 

1. Realization K1 

The realization of (2.9) acts on space-time only; hence F 
is one of the conformal invariants. We calculated pr(2) Co and 
let it act on the 8 1 invariants (3.15) (since KI includes 8 1), 

We have 

pr(2) CO·JI = pr(2) CO·J
2 

= 0, 
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pr(2)CO'J3 = -4(F, +Fx)-I, 

pr(2) CO'J4 = - 4(F, - Fx) -I. 

Since we have C I = [Co,K], pr(2) C I will annihilate any 
expression annihilated by K and Co. The conclusion is that 
two conf( 1,1) invariants exist, namely, 

(3.21) 

The general conf( 1,1) invariant equation for the realization 
KI is hence 

F" -Fxx = (F; -F;)h(F), (3.22) 

where h is an arbitrary function ofF. In particular, h (F) = 0 
yields the massless Klein-Gordon equation. Another limit 
of (3.22) is the eikonal equation F; - F; = O. 

2. The realization ~ 

This realization acts nontrivially on the dependent 
function F. Since K ~ includes S2' we shall start out 
from the invariants (3.17) of S2' The condition 
pr(2) Co' H(JI,J2,J3,J4) = 0 yields 

F,(aH + aH + J3 aH + J4 aH) 
aJI aJ2 J I aJ3 J I aJ4 

+ Fx(J3 aH _ J4 aH) = O. (3.23) 
J I aJ3 J I aJ4 

Since F, and Fx cannot be expressed in terms of invariants, 
the coefficients of these two expressions must vanish inde
pendently. Solving the corresponding characteristic equa
tions, we obtain two conf( 1,1) invariants. 

We choose them to be 

1:1 =J2 -JI = (F" - Fxx)F- F; +F;, 

1:2 = J3J4J 1- 2 = [(F" + Fxx)2 - 4F;, ]F2, 

and the corresponding invariant equation is 

(3.24) 

(3.24') 

where H is an arbitrary function of its arguments. Notice 
that (3.25) does not include the Klein-Gordon equation 
(even for zero mass). 

3. Realization K? 

We must consider the cases A =1= 1 and A = 1 separately, 
but the final result can be written in a unified manner. We 
start from the sim(1,1) invariants (3.19) or (3.20), respec
tively. Proceeding as in the previous case, we find that the 
equation pr(2) CO'H(JI,J2,J3,J4) = 0 provides two indepen
dent equations involving the sim ( 1,1) invariants J i • The fi
nal result consists of two conf( 1,1) invariants which, for 
arbitrary values of A, can be written as 

1:1 = [A(F, + Fx)2 - (A + 1 )F(Fxx + 2Fx, + F,,)] 

XF- 2(A-I)[F(F -F ) _ (F2_F2)]A-I 
tt xx t x , 

1:2 = [(A - 1) (Fxx - 2Fx, + F,,) - (A - 2) (F, - Fx )2] 

XF 2(;[-I)[F(F" -Fxx) - (F;-F;)] -(;[+1). 

(3.25) 

Clearly these two expression simplify considerably for A = 1 
and A = - 1. Linear equations are obtained from 1: I = 0 for 
A = 0 or A = - 1 and from 1:2 = 0 for A = 1 or A = 2. 

1099 J. Math. Phys., Vol. 31, No.5, May 1990 

4. Realization J(ff' 

The two elementary conf(1,1) invariants are, in this 
case, 

1:1 = [F(F" - F xx) - 2(F; - F;) - 4(F, - Fx) ] 

X (F, - Fx)-I(F, + Fx + 2)-1/2, 

1:2 = [F(F" + 2Fx, + Fxx) - 2(Fx + F,)(Fx + F, + 2)] 

X (F, + Fx + 2)-3/2. (3.26) 

Linear equations 

F, - Fx = 0, F, + Fx + 2 = 0 

are obtained from (1: 1- I) = 0, (1:2- I) = O. 

5. Realization ~' 

The two elementary conf( 1,1) invariants in this case are 

1:1 = (F" - Fxx - 8F(F, + Fx »2(F, + Fx )-2 

X(F, -Fx -4F2)-I, 

1:2 = [Fxx - 2Fx, + F" - 24F(F, - Fx) + 64F3] 

X (F, - Fx - 4F2)-3/2. (3.27) 

No Klein-Gordon type equation is obtained. 
Concerning conformally invariant equations, we men

tion that we do not obtain, for any of the realizations, a non
linear Klein-Gordon equation of the form 

F" -Fxx =AFP. (3.28) 

In an (n + 1) -dimensional Minkowski space the corre
sponding equation OF = AF P is conformally invariant for 
p = (n + 3) / (n - 1). This relation breaks down for n = 1, 
i.e., the case under consideration. 

IV. INVARIANT EQUATIONS AND NONLINEAR 
REPRESENTATIONS 

As mentioned in the Introduction, we can expect to ex
tend to the nonlinear case (at least partially) the well-known 
relations between linear representations and linear invariant 
equations. 

We do not intend to present here an accomplished theo
ry which seems out of reach presently. Indeed the nonlinear 
representation theory is far from being as firmly found as the 
linear one. Consequently, we limit ourselves to few relevant 
examples concerning the p( 1,1) group, where the consid
ered nonlinear representations are given by formal series ac
cording to the general method in Ref. 11 (FPS theory). We 
think that these examples will be sufficient to display how 
much the nonlinear representations are powerful tools to 
solve and classify, at least partially, the invariant nonlinear 
equations. 

A. Generalities 

Let us explain briefly the main features of FPS theory, 
referring to the original articles for further details. II-

14 

Let Gbe a group, U(g), gEG, a linear representation of G 
in some linear topological space E. We denote by E .. n the 
nth symmetrical projective tensor power of E. For foE, or 
AE.i'" (E), r n and A "n will denote their nth projective ten
sor power, respectively: rnEE .. n, A hE.i"'(E "n). 
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Then to JEE, geG, we associate the mapping 

f-U(g)f+ }: S,,(g)(U(g)f)"", (4.1 ) 
,,>2 

where S" (g) is a linear mapping of E h into E and the ex
pansion is understood in the sense of a formal series. The 
mapping (4.1) is a formal representation of G if the S" (g) 
verify the following recurrent set of equations: 

S" (gg) - S" (g) - U(g)S" (g') U(g-l) "" 
,,-I 

= }: Sq (g) U(g) "q 
q=2 

x }: SI, (g) ~ .,. ~ SI. (g')lT" U(g-t) h, 

I, + ... + 1.=" 

(4.2) 

where IT,, is the usual symmetrization operator. By conven
tion, SI (g) = I and the right-hand side of (4.2) is zero when 
n=2. 

Two formal representations are equivalent ifthere exists 
a formal invertible transformation: 

f- i: IJ"", II invertible, 
I 

(4.3) 

transforming one representation into the other. As usual, we 
shall identify two equivalent representations. 

It is noteworthy that the nonlinear representation de
fined by (4.1) and (4.2) can be seen as a deformation of the 
linear representation U(g). This means we assume implicit
ly the existence of some parameter by the cancellation of 
which the representation becomes linear. 

B. Application to p( 1,1 ) 

In the following (a+,a_,fJ) is any element of P(l,l), 
where (J is the parameter of the hyperbolic rotation and, if ao, 
at are the time and space components of the translation, then 
a± =ao±a l . 

The composition law is written 

(a+,a_,(J) (a'+ ,a'_ ,(J') 

= (a+ + a'+ exp (J,a_ + a'_ exp( - (J),(J + (J '). 
(4.4) 

In the space it) (R) of Coo functions on lR with compact 
support, we define the following representations: 

U ± (a+,a_,(J)f(k) = expUka ± )f(k exp( ± (J)}, 

f(k)Eit) (R). (4.5) 

Let Fbe an auxiliary Fock space with annihilation and cre
ation operators A (k),A * (k) with the usual commutation re
lations: 

[A(k),A *(/)] = li(k -I). 

Then let us consider the mapping 

/(k) - (OIA(k)exp(a'F Z)FU ± (a+,a_,(J)expf), 
(4.6) 

where exp f) is the coherent vector 

exp J dkf(k)A *(k)IO), 

FU ± (a+,a_,(J) is the extension toFof U ± (a+,a_,(J), and 
the operator Z is written 

Z= J dkA *(k)Z(k), (4.7) 

with Z(k) polynomial in the annihilation operators: 

Z(k) =}: J Z" (k;kl,. .. ,k,,)rr A(kj)dkjO (4.8) 
" I 

where the kernel Z" (k;kto ... ,k,,) is in it)'(R") for each k. 
Let us denote exp(a=t= Z)FU ± (a+,a_,{}) by 
V ± (a+,a_,(J). 

Proposition 1: The mapping (4.6) provides a nonlinear 
representation ofp(l, 1) iff V ± (a+,a_,(J) is a (linear) rep
resentation of p ( 1,1) in F. 

The proof results from the following lemma. 
Lemma: If Zis given by (4.7) and (4.8), we have the 

factorization property: 

" = II (OIA(kj)V± (a+,a_,(J)expf)· (4.9) 
i= I 

Proof By recurrence after we have observed that 

0) exp( - a'F Z)A (k)exp(a 'F Z) 

contains only annihilators, 

(ii) exp( - J dkf(k)A *(k) )(FU ± (a+,a_,(J)}-1 exp( - a'F Z)A(k)exp(a'F Z)FU ± (a+,a_,(J)expf) 

= «OIA(k)exp(a'F Z)FU ± (a+,a_,(J)expf»IO). 

Suppose now that V ± (a+,a_,(J) is a representation. We can write 

(OIA(k) V ± «a+,a_,(J)(a'+ ,a'_ ,(J '»expf) 

1 J n = }: - II dkj(OIA(k) V ± (a+,a_,(J)A *(kl)"'A *(k,,) 10)(0IA(kl )" 'A(k,,) V ± (a'+ ,a'_ ,(J ')expf). 
n n! I 

I 
But, by (4.9), the right-hand side becomes, as expected, 

(OIA(k) V ± (a+,a_,(J)exp f dk A *(k) 

Conversely, if (4.6) is a representation, we must have 

(OIA(k) V ± «a+,a_,(J)(a'+ ,a'_ ,(J '»expf) 

= (OIA k V ± (a+,a_,(J)exp f dk A *(k) X (OIA(k) V ± (a'+ ,a'_ ,(J ')expf) 10). 
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X (OIA k V ± (a'+ ,a'_ ,O')exp!) 10). 

By the lemma, the right-hand side becomes 

(OIA(k) V ± (a+,a_,O) V ± (a'+ ,a'_ ,O')exp!). 

Applying the lemma once more; we get 

(expg V ± «a+,a_,O)(a'+ ,a'_ ,O'»exp!) 

= (expg V ± (a+,a_,O) V ± (a'+ ,a'_ ,O')exp!). 

As the finite linear combinations of coherent vectors are 
dense in F, we obtain finally 

V ± {(a+,a_,O)(a'+ ,a'_ ,0'» 

= V± (a+,a_,O)V± (a'+,a'_,O'). 

The statement on the inequivalence derives from the obvious 
non triviality of exp (a Of Z) as a multiplicative one-cocycle; 
indeed, a trivial cocycle would depend on a ± . 

Proposition 2: V ± (a+,a_,O) is a representation when 
the distribution kernels are given by 

Zn (k;kl,···,kn) = ~(k - kl - ... - kn )in (kl,···,kn), 
(4.10) 

where in (kl, ... ,kn ) in §'(Rn
) has the homogeneity prop

erty 

in (kl,.··,kn) = exp(nO)in (k l exp O, ... ,kn exp 0). 
(4.11 ) 

Proof' V ± (a+,a_,O) is a representation if 

exp( - O)Z = FU ± (a+,a_,O)Z{FU ± (a+,a_,O»-I. 
(4.12) 

But, by the definition of FU ± (a+,a_,O) [note that 
FU ± (a+,a_,O) is not unitary in F], 

FU ± (a+,a_,O)A * (k){FU ± (a+,a_,O»-1 

= exp(ika ± )exp( + O)A *(k exp( =t= 0», (4.13) 

FU ± (a+,a_,O)A(k){FU ± (a+,a_,O»-1 

= exp( - ika ± )A{k exp( + 0». (4.14) 

Then (4.12) reads 

(k - kl - ... - kn )Zn (k;kl, ... ,kn) = 0, 

Zn (k;kl,·i.,kn) 

= exp(n + 1 )OZn (k exp O;kl exp O, ... ,kn exp 0). 

This readily implies (4.10) and (4.11). 

C. Wave functions and associated invariant equations 

Henceforth, we assume (4.10) and (4.11) to be valid. 
Let us define mappings of § (R) into a subset of the space of 
C"" functions on R: 

!(k) --F<;/ (x+,x_) = f k - n dk (OIA (k)exp( - x ± Z) 

XFU ± ( - x+' - x_,O)exp!) 

= f k -ndkexp( -ikx±) 

X (OIA(k)exp( - xOf Z)exp!), 
(4.15 ) 

where we have used (4.12). The integration has to be per
formed in the sense of distribution theory, and n is some 
integer. We call F<';)(x+,x_) the wave function associated 
to the nonlinear representation fixed by Z. The group acts on 
the wave function by transport of structure. So, we have 

F<,;)(x+,X-)--f k -ndk(OIA(k)V± (-x+,-x_,O) 

X V ± (a+,a_,O)exp!) 

= exp{ ± (n - 1)0) 

XF<';){(x+ - a+)exp( - 0), 

(x_ - a_ )exp 0). 

In other words, the integer n fixes the kind of covariance 
ascribed to F<';)(x+,x_). In particular, n = 1 is relevant to 
the LI realization and n = 2 to the L2 realization of Sec. 
I1IB. 

First example: Let us take n = 2. Then we have, accord
ing to the lemma, 

a:_ F~)(x+,x_) = - f k -2 dkexp( - ikx+) ~ f ~(k - * k;)in(kl, ... ,kn) iDI (OIA(kj)exp( - x_Z)exp!)dk; 

-~ f (k l + '" + kn)-2in(kl, ... ,kn)jDI exp( - ikix+) (OIA(ki)exp( -x_Z)exp!)dki · (4.16) 

Let us choose 

in (k., ... ,kn) 

= _ 2 ;n (k + ... + k )nk -I"'k -I 
n(n _ 1) I n I n 

XLki-Ikj-1, 
i<j 

which satisfies the homogeneity condition (4.11). Since we 
have 

1101 

~F(2)(X+,X_) = - ifk -I dkexp( - ikx+) 
ax+ 

X (OIA(k)exp( - x_Z)exp!), 
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we finally get 

a
a F(1)(x+,x_) = {F(1)(x+,x_)f L (W;n 
X_ n>2 

X --F~)(x+,x_) , (
a )n-2 

ax+ 

i.e., Eq. (3.14) of Sec. III B with 

hex) = L (on;n xn - 2. 

n>2 

Second example: Let us choose in the previous example 

i2n + 1 (k l,· .. ,k2n + I ) = 0, 
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12n + 2 (k l ,· .. ,k2n + 2) 

= {; n!(n + 2)! (kl + ... + k2n + 2 )2 

n (2n+2)! ki"'kin+2 

x 2: 
The homogeneity condition (4.11) is satisfied. Since we 
have 

~F(2)(X+,X_) = -JdkeXP( -ikx+) 
ax+ 

X (OIA(k)exp( - x_Z)exp!), 

we obtain the following equations: 

a -a. F(~)(x+.x_) = (F';)(x+,X_»2 
x_ 

x t {;n(F';) (x+.x_ ) 

a 2F(2) )n 
X~(X+,x_) , 

aX+ 

3 

i.e., in terms of the invariants (3.12) the invariant equation 

QO 

12 = h(l4), hex) = 2: {;nxn. 
o 

More generally, if we take, in (4.16), 

where Pn (kH ... ,kn ) is a symmetrical homogeneous polyno
mial of degree (n - 2), in which each k i appears at most to 
the power 2, we can obtain from (4.16) any invariant equa
tion of the form 

12 = h(lI,14), 
where h(x,y) is some analytic function. 

Third example: Let us start now with In (kl,. .. ,kn) = 0, 
except for n = 2. Then we have 

+ 12(k3.k l + k2)/2(k l ,k2» II exp( - ikix+) (OIA(ki )exp( - x_Z)exp!). (4.17) 

12(kl,k2 ) = (A 12)(kl + k2)2k 1 2k 2- 2, 

the right-hand side of ( 4.17) reads 

A J dkl dk2 dk3llJ k i- 2 exp( ikix+) 

X (OIA(ki )exp( - x_Z)exp!) 

= A(F';) (X+,X_ »3. 
So, we finally get the invariant equation 

a2 

_-F(2)(X x) A(F(+2)(x+,x_»3, 
ax2_ + +,-

Le., in terms of invariants (3.12), 

15 =,1. 

i=1 

( 4.18) 

Fourth example: This last example is related to the LI 
realization of Sec. III B. In this case, we have readily 

~~F(I)( ) 
a a ± x+,x_ 
x_ x+ 

= i + J In (kl, .. ·,kn ) ill dki exp( - ikix ± ) 

X (OIA(ki)exp( -x=FZ)exp!). 

Let us take 

In (kl, .. ·.kn) = - i{;n 1klk2" ·kn; 

we get the well-known perturbed Klein-Gordon equation 
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( 4.19) 

Remark: Insofar as the wave function defined by (4.15) 
depends only on an arbitrary function, it does not provide 
the general solution ofEqs. (4.19) and (4.18). We can ex
pect to reach this objective only when starting with the direct 
sum 

U + (a+,a_,(J) Ell U _ (a+,a_,(J), 

as U(g) in the formal expansion (4.1) for (4.19) or with a 
linear deformation of it for ( 4.18). But then, we cannot get a 
compact form such as (4.6) and the above considerations 
would become much more lengthy and involved. 

v. SYMMETRY REDUCTION FOR CONFORMALL Y 
INVARIANT EQUATIONS 

By construction, all equations of Sec. III are invariant 
under the Poincare group p(1,I), the similitude group 
sim ( 1.1 ) , or the conformal group conf( 1,1 ). This invariance 
can be used to reduce the obtained equations to ordinary 
differential equations (ODE's). In many cases, the obtained 
ODE's can be solved directly. 

In order to perform symmetry reduction in a systematic 
manner, we need to classify the subalgebras of the corre
sponding symmetry algebra into conjugacy classes. under 
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TABLE I. Representative one-dimensional subalgebras of conf( 1,1) and the corresponding invariants 5, satisfying (5.11). If the classifying group is the 
connected component confo(l,I), we have E, = ± I, E2 = ± I, a#O, heR, and c> O. If the classifying group is conf(l, I), including parity and time reversal, 
we have E, = E2 = I, a>O, b>O, and c>O. 

Number 

Ss 

s6(a) 
S7(E"E2) 

Vector field 

D 
D+aK 
D+ E,K + E2(PO -E,P,) 

P,-C, 
Po + Co + b(P, - C,) 

(l + c)(P, + Co) + (l- c)(Po - C,) 

Po+P, + Co 
Po+P,-C, 

the action of the symmetry group. Here we shall concentrate 
on equations invariant under conf(1,1) -0(2,2). The 
sublgebras of the Lie algebra conf( 1,1) can be extracted 
from Ref. 16, or can be obtained directly, using the methods 
of Refs. 15 and 16. Alternatively, use can be made of the 
isomorphism 0 (2,2) = 0 (2,1 ) E9 0 (2,1) and the Goursat 
method for classifying subalgebras of direct sum alge
bras. 16,17 In any case, we only need to know the one-dimen
sional subalgebras. 

A list of representatives of one-dimensional subalgebras 
of conf(1,1) is given in Table I. In column 1 we have 
PiEP(1,1), siEsim(1,I), SiEtP(1,1), k iEConf(1,I), and 
k iEtsim(1,1 ). 

Let us now consider the conformally invariant equation 
(3.22). Each of the subalgebras of Table I provides a differ
ent reduction to an ODE. Each of the ODE's can be solved 
by quadratures for an arbitrary function h(F) in (3.22). 
This equation corresponds to the realization Kl of 
conf( 1,1). Since the action of conf( 1,1) on the solution Fin 
this realization is trivial, each one-dimensional subgroup 
will have two invariants of the form 

5 = s(x,t) and F. (5.1 ) 

Equation (3.22) is hence reduced to an ODE by putting 

F(x,t) =/(5)' (5.2) 

Substituting (5.2) into (3.22), we obtain the equation 

Iss + (OS/(VS)2}fs = h(/)It, (VS)2#0, 

05 = Sit - sxx, (VS)2 = 5; - 5;· 

Equation (5.3) is an ODE if we have 

(Os)/(VS)2 = a(s), 

(5.3) 

(5.4) 

a condition that is always satisfied if 5 is subgroup invariant. 
Let us assume that (5.4) is satisfied and rewrite (5.3) as 

Iss/Is + a(s) = h(/)/s' Is #0. (5.5) 

In order to integrate Eq. (5.5) by quadratures, we define 

G(/) = r du exp [ - i~ h(S)dS). (5.6) 
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5 (for E,=E2 =1) 

t+x 
x 
t 
In(t+x) +In(t-x) 

In(t + x) -In(t - x) 
(a - 1 )In(t + x) + (a + 1 )In(t - x) 
x-t+ln(t+x) 

arctan(x + t) + arctan(t - x) 
(b - I)arctan(t + x) + (b + I)arctan(t - x) 

t-x+ 1 
2c arctan(t + x) + In 

t-x-I 
arctan(t + x)/.j2 - .j2(t - x)-' 
arctan(t + x)/.j2 - .j2(t - x)-' 

In terms ofG(/), a well-defined transform of h(/), the solu
tion ofEq. (5.5) is 

1(5) = G -1(C1Y(S) + cz), (5.7) 

where C 1 and Cz are integration constants and we have put 

Y(s) = f' dvexp [ - f a(S)dS]. (5.8) 
5n Po 

In order to obtain explicit solutions ofEq. (3.22) for a 
given function h(F), all we need to do is to specify 5 for each 
subalgebra of conf(1, 1) and then to calculate y(s) as in 
(5.8). We can actually simplify and unify further. If 5 satis
fies (5.4), then so does any function 1](5), and we have 

a(1]) = 1]s-l(a(s) + 1]ss1]s-I). (5.9) 

Choosing 1](5) to satisfy 1]ss + a(s)1](s) = 0, we obtain 
a(1]) = 0, y(s) = 5· 

The final result can be summed up as follows. 
Theorem 1: Group invariant solutions of Eq. (3.22) 

have the form 

(5.10) 

where G(/) is defined in terms of h(/) in (5.6), C1 and C2 are 
integration constants, and s(x,t) is an invariant of one of the 
subgroups of conf( 1,1 ), chosen so as to satisfy 

05=0. ( 5.11) 

The variables 5 for each subgroup are given in the last col
umn of Table I. 

The results of Theorem 1 can be generalized to wider 
classes of solutions. Indeed, the PDE (3.22) reduces to an 
ODE for F(x,t) satisfying (5.2) and 5 satisfying (5.11). 
Equation (5.11) has the general solution 

S=SI(X+t) +S2(X-t). (5.12) 

If 51 = ° or Sz = 0, we also have (Vs)z = 0, and 

F(x,t) = I(x ± t) (5.13 ) 

is a solution for any function/(s). Forsas in (5.12) and 51 
and 52 arbitrary, we obtain a solution in the form (5.10). All 
group invariant solutions of Theorem 1 (and Table I) are 
special cases of the solution involving 5 as in (5.12). 
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Still more general solutions are obtained by applying the 
group conf(1,l) to the solution (5.10) with S as in (5.12). 
This amounts to replacing x + t and x - t by 

t' + x' = (t + x + a l )(1 - C1 (t + X + al»-I exp A., 

t' - x' = (t - x + a2)(1- c2(t - x + a2»-1 exp,Lt, 

(5.14) 

The results for other realizations of the conformal group 
are somewhat less clear-cut. Consider, for instance, Eq. 
(3.24') for the realization K~ of conf(1,l). The two invar
iants l:1 and l:2 are in this case on the same footing, in that 
they are both second-order differential operators. Hence we 
cannot expect to solve Eq. (3.25) without specifying the 
functionH(l:I,l:2)' For definiteness wechooseH so that Eq. 
(3.25) reduces to 

(5.15 ) 

The Poincare group p( 1,1) still acts trivially on Fin this 
realization. Subgroups of the Poincare group will hence lead 
to ODE's via the reduction formula (5.2), as in the case of 
the realization K I' The dilations and conformal transforma
tions act nontrivially on F and the reduction formulas will be 

F(x,t) = a (x,t)/(s) , S = s(x,t). (5.16) 

The function a(x,t) must be specified in each case, since it 
depends on the subgroup chosen. The variables S can be cho
sen to be the same as for the realization K I' since the action of 
conf( 1,1) on space-time is the same in both cases (we can, of 
course, replace S by any function of s). Let us look at some of 
the subalgebras of Table I. 

p/l):Takinga = l,s = x + tin (5.16) we find l:1 = 0, 
l:2 = O. Hence/(x + t) isa solution ofEq. (3.25) for any H 
satisfying H(O,O) = 0 [for instance, Eq. (5.15)]. 

P2 and P3: We have a = 1 in (5.16) and S = ax + bt, 
a2 - b 2#0. We obtain 

I = (b 2 - a 2 )(!ss! - /~), I = (b 2 - a2)2/~sj2. 
1 2 

Equation (5.15) is thus reduced to 

(1 + EA )ffss - EA/~ = 0, 

and the corresponding solution is 

F(x,t)=c l(ax+bt+c2)I+EA, E= ±1, 
cl ,c2,a,b = const. 

(5.17) 

(5.18) 

P4: We again have a = 1 and now we choose S = t 2 - x2
• 

The invariants reduce to 

(5.19) 

The corresponding solution ofEq. (5.15) is 

F(x,t) = (C1(t2 - x2)1/(\ -EA) + C2)I-EA, C1,C2 = const. 
(5.20) 

As a further example, consider the subalgebra ssEsim ( 1,1 ). 
In this case, we take 

F=x!(S), s= tlx, (5.21 ) 

where Eq. (5.15) implies that/(s) satisfies 
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(1 - EA) (l - s 2 )ffss + EA (1 - S 2 )/~ + 2EASffs 
- EA/2 = 0, C = 1. (5.22) 

For 1 - EA #0, we put 

(5.23 ) 

and obtain a linear equation 

(1 - EA)2(l - S2)vss + 2EA(l - EA)svs - EAv = O. 
(5.24) 

The solution of (5.24) is 

v(s) = 2FI (a,/3;r;z) , z = (1 - s)/2 = (x - t)/2x, 

a/3= EA(l- EA)-2, a +/3+ 1 = - 2EAI(l- EA), 

Y = - EA 1(1 - EA), (5.25) 

where 2FI (a,/3;r;z) is a hypergeometric function. 
In the special case fA = 1, Eq. (5.22) has the solutions 

/ = c(1 + ES), c = const, E = ± 1. (5.26) 

As a final example, let us consider the subalgebra 
kgEconf( 1,1 ). In this case we choose the invariants so as to 
have 

F(x,t) = tI(S), s = (1 - (2 + x 2 )lt. 

We obtain 

I = (4 + S 2) (ffss - /~) - /2 + 2Sffs, 
1 

I = (4 + S2)2/2/~s' 
2 

Equation (5.15) reduces to 

(1 - EA)(4 + s2)ffss + EA(4 + S2)/~ 
- 2EASffs + EAj2 = O. 

(5.27) 

(5.28) 

(5.29) 

Equation (5.29) can again be reduced to a linear equation by 
the point transformation 

/= ul
- EA, EA # 1, (5.30) 

(1 - EA)2(4 + S2)uss - 2EA( 1 - EA)sus + EAu = 0, 
(5.31 ) 

which is reduced to a hypergeometric equation by putting 

u = F(a,/3;y;z) , z = (2 + is)/4, 

a/3= EA(1- EA)-2, a +/3+ 1 = - 2EA(1- EA)-I, 
Y= -EA(1-EA)-l. (5.32) 

For EA = 1, we obtain the solutions 

/ = c(S ± 2;), c = const. (5.33 ) 

Reductions ofEq. (5.15) coming from invariance under 
the subgroups corresponding to S6,SWk9, ... ,kI2 of Table I can 
be treated in the same manner, but we shall not present the 
results here. The same goes for the other realizations of the 
conformal Lie algebra and the corresponding equations in
volving (3.25 )-( 3.27). 

VI. CONCLUDING REMARKS 

We have shown that a classification of equations invar
iant under some space-time group involves as a first step the 
classification of possible realizations of the corresponding 
Lie algebra. In the classification of realizations of p ( 1,1 ), 

G. Rideau and P. Winternitz 1104 



                                                                                                                                    

sim ( 1, l), and conf(1, l), performed in Sec. II, we did not 
take parity P or time reversal T into account. Let us just 
point out that the realizations LI of p(1,l), SI and S2 of 
sim( 1,1), and KI andK~ ofconf( 1,1) are invariant under P 
and T. On the other hand, the realizations L 2, S3 ab, K ~ab, 
K !ce, and K ~ce are not invariant under either of these trans
formations. A consequence of this is that the corresponding 
equations of Sec. III are appropriately invariant, or not in
variant under parity and time reversal. We have not insisted 
on imposing these discrete symmetries, since the corre
sponding P or T invariance violating equations may also be 
of physical interest, e.g., in the context of weak interactions. 

Sections IV and V are not intended to provide a com
plete treatment of their respective topics. Thus in Sec. IV we 
make contact with the theory of nonlinear representations of 
the Poincare group p(1,I) only and give some examples. 
The theory of nonlinear representations of similitude and 
conformal groups has yet to be developed. 

In Sec. V, we have applied the method of symmetry re
duction to two of the five types of conformally invariant 
equations obtained in Sec. III. We find it remarkable that for 
Eq. (3.22) symmetry under anyone-dimensional subgroup 
of conf( 1,1) leads to an ODE that can be solved by succes
sive quadratures. For the realization K~ of conf(1, 1) in 
which the dilation generator actually has the generic form 
D = tat + x ax +)'F aF (). #0; we used the classification 
diffeomorphism to set). = 1), we restricted ourselves to a 
specific invariant equation, namely, (5.15). Remarkably, all 
considered one-dimensional subgroups of conf( 1,1) lead to 
equations that can either be integrated by quadratures, or at 
least be transformed, by a point transformation, into a linear 
equation. 

The results of Sec. V point to a relation between confor
mal invariance and integrability, in some sense of the word. 

An obvious continuation of the present investigation is 
to study invariant equations in higher dimensions and also to 
study spinor and tensor equations, rather than only scalar 
ones. We note here that the dimensions of the corresponding 
Poincare, similitude, and conformal groups are 

dp = dim p (n, l) = (n + 1)( n + 2) /2, 

ds = dim sim(n,l) = dp + 1, (6.1) 

de = dim conf(n,l) = (n + 3)(n + 2)/2. 

The second prolongation on the space X ® U of in de pen
dent and dependent variables for a scalar equation has di
mension 

d= 1 + (n + l)(n + 6)/2. (6.2) 

The number offundamental invariants of the second prolon
gation of the group action is hence, respectively, 

np = d - dp = 2n + 3, 

ns = d - ds = 2n + 2, ne = d - de = n + 1, (6.3) 

and is seen to increase linearly with the dimension n of space. 
The results of a classification of invariant equations for the 
physically important cases of n = 2 and n = 3 can thus be 
expected to be both richer and more complicated than for 
n = 1. 

As far as applications are concerned, we note that the 
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realization S2 of sim ( 1, l) [see Eq. (2.7)] represents all 
realizations with a nontrivial scaling weight. Thus if we 
leave p(1,l) as in L I , but transform D into 
Jj = x ax + tat + 2( 1 - p)F aF , we find that the physically 
important equation 

Fit -Fxx =AFP, p#l, (6.4) 

is invariant under this realization of sim ( 1,1). 
A study of tensor equations invariant under various 

groups in n + 1 dimensions is relevant for field theories and 
in particular gravitational theories in these dimensions. IS 

We plan to return to these problems in the near future. 
Note added in proof' A conceptually, but less systematic, 

similar approach to the construction and solution of relati
vistically invariant equations has been adopted by W. Fush
chich et al. They usually make an Ansatz about the general 
form of an equation and then impose invariance. See Ref. 19. 
Also see Ref. 20 and references therein. 
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A new approach is proposed to derive nonlinear integrable systems. It is used to obtain several 
new nonlinear integrable systems. The above results are relevant to some problems of 
hydrodynamics, plasma physics, solid-state physics, etc. 

I. INTRODUCTION 

A new approach to derive nonlinear integrable systems 
is expounded in the present paper. It consists of the follow
ing. We take a nonlinear integrable system having the Lax 
representation I of the form 

aL -+ [A,L] =0, 
at 

where L and A are linear differential operators. For a wide 
class of operators L and A, a linear differential operator 

N 

r= L rn 
n=l 

is shown to exist such that the coefficients of the operator r n 

depend on the solution fPn of the equation 

(L - An )fPn = 0, 

and the coupled system of equations 

aL - + [A,L ] = r, (L - An )fPn = 0, n = 1, ... ,N, 
at 

is integrated by the inverse scattering method for the opera
tor L. 

It turned out that not only known integrable systems but 
several new ones can be derived in this way. It is important 
that for all earlier known integrable systems this approach is 
more simple and natural. 

II. SECOND-ORDER SCALAR OPERATOR 

We start with the simplest case of a second-order scalar 
operator, i.e., let 

L = a2 + U, (1) 

where a is the differentiation operator with respect to the 
space variable x, and u is the scalar function of x. Consider 
the linear system of equations 

(L-A)fo=O, f~ =1/Jnfo, n= 1, ... ,N, (2) 

with respect to the function fo,fl, ... ,fN' Here, the prime 
means differentiation with respect to x and the functions 
1/JI, ... ,1/JN are thought to be indefinite yet. Then, we take the 
operator A of the form 

k" 
A = ak,,+2 + L akak, ko>O, 

k=O 
(3) 

such that the operator Il. = [A,L] has zero order, i.e., is the 
mUltiplication operator by a function and assume 

aft N 
gO=-ao+cAfo+x L fPnfn, 

t n= I 

gn = 1/Jnf~ - 1/J~fo - (A -An )jn' n = 1, ... ,N, 
(4) 

where c and x are the constants, and fPI, ... ,fPN are certain 
(yet unknown) functions. 

Let us clarify what requirements are to be imposed on 
the functions U,fPI, ... ,fPN' 1/JI, ... ,1/JN so that the quantities 
gO,gl, ... ,gN determined by (1 )-( 4) should satisfy the condi
tions 

N gn 
(L - A)go = x L fPngn' -=0, n = 1, ... ,N. (5) 

n=1 ax 

By simple calculations we find that for the validity of (5) it is 
necessary and sufficient to fulfill the relations 

aL N a 
-+c[A,L]=2x L -(fPn1/Jn), 
at n=1 ax 

(L - An )fPn = (L - An )1/Jn = 0, n = 1, ... ,N. 
(6) 

In the case when c and x are real constants and the 
quantities An satisfy the condition An = ~n' the system (6) 
has an invariant manifold U = ii, 1/Jn = EnfPn' where ~ = 1, 
n = 1, ... ,N, and the bar means complex conjugation. Motion 
on this manifold is described by the system of equations 

aL N a - + c[A,L ] = 2x L En -lfPn 12, 
at n=1 ax (7) 
(L - An )fPn = 0, n = 1, ... ,N. 

At ko = 1, c = 4, and x = 1 the first equation ofthis system 
has the form 

~+~(3U2 + a2~) = 2 ± En ~ IfPnl 2, 
at ax ax n=1 ax 

i.e., differs from the Kortweg-de Vries equation2 by the 
expression in the right-hand side of this equality. 

Reference 3 represents the scheme of integration of the 
system (7) in the class of rapidly decreasing x functions by 
the inverse scattering method for the operator L of the form 
(1 ). 

III. THIRD-ORDER SCALAR OPERATOR 

Consider now the case when the operator L has the form 

L=a 3 +u1a+uo' (8) 

Let fO,jI, ... ,jN be the solution of the linear system of equa
tions 
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(L-A)/o=o, I~ =¢nfo, n= I, ... ,N, (9) 

where ¢I"",¢N are certain (yet unknown) functions. Then, 
we use the operator A of the form (3) such that the operator 
t::. = [A,L] has the first order and assume 

afr. N 

go = a; + eAfo + X n~1 fPn In' 

gn = ¢n I;; - ¢~ 10 + ¢~ fo + UI¢n fo 00) 

- (A - An )/n, n = I, ... ,N, 

where e and x are the constants, and fPI, ... ,fPN are certain 
functions. Finally, we demand the quantities go,g W •• ,gN de
termined by (3) and (8)-00) to satisfy the conditions 

01 ) 
By simple calculations we find that for the validity of ( II) it 
is necessary and sufficient to fulfill the equalities 

aL +e[A,L] =3x .f ~(afPn ¢n +fPn¢na ), 
at n~ 1 ax ax 

(L - An )fPn = (Z - An )¢n = 0, n = 1, ... ,N, 

where 
- 3 L = -a -a'U I + Uo. 

(2) 

(13 ) 

Assume now that U I = ~u, Uo = aU' + ip, where the 
functions U and p take only real values, i.e., choose the opera
tor L of the form (8) so that the relation L * = - L is ful
filled (the asterisk means Hermitian conjugation). Then let 
the quantities An satisfy the condition An + An = 0, i.e., be 
pure imaginary, n = I, ... ,N. In this case the functions ¢n by 
virtue of (13) can be chosen so as to fulfill the equality ¢n 
= EnfPn' where ~ = 1, n = 1, ... ,N. Finally, we choose the 

operator A so as to fulfill the relation A * = ( - 1) k,'A and 
the quantities e and x are chosen under the requirements 
c = ( - 1)k" + Ie and j( = x. Under these conditions the sys
tem (12) becomes 

aL [ ~ a (a
fPn - 1 1

2a) -+e A,L] = 3x £.. En - --fPn + fPn , 
at n~ I ax ax 
(L - An )fPn = 0, n = I, ... ,N. 

At ko = 0, e = i, and x = 1 the first relation of this system is 
equivalent to the equations 

3 ~ - 4 ap = 6 .f En ~ IfPn 1
2

, 
at ax n~ I ax 

4 ap _~(3U2+ a
2
u) (4) 

at ax ax2 

. ~ a ( ilipn afPn _ ) = 61 £.. En - fPn -- - -- fPn . 
n~1 aX ax ax 

Assuming fPn =0, n = 1, ... ,N, in the system (14) and 
then eliminating the function p from it we get the known 
Boussinesq equation.4 

IV. ARBITRARY-ORDER SCALAR OPERATOR 

To emphasize some moments of the aforementioned, we 
consider the operator L of an arbitrary order, i.e., assume 
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m" 

L=am.,+2+ L uma m, mo>O. OS) 
m~O 

Then we take the linear system of equations 

(L-A)fo=O, I~=¢nfo, n=l,oo.,N, (6) 

and using its solution lo,h,oo.,jN determine the quantities 
gO,gl,oo.,gN by the equalities 

afr. N 
go = -ao + eAlo + x L fPn/", 

t n~ 1 

m" + I a m¢ am" - m + II' 
gn= ~ (_1)m __ n Jo 

m~o axm aXm,,-m+ 1 

(7) 
m" m-I ar(U .1.) am-r-II' 

+ L L (_l)r m'l'n JO 
m ~ 1 r ~ 0 aXr aXm - r - I 

- (A - An )/n, n = 1,oo.,N, 

where e and x are the constants and A is the operator of the 
form (3) such that the order of the operator t::. = [A,L] is 

mo· 
Now let us elucidate what requirements are to be im

posed on the functions UO,oo.,u m", fPI,oo.,fPN' ¢1,oo"¢N, so that 
the quantitiesgo,gI,.oo,gN determined by (3) and (5)-07) 
should satisfy the conditions 

N agn 
(L - A)go = x L fPngn' -=0, n = l,oo.,N. (8) 

n~ 1 ax 
By simple calculations we get that 

N 

(L - A)go - x L fPngn 
n~l 

agn -
ax =¢n(L-A)fo-fo(L-An)¢n' n= 1,oo.,N, 

where 

Z = ( _1)m"a m,,+2 + I (- 1)ma·um, (20) 
m~O 

and the action of the operator r on the function fo is deter
mined by the equality 

N m" m-l a m- r- 1 (a rfPn ) 
+ n~l m~1 r~o Um axm- r- 1 axr ¢nfo 

N m" m-l ar(u .1, ) am-r-11' - L L L (- 1)rfPn m'l'n JO . 
n~ I m~ 1 r~O axr axm- r- 1 

(21) 

One can easily see that the right-hand side of equality 
(21) does not in fact contain derivatives of the function fo 
higher than the moth order since expressions with a deriva
tive of the (mo + 1) th order in the first and second terms 
cancel out. Thus the operator r determined by (21) is of an 
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order not higher than mo. By virtue of (16) it follows from 
( 19) that for the validity of the conditions (18) it is neces
sary and sufficient to fulfill the relations 

aL 
-+e[A,L] =xr, at 

(22) 

(L - An )fPn = <Z - An )tPn = 0, n = 1, ... ,N. 

If the parameters e, x, and An entering into this system are 
taken under the conditions that c = ( - 1)/<"+ Ie, X = x, 
An = ( - 1)moAn , n = 1, ... ,N, then according to (20) the 
system (22) has an invariant manifold L * = ( - 1 ) moL, tPn 
= En7fin, where ~ = 1, n = 1, ... ,N. In this case the operators 

A and r should satisfy the requirements A * = ( - 1) /<"A 
and r* = ( - 1) mor. 

V. FIRST-ORDER MATRIX OPERATOR 

The procedure described above for deriving nonlinear 
integrable systems can also be used, with some alterations, in 
the case when the coefficients of the operator L are square 
matrices of an arbitrary order ro > 1. Let us proceed to this 
version considering the simplest case of a first-order opera
tor, i.e., assume 

(23) 

where A is the diagonal matrix with constant elements on the 
principal diagonal, and U is the square matrix with zero ele
ments on the principal diagonal. Then let A be a differential 
operator of the form 

/<,,+ I 

A = L Aka\ ko>O, (24) 
k=O 

such that the coefficients Ao,"',A/<" + I are the square matri
ces of the same order r 0 and the operator /). = [A,L] is of the 
zero order, i.e., is the multiplication operator by a matrix. It 
is well known that in this case on the principal diagonal the 
matrix /). has zeros. 

Consider now the linear system of equations 

(L -1])Fo = 0, F~ = 'I' nFO' n = 1, ... ,N, (25) 

with respect to unknown matrices Fo,FI, ... ,F N' Moreover, 
assume that Fo is the square matrix of the order ro but 
FI, ... ,FN and 'l'1, ... ,'I'N are the rectangular matrices with r l 

rows and ro columns. Using the solutions Fo,FI, ... ,FN ofthe 
system (25) we determine the quantities GO,GI, ... ,GN by the 
equalities 

aF. N 
Go = _0 + eAFo + x L <l>nFn, at n= I (26) 
Gn ='I'nAFo- (1]-1]n)Fn, n= 1, ... ,N, 

where e and x are the constants, and <I> I"'" <I> N are the rectan
gular matrices with ro rows and r l columns, and consequent
ly, Go is the square matrix of the order ro and GW .. ,GN are 
the rectangular matrices with r l rows and ro columns. Now 
let us find out what requirements are to be imposed on the 
matrices U, <l>W .. ,<I>N' 'l'1, ... ,'I'N in order that the matrices 
GO,GI,. .. ,GN determined by (23)-(26) should satisfy the 
conditions 
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N 

(L-1])Go=x L <l>nGn, n= 1, ... ,N. 
n=1 

(27) 
By simple calculations we get that for the validity of the 
conditions (27) it is necessary and sufficient to fulfill the 
relations 
aL N 
-+c[A,L] =x L [A,<I>n'l'n], at n=1 

A<I>~ + U<I>n -1]n<l>n (28) 

= 'I'~A - 'I' n U + 1]n 'I' n = 0, n = 1, ... ,N. 

The system (28) contains several interesting particular 
cases, some of which will be considered in detail below. 

VI. NONLINEAR SCHRODINGER EQUATION WITH A 
SELF-CONSISTENT SOURCE 

Let ro = 2. Take the operator L of the form (23) with 
the matrices A and U determined by the equalities 

U --Iou oUI· A = diag(1, - 1), (29) 

As is known,s in this case at any ko > ° there exists an opera
tor A of the form 

2k.,-1 

A = Aa 2/<" + L Aka\ (30) 
k=O 

such that the operator /). = [A,L] is the skew-Hermitian ma
trix with zero elements on the principal diagonal, i.e., 

/). = I 0- ql. 
-q ° (31) 

In this case the quantity q is the polynomial of the functions 
u, u and their derivatives with respect to x up to an order of 
2ko, and the matrices AO, ••• ,A2/<" _ I satisfy the condition 

Ao="'=A2/<,,_1=0 at U=O. (32) 

One can easily be convinced that if the vector column 
<I> = <l>n with the components fP = fPn and tP = tPn satisfies 
the equation 

A<I>' + U<I> -1]<1> = ° (33) 

at 1] = 1] n' then the vector row 'I' = 'I' n with the components 
tP = tPn and fP = fPn satisfies the equation 

'1" A - 'I' U + 1]'1' = ° (34 ) 

at the same value ofthe parameter 1] = 1]n' i.e., the solution 
'I' n ofEq. (34) is connected with the solution <I> n ofEq. (33) 
at the same values of the parameter 1] = 1]n by 

- 10 11 'I' n = <l>n u , u = 1 ° ' (35) 

where the tilde sign means transposition, i.e., in particular, 
transition from the vector column to the vector row. Then, it 
can easily be verified that if the vector column <I> = <I> n satis
fiesEq. (33) at 1] = 1]n' the vector column <I> = uA<Pn satis
fies the same equation at 1] = - 1J n and the vector row 
'I' = <I>~A by virtue of (35) satisfies Eq. (34) at 1] = -1Jn' 
Assume finalfy that the integer N is even, i.e., N = 2No, the 
quantities 1]n satisfy the conditions 1]N,,+n= -1Jn' 1]n 
+ 1Jn #0, n = 1, ... ,No, and the constants e and x are pure 

imaginary. From the aforementioned we assume that at 
n = 1, ... ,No 
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where ~ = 1. Then, at n = 1, ... ,No the equalities 

I 
0 tp~ I [A,<I>n 'l'n] = 2En _ Vl;. 0 ' 

[A,<I>No +n'l'No +nl =2Enl_~~ ¢l;.on I 

are valid, wheretpn and tPn are the vector column <l>n compo
nents. Hence, it follows from (29) and (31) that in the case 
under consideration the system (28) has the form 

au No 2-- + cq = 2x L En (tp n + Vl;.), at n= I 

tp ~ + utPn - 1]ntpn (37) 

= tP~ - utpn + 1]n tPn = 0, n = 1, ... ,No· 

At ko = 1, c = - 2i, and x = - i the first equation of this 
system has the form 

au a2u N" _ 
i-+2Iu I2U +-2 =2 L f"n(tp; +~), at ax n= I 

i.e., differs from the nonlinear Schrodinger equation6 by the 
expression in the right-hand side of this equality. 

In Sec. VII, we shall present the scheme of integrating 
the system (37) in the class of rapidly decreasing x func
tions. 

VII. INTEGRATION OF THE SYSTEM (37) 

It will be shown that in the class of rapidly decreasing x 
functions the system (37) can be integrated by the inverse 
scattering method for the operator L of the form (23) with 
the matrices A and U determined by (29). More exactly, let 
Uo = uo(x) be an arbitrary complex-valued function of x 
rapidly enough decreasing with its derivatives with respect 
to x (up to a certain final order dependent on ko) as 
x ..... ± 00. Assume that the system of equations 

tp' + utP - 1]tp = 0, tP' - utp + 1]tP = 0 (38) 

at u = uo(x) has exactly 2No points of the discrete spectrum 
1]1, ... ,1]N", -Til"'" -TiN,,· Let further An (t) be arbitrary 
continuous functions of t, n = 1, ... ,No. Below we shall indi
cate the conditions under which the system (37) has the 
solution u = u(x,t), tpn = tpn (x,t), tPn = tPn (x,t), 
n = 1, ... ,No, such that 

u(x,O) = uo(x), (39) 

J: 00 tpn (x,t)tPn (x,t)dx = An (t), n = 1, ... ,No· 

(40) 

To solve this problem we should apparently analyze 
. how the data on the scattering of the system (38) change in 
time if the potential u = u(x,t) satisfies the system (37) and 
the conditions (39) and (40). For this purpose we assume 
1] = i~, where ~E ( - 00,00) and take the solutions tp _, tP
and tp+,tP+ of the system (38) satisfying the requirements 

1109 

tp_ -0, tP- -exp( - i~x), x ..... - 00, 

tp+ -exp(i~x), tP+ -0, x ..... 00. 
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(41) 

Apart from the solution tp, tP, the functions ¢, - '?P also sat
isfy the system (38). Therefore, the matrices F 0- and F 0+ of 
the form 

(42) 

are the fundamental matrices of the solutions of the system 
(38). Hence, the equality 

(43) 

is valid where the elements Sap of the matrix S are indepen
dent of x, a,p, = 1,2. By virtue of the equality det F 0-

= det F 0+ = 1 it follows that 

Sl1 = tp+tP- - tp-tP+, S12 = - tp-'?P+ - tP-¢+, 

S21 = tp+'?P- + tP+¢-, S22 = '?P+¢- -'?P-¢+, 

i.e., 

S22 = Sl1' S21 = - Si2' 
det S = ISl112 + ISnl2 = 1. 

According to (25) we assume at n = 1, ... ,N 

F n- = J~ 00 'I' n (z)F 0- (z,~)dz, 

F n+ = - Loo 'I' n (z)F 0+ (z,~)dz. 

(44) 

(45) 

Then, we determine the matrices G 0- ,G 0+ ,G 1- ,G t , ... , 
G;; ,G : by substituting the matrices F 0- ,F 0+ ,F 1- ,F t , ... , 
F;;,F: of the form (42) and (45) into equality (26). With 
(27) one can easily be convinced thatatn = 1, ... ,N theequa
lities G n- = G n+ =0 are valid. Taking this fact into account 
and using (26), (27), (30), (32), (41), and (42) we get the 
equalities 

G 0- = c(i~)2koF 0- A, G 0+ = c(i~)2k.,F 0+ A. (46) 

Now we take the equality following from (26) and (46): 

change in it F 0+ by F 0- S and pass to the limit as x ..... - 00. 

As a result of simple calculations we get the equality 

(47) 

defining the evolution in time of the matrix S of the form 
( 43 ). It is seen from this equality that the evolution of the S 
matrix is by no means influenced by the expression in the 
right-hand side of the first equation of the system (37). 

As is known, the solutions tp-,tP- and fP+,tP+ of the 
system (38) determined by (41) admit an analytical con
tinuation in ~ into the upper half-plane. Hence, it follows 
according to (44) that the function S II also admits an analy
tical continuation in ~ into the upper half-plane. Further, the 
zeros ~ = ~n' n = 1, ... ,No, of the function Sl1 in the upper 
half-plane correspond to the points of the discrete spectrum 
of the operator L since by virtue of (44) the following equali
ties are valid: 
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f/J+(x,tn) = Bnf/J-(x,tn), 

tP+(x,tn) = BntP-(x,tn), 
(48) 

where the quantities Bn are independent of x, n = 1, ... ,No. 
With (38) one can verify that at any m,n = 1, ... ,No the fol
lowing equalities are valid: 

J:oo {f/J+(x,tm)tP+(x,tn) 

+ f/J+ (x,tn )tP+ (x,tm )}dx = 0, m=l=n, 

Loooo {f/J+(x,tm)q5+(x,tn) 

- tP+ (x,tm )¢+ (x,tn )}dx = 0. 

(49) 

Moreover, according to (38) and (44) we get that at any 
n = 1, ... ,No the following relation holds: 

J: 00 {f/J+(x,tn )tP-(x,tn) + f/J-(x,tn )tP+(x,tn )}dx 

= i aSl1 I . (50) 
at t= tn 

Let L = diag(O,1), /+ = diag(1,O). According to the 
aforesaid, it follows from (42) that the matrices 10-
= F 0- / _ and 10+ = F 0+ / + admit an analytical continu
ation in t into the upper half-plane. From (45) it follows 
that the matrices I;; = F n- / _ and 1 n+ = F n+ / + at 
n = 1, ... ,N also admit an analytical continuation in tinto the 
upper half-plane. Finally, by virtue of (26) it follows that the 
matrices gn- = G n-/_ and gn+ = G n+/+ at n=O,I, ... ,N 
also admit an analytical continuation in t into the upper 
half-plane. Moreover, it follows from the second of the equa
lities (26) that at 1/ = 1/ n = it n the identities 

'" n (x)A/o- (x,tn) = '" n (x)A/o+ (x,tn) =0, 
n = 1, ... ,No, 

take place. Using the latter we get from (36) that the compo
nents f/Jn and tPn of the vector column cI> n must have the form 

(51) 

where the quantities Cn are independent of x, n = 1, ... ,No. 
The equalities following from (26), 

alo- "If - ~ '" 1 - ---+Cft 0 +X ~ '¥n n =go , at n= 1 

(52) 

alo+ . "If + ~ '" 1 + + --+ Cft 0 + X ~ '¥ n n = go , at n= 1 

(53) 

based on the aforesaid, admit an analytical continuation in t 
into the upper half-plane. Moreover, according to (42) and 
( 46) the following equalities are valid: 

go- = - cUt)2"'fo-, go+ = cUt)2"'fo+· 

Taking account of ( 48) we find that t = t m the relations 

10+ (x,tm) = Bm 10- (x,tm )0', 

go+ (x,tm) = - Bmgo- (x,tm )0', m = 1, ... ,No, 

are fulfilled. Now we multiply equality (52) from the right 
by the matrix B m 0' and subtract the obtained result from 
equality (53). Hence, we get that at t = tm the following 
matrix equality holds: 
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aB N 

~/o-(x,tm)O'+X L <l>n(x){ln+(x,tm) at n=1 

- Bm I;; (x,tm )O'} 

= - 2Bmgo- (x,tm )0', m = 1, ... ,No. 

We pass in this equality to the limit as x -+ - 00. From (45) 
we get at m = 1, ... ,No and n = 1, ... ,N: 

x- - 00 

x~i~ 00 1 n+ (x,tm) = - J: 00 '" n (z)/o+ (z,tm )dz. 

By virtue of (36) and (48 )-( 51) at n =1= m the equality 

Loo 00 '" n (z)/o+ (z,tm )dz = 0 

is valid and at n = m we have 

J: 00 '" n (z)/o+ (z,tm )dz = Hm, 

where Hm is the vector row with the components hm,l and 
hm ,2 of the form 

hm 1 = i€mBm Cm aSl1 I ' hm 2 = 0, m = 1, ... ,No· , at t=tm . 

Using these equalities we get the relation 

aBm . 21e" _ 
- [xh m 1 Cm + 2C(ltm) ]Bm - 0, m = 1, ... ,No· at ' 

(54) 

In the case when all zeros t = t m of the function Sl1 in the 
upper half-plane are simple, the inequality 

aSl1 I =1=0, m = 1, ... ,No, 
at t=tm 

is valid. Consequently, choosing the quantities Cm entering 
into (51) so as to fulfill the relation 

iBmC;" aSl1 l = Um' m = 1, ... ,No, (55) at t=tm 

we can finally satisfy the condition (40) and Eq. (54) can be 
written in the form 

aBm . 2k 
- - 2[ C(ltm) "+ X€m'Am (t) ]Bm = 0, m = 1, ... ,No. at 

(56) 

Thus, from the given functions 'Am (t), according to this 
equation we determine the quantities B m and then on the 
basis of (55) we find Cm' m = 1, ... ,No. 

Equations (47) and (56) completely determine the evo
lution of the scattering data of the system (38). In the case 
when all the zeros of the function Sl1 in the upper half-plane 
are simple and the SII function itself does not vanish at any 
real t, the obtained data are used to determine in a known 
way the kernel of the integral Gel'fand-Levitan equation 
and the problem is thus reduced to the solution of this equa
tion. The solution U = u(x,t) of the system (37) satisfying 
the condition (39) is derived by solving the Gel'fand-Levi
tan equation in a known way. Then, according to (47), limi
tations on the SII function pointed out above will be fulfilled 
to any t> 0 if they are fulfilled at t = O. This imposes certain 
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additional requirements on the function Uo = uo(x), which 
have already been mentioned at the beginning of this section. 

VIII. MODIFIED KORTEWEG-DE VRIES EQUATION 
WITH A SELF-CONSISTENT SOURCE 

Let us give one more interesting example of the system 
(28). Again, let ro = 2, A = diag( 1, - 1) and the matrix U 
have the form 

U= I~ ~I, (57) 

where the function u satisfies the condition u = u. As is 
known,5 in this case at any ko> 0 there exists operator A of 
the form 

2k" - • 
A = a 2k,,+. + L Aka k 

k=O 

such that the operator 1:1 = [A,L] is the symmetric matrix 
with zero elements on the principal diagonal, i.e., 

(58) 

In this case the quantity q is the polynomial of the function u 
and its derivatives with respect to x up to the (2ko + l)th 
order, and the matrices AO, ••• ,A2k" _. satisfy the condition 
(32). 

Consider now Eqs. (33) and (34) with the potential U of 
the form (57). One can easily be convinced that if the vector 
column <I> = <I> n with the components tp nand ,p n satisfies 
Eq. (33) at 'IJ = 'IJ n' the vector row 'I' = c1> n u with the com
ponents ,pn and tpn satisfies Eq. (34) at 'IJ = 'lJn. Then, one 
can easily verify that if the vector column <I> = <I> n satisfies 
Eq. (33) at 'IJ = 'IJ n' the vector column <I> = Au<I> n satisfies 
the same equation at 'IJ = - 'lJn and the vector row 
'I' = c1>nA satisfies Eq. (34) at'IJ = - 'lJn. Finally, note that 
if the vector column <I> ~ <I> n satisfies Eq. (33) at 'IJ = 'IJ n' 
the vector column <I> = <I> n satisfies the same equation at 
'IJ = r;n' the vector row 'I' = <I>~u satisfies Eq. (34) at 
'IJ = r;n' the vector column <I> = A~n satisfies Eq. (33) at 
'IJ = - r; n and the vector row 'I' = <I>~ A satisfies Eq. (34) at 
'IJ = - r;n· Assume that integer N is multiple to 4, i.e., 
N = 4No, the quantity 'lJn satisfies the conditions 

'lJNo+n = -'lJn' 'lJ2N.,+n =r;n,'lJ3N.,+n = -r;n, 

'lJn + r;n #0, n = 1, ... ,No, 

and the constants c and x are real. With due regard to the 
aforesaid we assume that at n = 1, ... ,No: 

'l'n = Enc1>n u , <l>No+n = Au<I>n, 'l'No+n = Enc1>n A , 

<l>2No + n = Ci> n' 'I' 2No + n = En <I>~u, 
<l>3No+ n = AuCI>n, 'l'3No+ n = En<l>~A, 

where ~ = 1. Then, at n = 1, ... ,No the equalities 

1 

0 tp ~ 1 [ A, <I> n 'I' n] = 2E n _ ~ 0 ' 

-~I o ' 
-21 tpn 
o ' 
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I 0 -0~1 [A,<I>3No+n'l'3No+n] = 2En -2 
tpn 

are valid where tpn and,pn are the components of the vector 
column <I> n. Hence, it follows from (57) and (58) that in the 
case considered the system (28) has the form 

au ~ 2 -2 .,;2 -:i;2 - + cq = 2x ~ En (tp n + tp n - 'f'n - 'f'n). 
at n=. 

tp ~ + u,pn - 'lJntpn (59) 

=,p~ - utpn + 'lJn,pn = 0, n = 1 •... ,No· 

Note that in obtaining this system we did not assume any
where that 'lJn #r;n' n = 1 •... ,No. In the case when the equa
litY'IJn = r;n really takes place at some n = m. this results in 
that the components tpm and,pm of the vector column <l>m 
can be assumed real, and consequently, some terms in the 
right-hand side of the first equation of the system (59) are 
met twice. At ko = I, c = 4, and x = 1 the first equation of 
(59) is 

!!!... + ~ (2u3 + a 2u ) 
at ax ax2 

i.e., differs from the modified Korteweg-de Vries equation? 
by the expression in the right-hand side of this equality. 

Integration of the system (59) is very similar to that of 
the system (37) and, therefore, is omitted. 

IX. SECOND-ORDER MATRIX OPERATOR 

The results obtained in Sec. V admit generalization to 
the case of an arbitrary-order matrix operator. However, 
avoiding cumbersome formulas we restrict our considera
tion to the second-order matrix operator. Thus let 

(60) 

where A, U., and Uo are the square matrices of an arbitrary 
order r 0 > 1. In this case A is the diagonal matrix with con
stant elements on the principal diagonal, and the matrix U. 
has zeros on the principal diagonal. Let then A be a differen
tial operator of the form (24) such that the operator 
1:1 = [A,L] is of the first order, i.e., 1:1 = l:1.a + 1:10 where 1:1. 
and 1:10 are the square matrices of the order roo It is well 
known that on the principal diagonal. the matrix 1:1. has ze
ros. 

Consider the linear system of equations 

(L - 'IJ)Fo = 0, F~ = 'l'nFo, n = I, ... ,N, (61) 

with respect to unknown matrices Fo,F., ... ,FN. We assume 
that Fo is the square matrix of an order of r 0 and the matrices 
F., ... ,F N and 'I' ., ... , 'I' N have r. rows and ro columns. Suppose 
that 

Go = aFo + cAFo + x f. <l>nFn. 
at n=. 

Gn = 'l'nAF~ - 'I'~AFo (62) 

+'I'nU.FO-('IJ-'lJn)Fn, n=I, ...• N, 

where the matrices <I>., ... ,<I>N have ro rows and r. columns, 
and consequently, Go is the square matrix of an order of ro 
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and the matrices GI, ... ,GN have 'I rows and '0 columns. 
Now we require the matrices GO,GI,. .. ,GN determined 

by (24) and (60)-(62) to satisfy the conditions 

N 

(L - 'TJ)Go = /C L ~nGn' n= 1, ... N. 
71=1 

(63) 

By simple calculations we get that for the validity of the 
conditions (63) it is necessary and sufficient to fulfill the 
relations 

aL + c[A,L ] = /Cr, 
at 

A~; + UI~~ + UO~n = 'TJn~n' (64) 

'I1:A - ('11 71 UI )' + '11" Uo = 'TJ" '11", n = 1, ... ,N, 

where the operator r has the form 
N 

r = L ([ A,~" '11" a -~" '11~] 
,,=1 

+2A(~n'l1,,)'- [UI,~,,'I1nJ} (65) 

Let '0 = 2 and ko = O. Assume 

UI = I ~ p ~ I, Uo = I q ~ Yi' q ~ y,' I ' 
a l - a2 A d' 1 1 Co = ,= lag(AI""2)' 
AI -A2 

Al = diag(a l ,a2 ), Ao = COUI, 

where A I #A2 and a I # a2 are arbitrary real constants. In this 
case the system (64) in accordance with (65) becomes 

~+c aq+b~ =/cA L E"9',,¢,,, a ( a ) N 

at ax ,,=1 

au au (1 a 1 12 - -) -+alc-+cco -- p +pq+pq 
at ax 2ax 

= /C f E" (UI aa 19'" 12 + p7j5n f/!" + P9'" ¢,,) , 
,,=1 :x 

aq aq 1 a 2p - + cao - - - ca -- - cco(u - v)p 
at ax 4 ax2 

N { a _ 
=/C L En U O-(9',.f/!,,) 

,,=1 aX 

+~A (a9'" J, _ a¢,,) 
2 ax '1'" 9'" ax 

- (19'" 12 - If/!" 12)p} , 

AI9': + pf/!~ + u9'" + (q + y,')f/!,. = 'TJ"9',,, 

A2f/!; - P9' ~ + (q - Yi')9'" + vf/!" = 'TJ" f/!", n = 1, ... ,N, 

where 

1112 

A = Al - A2, Ao = ~(AI + A2 ), 

a = a l - a2, ao = !(a l + a2 ), 

b = ~al - !a2 - 2CoAi = - !al + ~a2 - 2CoA2' 
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Moreover, u and v are real functions, c, /C, and 'TJI, ... ,'TJN are 
real parameters, and ~ = 1, n = 1, ... ,N. 

X. THE KADOMTSEV-PETVIASHVILI EQUATION WITH 
A SELF-CONSISTENT SOURCE 

The above-mentioned procedure of deriving nonlinear 
integrable systems is also applicable to the case of two space 
variables. To illustrate this statement let us consider the fol
lowing example. Let L and A be linear differental operators 
of the form 

L=a;-iay+u, A=4a~+3(uax+ax'u)+ip, 
(66) 

where ax and ay are the differentiation operators with re
spect to the space variables x and y, respectively, and u and p 
be the scalar functions. Consider a linear system of equations 
of the form 

aj,. 
(L-A)!o=O, -=f/!,,/o, n=l, ... ,N, (67) 

ax 

with respect to the functions !O./I""./N' The functions 
f/!I, ... ,f/!N will be determined below. Then, with the solutions 
/0, h'···./N of the system (67) we determine the quantities 
gO,gl, ... ,gN by the equalities 

(68) 

where 9'1, ... ,9'N are certain (yet undetermined) functions. 
Now we shall find out what requirements are to be im

posed on the functions u, p, 9'1"",9'N' f/!I, ... ,f/!N in order that 
the quantities gO,gl, ... ,gN determined by (66)-(68) should 
satisfy the conditions 

Nag" 
(L-A)go=4 L 9'"g", -=0, n= 1, ... ,N. (69) 

,,= I ax 

By simple calculations we get that for the validity of the 
conditions (69) it is necessary and sufficient to fulfill the 
equalities 

aL N a 
-a + [A,L] = 8 L -a (9'"f/!,,), 

t 71 = 1 :x (70) 
(L - A" )9'" = (L - An )f/!" = 0, n = 1, ... ,N, 

where 
- 2 • L=ax+zay+u. (71) 

With the allowance made for (66) the first of the equalities 
(70) is equivalent to the system of equations 

~+6u~+ a3~ -8 f ~(9'"f/!,,) = ap , 
at ax ax ,,=1 ax ay 

ap =3~. 
ax ay 

Eliminating p we get 
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3 a 2U _ ~ [au + ~ (3U2 + a 2U 
aj2 ax at ax ax2 

- 8 ntl q;n tPn) ] = o. 
In the case when all An are real values we may assume, 

by virtue of (71), that u = u and tPn = EnfPn' where ~ = 1, 
n = 1, ... ,N. Thus the system (70) takes its final form 

3 a2u _~ [au +~(3U2 + a2
u 

aj2 ax at ax ax2 

- 8 ntl En Iq;n 12)] = 0, (72) 

. aq;n a 2q;n 
1-- = --2- + (U - An )q;n, n = 1, ... ,N. ay ax 
At q;n =0 the first equation of this system turns into the well
known Kadomtsev-Petviashvili equation.8 Note that in Ref. 
9 the operator representation has been found for this system, 
in Ref. 10 a multisoliton solution has been constructed and 
in Refs. 11 and 12 the dynamics of a multisoliton solution is 
investigated. However, the approach expounded in this sec
tion allows one to look differently upon the problem of inte
gration of the system (72). 
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XI. CONCLUSION 

In conclusion, we should like to emphasize that all the 
systems obtained with the help of the procedure expounded 
in this paper have one remarkable property: They can de
scribe the soliton capture and confinement processes. This 
means that all these systems have solutions describing soli
tons that come from infinity, then are captured into different 
oscillatory regimes and remain in them during all subse
quent time moments. For the first time this phenomenon has 
been observed in Ref. 13 and then investigated in detail in 
Refs. 3, 12, and 14. 
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In this note the inaccuracies contained in the above mentioned paper are corrected and some of 
the results therein are modified and extended. In particular, formulae are given for directly 
calculating the coefficients of the heat kernel expansion, not making appeal to recurrence in 
the heat equation. The nonexistence of a class of anomalies in odd dimension is proved. 

I. INTRODUCTION 

Our starting point is the Mellin transform expansion for 
the solution of the "heat equation"-the so-called heat 
kernel associated to an elliptic operator H of order m, acting 
on a D-dimensional compact manifold without boundary, 
which has been obtained in a previous paper. I We consider in 
this note only differential operators of order m even. The 
diagonal part of the heat kernel has, for t.( 1, the asymptotic 
expansion, 

F(t;x,x) = - (41Tt) - Dim 

X {i: (41T)Dlm ( -,1)/ K(l;x,x)t'+ (Dim) 
1=0 1. 

+ ~r(D,:-j)Rj(X) (41T)Dlmtj/m}, (1) 

where Rj (x) is the residue of K( l;x,x) at the pole situated 
at s (j - D)/m, K(s;x,x) is the diagonal part of the 
Seeley's analytic extension to the complex s plane of the ker
nel K(s;x,y) of the power operator H S (see Ref. 2), and the 
sum over j excludes the values of j such that (j - D)/ 
m =0,1,2, .... 

Concerning our paper in the title (henceforth refered to 
as Paper I) we first observe that we have not taken into 
account the vanishing of the residues of the poles of K (s;x,x) 
at all integers s values ;;;'0 in the best way, in the derivation of 
our asymptotic expansion. When this is done, we need 
neither introduce the function r/J( I) in formula (1.4) of 
Paper I, nor calculate its derivatives at the points s I, so the 
coefficients of the sum over I in (1) are obtained in a much 
simpler way. The simplified derivation of the asymptotic ex
pansion (1) is given in Ref. 1. It follows that the formula 
( 4.3) in Paper I is unnecessary [by the way, there is a mis
print in that formula-the factor ( - 2) must be dropped 
out J and the expression for the anomaly in dimension D is 
given directly by 

A =qTr{(X + Y) [K(O;x,x) +P,,(x)]} (2) 

aj On leave of absence from Centro Brasileiro de Pesquisas Fisicas·CBPF I 
CNPq-Post doctoral fellow of CAPES (Brazil). 

Equation (2) replaces Eqs. (4.2) and (4.5) of Paper 1. 
As it was remarked in Ref. 1 the series (1) looks differ

ent from the de Witt ansatz3 currently used for even D and 
operators of order m = 2, 

'" 
F(t;x,x) = (41Tt)-DI2 LCn(x) tn. 

n 0 
(3) 

For our expansion (1) to coincide formally with (3) it 
would be necessary, for example in even D and m = 2, that 
all the residues Rj(x) vanish for odd values of j and 
(j - D)/m;60,1,2, ... , which is not explicitly stated in See
ley's paper.2 

II. THE VANISHING OF SOME RESIDUES OF THE POLES 
OF K(S",x,x) 

To further investigate this point we remember that 
Rj(x) is given by 

R.(x) = 1 r dg 
J im(21T)D+ 1 Jisl I 

xi dAA (j-Dllmb_m_/X,g,A), (4) 

where r is a curve coming from 00 along a ray of minimal 
growth, clockwise on a small circle around the origin 
and then going back to 00. The quantities b m _ j are ob
tained from the coefficients am _ k of the symbol of H, 
u(H) (x,g) = 1:0am _ k (x,g) , by the set of equations 

b_m(am -A) = 1, 1=0, (5a) 

1 (a)a bml=-(am-A) Lag b_ m _ j 

D a 1 
X x-am 

a! 
(5b) 

where multi-index notation for a is used and the sum is taken 
for 

j<i, j+k+ lal =1, lal=al + ... +aD • 

Now, from the definition of the am k'S, 
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am_dx,€) = L Ha€a, 
lal =m k 

where the Ha are the coefficients of the operator H in 
Seeley's notation, we see that the parity in the €-variables 
of am k is ( l)k, and from (Sa) that the parity in € of 
b _ m is always equal to 1. Then by induction (the recurrence 
hypothesis is easily verified directly for the two first steps) 
we obtain from (Sb) that the parity in € of b m I (x,€,A.) 
equals ( - 1) I for any r;po. Thus from Eq. (4) since the 
integration over € is constrained to the unit sphere (in the 
cotangent space) I€ I 1, we see that Rj(x) vanishes/or j 
odd. 

To see the implications of the vanishing of the residues 
of these poles of K(s;x,x,) , we consider separately the two 
situations of the manifold dimension D being even and being 
odd. 

( 1 ) D even: D = 2p; m = 2q (remember we consider m 
even). In this case, since the sum over j in (l) is such 
that (j - D)lm=l=O,t,2, ... , we must have j=l=2(qk + p), 
k = 0,1,2, ... , i.e., the only allowed even values of j are 
those smaller than 2p 2; otherwise j is odd. But if j is 
odd, Rj(x) vanishes, therefore for even D the asymptotic 
expansion is given by the first sum (sum over I) in ( 1) and a 
piece of the sum over j, corresponding to j = 0,2, ... ,2p - 2. 

(2) Dodd: D = 2p + 1; m = 2q. All theK(/;x,x) van
ish: they are given by the integral2 

K(l;x,x) 1 (d€ 
( - 1)"/(21T)D JI5"1 = 1 

xL d:i:ilb_m_lm_D(X'€,A.), (6) 

which is zero by the parity argument above, since 
1m + D = 2(lq + p) + 1 is odd. The asymptotic expansion 
is given by the second sum (sum over j) in Eq. (1), if their 
coefficients do not vanish. This is indeed the case, for we 
must have (j D)lm=1= k, k = 0,1,2, ... ; so, 
j=l=2(qk + p) + 1, i.e.,j must be even. But, ifj is even, the 
Rj(x)'s do not vanish by the same parity argument above. 

III. CONCLUSIONS 

In the case of D even, the expansion coincides formally 
exactly with the de Witt ansatz, in the sense that the series 
remaining after factorization of (41Tt) Dim is a series of in
teger powers of t, if P is a multiple of q (D 12 is a multiple of 
mI2). Otherwise the sum over / in (1) contains only frac
tionary powers of t, although of course the series as a whole is 
made up of integer powers of t. 

For odd D, the series has, after factorization of 
(41Tt) - Dim, integer or fractionary powers of t if, respec
tively, j/2 is or is not a multiple of q = m12. The global 
powers of t are in any case fractionary. 

In the special but important case of a differential opera
tor H of order m = 2, the asymptotic expansion (1) has the 
form of the de Witt ansatz, 

00 

F(t;x,x) (41Tt) DI2 L al(x) t l, (7) 
1=0 
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where the coefficients a I (x) are: 
for even D, 

al(x) = - r( D~21 )R21 (X)(41T)DI2; 

D 
1 = 0,1,2, ... , - 1, 

2 

al(x) = ( - 1)lKUx X)(41T)DI2. 
1! ' , , 

D D 1=-,-+ 1, ... , 
2 2 

and for odd D, 

(8) 

a[(x)= r(D~21)R2I(X)(41T)D/2. (9) 

Another implication of the vanishing of R j (x) for 
oddj is that the residues of the new poles of the Hawking's 
zeta function €(s), which we had claimed to exist in Paper I, 
vanish in even dimension D. On the other side, those poles 
are already present with nonvanishing residues for odd D 
and situated at the values s CD - j)lm forj = 0.2,4 ..... 

Also, replacing (6) in (2) we see that all the class of 
anomalies described by Cognola and Zerbini4 cannot exist in 
odd dimension. due to the vanishing of K(O;x,x). This is to 
be compared with previous results from both the mathemat
ical and physical literature, such as those in the papers by 
Greiner,S Gilkey,6 and Romanov and Schwartz,7 which ex
plicitly exhibit the connection between the Seeley's kernel 
and the coefficients of the heat kernel expansion, in the case 
of a differential operator. As a consequence, an elliptic dif
ferential operator acting on an odd-dimensional compact 
manifold without boundary has zero index. From a physical 
point of view this may be interpreted as the absence of anom
alies. Here we recover this fact. 
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By developing certain auxiliary results, a modified version of the stochastic averaging principle 
is developed to investigate dynamical systems consisting of fast and slow phenomena. 
Moreover, an attempt is made to establish a relationship between the averaging assumption 
and certain ergodic-type properties of the random process determined by an auxiliary system 
of stochastic differential equations. Finally, an example is given to illustrate the scope ofthe 
results. 

I. INTRODUCTION 

In physical and engineering sciences several dynamical 
systems possess slow and fast phenomena. A mathematical 
model for such systems is described by a system of singularly 
perturbed differential equations. For example, singularly 
perturbed systems very often occur due to the presence of 
small "parasitic" parameters (masses, capacitors, etc.) mul
tiplying time derivatives of some of the state variables. A 
simplified model of such systems is often based on the as
sumption that during the fast transients, the slow state vari
ables remain constant and by the time their changes become 
noticeable, the fast transients have already reached their 
quasisteady states. Then the only state variables used for 
short term studies are the fast variables while the slow state 
variables are considered as constants. In long term studies 
the model is formed by the slow state variables. This com
mon practice is mathematically inconsistent because it treats 
the time-varying quasisteady state variables as constants, 
that is it neglects their derivatives. Instead, a rigorous ap
proach to this type of a model simplification is to treat it as a 
multitime scale singular perturbation problem. The difficul
ties in studying such a problem are due to cross interactions 
of slow and fast modes. 

The main objective of the present work is to formulate 
sufficient conditions for the exact mathematical model of a 
dynamical system consisting of slow and fast state variables 
to be close to its simplified form as mentioned above. The 
present result extends and generalizes the work in Ref. 1. 
The paper is organized as follows. Section II deals with cer
tain notions and definitions. In Sec. III some auxiliary re
sults are developed. These results will be utilized in the sub
sequent discussion. In Sec. IV we state and prove a stochastic 
version of the averaging principle. I This result is applicable 
for systems of singularly perturbed stochastic differential 
equations with coefficients that admit certain growth condi
tions. Furthermore, sufficient conditions are given to ex
press the drift of the limit process in terms of an ergodic 
measure. Finally, the result is illustrated by an example. 

II. DEFINITIONS 

Let us consider the following stochastic singularly per
turbed system (SSPS): 

dX~ = bl(X~,Y;)dt 

+O'I(X~,Y~)dW,. X~=Xo, 

dY~ = (1/E)b2(X~,Y~)dt 

+ (1/v'E)O'2(X~,Y~)dW,. Y~ = Yo, (2.1) 

for tE [0, To), where EE(O,I), bl = bl (x,y), and b2 = b2(x,y) 
are n and I-dimensional vectors (respectively), 0'2 = 0'1 (x,y) 
and 0'2 = 0'2 (x,y) are nXm and I Xm matrices (respective
ly) for xERn ,YER I, W denotes the standard m-dimensional 
Wiener process, Xo and Yo are initial random vectors. Let us 
assume that the classical conditions2

•
3 for existence and 

uniqueness of L 2-s01utions of system (2.1) are satisfied. In 
particular,from now on we assume that functions bl' b2, 0'1' 
0'2 satisfy the global Lipschitz condition and the sublinear 
growth condition.2

•
3 

Let us denote by (,Yt )t >0 the standard filtration corre
sponding to the Wiener process W. We will also use another 
m-dimensional standard Wiener process W = (Wt ) t>O de
fined on the same probability space and independent of W. 
The existence of such a process may be assumed without loss 
of generality by considering (if necessary) an augmentation 
of the underlying probability space. For any tE[O,To] and 
any 'yt-measurable n and I-dimensional random vectors Z 
and V (respectively) we introduce a random process 
( Y ;v) s>O which is defined by means of the following system 
of stochastic differential equations: 

dY;v = b2 (Z,y;v)ds + O'2 (Z,y;v)dWs , Y~v = V. 
(2.2) 

Under the above assumptions on b2, 0'2' and the Wiener pro
cesses W, W, the L 2 solution of system (2.2) exists and is 
uniquely determined on the infinite time-interval [0,(0). 

For any real numbers a,/3 (a </3) and for a natural 
numberd let us denote by M2( [a,{3];Rd) the vector space of 
all adapted, measurable d-dimensional random vectors 
(gt ) tEla.1i J for which S~E Ilg, 112 dt is finite. 

III. AUXILIARY RESULTS 

In this section we present some results that will be used 
in the subsequent discussion. First two simple lemmas deal 
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with shifting and rescaling of the time interval in a stochastic 
integral. 

Lemma 3.1: Let M = (Mt ) tE[P,P + ~ I be a random pro
cess with values in the vector space of p X m matrices ( pEN, 
p> 0, fl. > 0). WealsoassumethatMeMz( [P,P + fl.]; Rpm ). 

Then 

where W* (W~) t;;.O is a "shifted" Wiener process de-
fined as W ~ Wt + P - Wp for t>O. 

Proof The stochastic integral on the right-hand side of 
the formula exists. Indeed, it is easy to see that [§ 1 = Y p + 1 

for t>O, where [§ = ([§ , ) t;;.O is the standard filtration deter
mined by the shifted process W*. The measurability require
ment for a random process in stochastic integral follows 
from this. It is easy to prove assertion of the lemma for M 
being a step process. In the general case the proof follows 
from the standard limiting procedure. 

Lemma 3.2: Let M = (Mt)tE{O,.BIE} be a matrix-valued 
stochastic process such that MeM 2

( [O,P IE]; R pm), where 
pEN,p> 0, EE(O,t). Then 

where W** ( W~*) 1;;.0 is a "rescaled" Wiener process de-

fined as W~* = .JEwlle for 1>0. 
Proof We note that because of the form of the rescaled 

process W** and assumed measurability conditions for M 
the stochastic integral on the right hand of the formula ex
ists. It is easy to prove assertion of the lemma for a step 
process M. The proof in general case follows from passing 
into the limit. 

Lemma 3:3: Let us suppose that in addition to the stand
ing assumptions on the coefficients ofSSPS (2.1) the follow
ing conditions are also satisfied: 

(i) xbl(x,y) + yb2 (x,y)..;; a( Ixl2 + lyl2) for XEW, 
yeRl, where a> 0 and where for any vectors A and B we 
denote by AB their scalar product, 

(ii) U j is globally bounded (i 1,2) . 
Then there exists a positive constant C such that for any 

EE(O,l) 

sup E IX~12<C and sup E I Y;[2<C IE, 
1;;.0 ,;;.0 

where XE and yE are the solution processes ofSSPS (2.1) 
defined on the infinite time-interval. 

Proof By applying the Ito formula for the function 
l(t,z) = exp(2at) Izl2 (1)0, zeR" or zeR/ ) and the solution 
processes of system (2.1) we obtain 

d{~at'XtI2} = [Zalxtl2 + 2Xtbl(Xt>Yt ) 

+ IUI(XOYtW]e2al dt 

+ 2X~UI (Xt'YI )e
2al dW" (3,1) 

and also 
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d{~aIIYI12} = [ZaIYtI2 + ! Y1b2(Xn Y1 ) 

+ ~ lu2(X1,Y1W ]e2al dt 

+ ~Y~U2(Xt'Yt)e2atdWI' (3.2) 
.JE 

where * denotes the transposition and for notational simpli
city we have supressed the superscript E. After multiplying 
(3.2) by E, adding integral forms of (3.1) and (3.2), taking 
expected values on both sides of the resulting equality, and 
using assumptions, we obtain 

E( IXt 12 + EI Yt 1
2 )e2al 

<E(IXoI2+EI YoI2) + L [2a(EIXsI2+EEI YsI2) 

- 2a(E IXsl2 + E I Ys12) + Cd cas ds 

<E( IXol2 + EI Yo12) + Lc)e2as ds 

<CZ + C ll2a)e2a" (3.3) 

for 1>0, where C)' C2 are positive constants. Inequality (3.3 ) 
implies that 

E IXt I2<C2e - 2at + C';2a..;;C and also EE I Y,1 2<C 

for 1>0, where C is a constant independent of E and t. The 
proof of the lemma is complete. 

Next, we introduce some auxiliary random functions. 
Let us fix a positive number fl. and a natural number k such 
that kfl. < To. For any EE(O,I) we define a random process 
A 

yE by means of the following relation: 

(3.4 ) 

fortE[kfl.,min{(k + l)fl.,To», whereX~~ and Y~~ are slow 
and fast solution processes at time kfl.. Let us also define the 

A 

following process X E: 

X~=Xo+ L bl(XisIA1A,Y~)ds+ L ul(X~,Y~)dWs 
(3.5) 

for tE[O,To], where [*] denotes the greatest integer func
tion. For simplicity).., we do ~ot indicate explicitly the depen
dence of processes rand Y" on the grid size fl.. 

By applying Lemma 3.3 we will prove the following fact: 
Lemma 3.4: Let us suppose that the assumptions of 

Lemma 3.3 hold. Then 

sup E IX~ - Xr'/~J~ 12..;;C~ + Dfl., 
IEIO.To.) E 

where fl.E(O,To), C, D are positive constants, and X E is the 
slow solution process. 

Proof Let us fix any tE [0, To] and let tE [kfl., (k + 1) fl.). 
We can write 
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X~ -Xk~ = (bl(X~,Y~)ds+ ( O"I(X~,Y~)dWs' 
Jk~ Jk~ 

Using the Schwarz inequality we obtain 

E IX~ - Xk~ 12<21l ( E Ib l (X~,y:)2ds Jk~ 

+ 2i' E 10"1 (X:, Y:) 1
2ds. 

k~ 

(3.6) 

By applying Lemma 3.3 and using assumptions for b l and 0"1 
we conclude that 

E Ib l (X:,Y:) 12<CJE and also E 10"1 (X:,Y:) 12<C2, (3.7) 

for SE [0, To], where CI, C2 are positive constants indepen
dent of E and s. Combining (3.6) and (3.7) we obtain the 
desired estimate for tE [ kll, (k + I) Il ). The proof of the 
lemma is complete by noting that the estimate is independent 
ofk. 

Let us formulate a remark that will be used in the next 
lemma. 

Remark 3.1. For any positive number L there exists a 
positive real-valued function Il = Il(E) defined for EE(O,I) 
such that 

Il(E) -+0, Il(E)/E-+ 00, (Il(E»2IE-+O, 

(Il(E)IE)31l(E)exp{L(Il(E)IE)2} -+0 as E -+0+. 

Indeed, it is easy to check that given a positive number L the 
following function: 

Il(E) = E[ - (l/2(L + 2» In E]1/2, EE(O,I), 

satisfies the properties of Remark 3.1. 
The next lemma establishes mean-square convergence 

of the auxiliary process (3.4) to the fast solution process yEo 
Lemma 3.5: Let the assumptions of Lemma 3.3 hold. 

Then it is possible to choose an E-dependent grid size 
Il = Il(E) in such a way that 

"'-
sup EIY~ - Y~12-+0aSE-+O+, 

IE[O.T,,] 

where yE is the fast solution process and yE is the auxiliary 
process (3.4). 

Proof For any tE[O,To] with tE[kll,(k + 1 )Il) we can 
write 

Y~ - y~ = J..i' [b2(X:,Y:) - b2(Xk~,Y~)]ds 
E k~ 

+ -I-i' [0"2(X:,Y:) - 0"2(Xk~'Y:) ]dWs· Ii k~ 

This implies that 

ElY: - Y~12<CI ~ i~ [E IX: -Xk~ 12 + ElY; 

- Y:12]ds + c2J..i' [E IX: - Xk~ 12 
E k~ 

+EIY: _,Y:1 2]ds 

<C3(~ + ! )i~ [E IX: - X~~ 12 

+ ElY: - Y:1 2]ds, (3.8) 
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where CI, C2, C3 are positive constants independent of E, Il, 
and k. Using Lemma 3.4 and inequality (3.8) we obtain the 
following estimate: 

E I Y~ - Y~12<C4[ (~ r + 2( ~ r + ~ ]Il 

+C3(~+ !)i~EIY:-Y:12dS 
(3.9) 

for tE[kll,(k + 1 )Il), where C4 is a positive constant. Ap
plying Gronwell's inequality it follows that 

E I Y~ - Y~12<C4[ ( ! r + 2( ~ r + ! ]Il 

(3.10) 

for tE[kll,(k + 1)1l). The right-hand side of inequality 
( 3.10) does not depend on k, so we can conclude that the 
estimate remains valid for tE[O,To]. Now, the assertion of 
the lemma follows from Remark 3.1. The proof is complete. 

We conclude the present section by formulating the fol
lowing lemma. The proof is an immediate consequence of 
Lemma 3.4, Lemma 3.5 and Remark 3.1. 

Lemma 3.6: Let the assumptions of Lemma 3.3 hold. 
Then it is possible to choose an E-dependent grid size 
Il = Il(E) in such a way that 

sup E IX~ - X~12-+0 aSE-+O 
IE[O, T,,] 

where X E is the slow solution process and X E is the auxiliary 
process (3.5). 

IV. GENERALIZED STOCHASTIC AVERAGING 
PRINCIPLE 

We are ready to present a generalized version of the 
stochastic averaging principle. In the following we assume 
that the function 0"1 in SSPS (2.1) does not depend ony, that 
is 0"1 = 0"1 (x). In the context of system (2.1) this means that 
the fast process yE does not interfere with the diffusion part 
of the slow process X E. In the course of the proof of the 
averaging principle whenever Il and E appear together we 
will always assume that Il is E-dependent and that the func
tion Il = Il ( E) satisfies properties of Remark 3.1. 

Theorem 4.1 (stochastic averaging principle): Let the as
sumptions of Lemma 3.3 be satisfied. Let us suppose that for 
somefunctionb = b(x) andanumber1]E(O,I) the following 
averaging assumption holds: 

sup {E IJ.. rTbl(X~'y:~Y~)ds 
IE[O, T,,],EE(O.'7) T Jo 

-b(X~)n-+oas T-+oo, 

X£yE 
where Y , 'denotes the random process defined by (2.2), 
with Z = X ~ and V = Y ~ (tE [0, To] ). Furthermore, we as
sume that b is a Lipschitz continuous function and let us 
denote by X the random process defined by means of the 
following system of stochastic differential equations: 

dX, = b(X, )dt + 0"1 (X, )dW" Xo = Xo· (4.1) 
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Under the above assumptions 

sup EIX~ _X,12-+0as€-+0+. 
lE[O, T.,! 
Proof In view of Lemma 3.6 it is enough to prove that 

sup EIX~ _X,12-+0aSE--+O+, (4.2) 
lE[O, To] 

whereXE is the auxiliary process (3.5) and Xis the solution 
process of (4.1). For any tE [0, Tol we have 

X~ - X, = So' [hi (X[S/~!~'Y:) - h(X:)]ds + So' [heX:) 

- h(X:)]ds + So' [hex:) - h(Xs ) ]ds 

+ So' [CTI(X:) -CTI(X:)]dWs 

+ l' [CTI(X:) -CTI(Xs)]dWs' (4.3) 

Let us define 

for tE[O,Tol. Using the Schwartz inequality we obtain 

Elf [heX:) - heX:) ]dSr 

';;;ToiT.'E Ih(X:) - heX:) I 2ds.;;;CIME, (4.4) 

Elf [heX:) - h(Xs) ]dS 1

2 

,;;;c2fmE(S)dS, (4.5) 

for tE [0, To], where C I , C2 , are positive constants. We also 
have 

E I l' [CTI (X:) - CTI (X:) ]dWs 12 .;;;C3ME, (4.6) 

Elf [CTI (x:) - CTI (Xs ) ]dWs 12 .;;;c4 fm E (s)ds, (4.7) 

for tE[O,To)' where C3, C4 are positive constants. Dealing 
with the first term in (4.3) we use the averaging assumption. 
For any tE[O,Tol with tE[k~,(k + 1 )~) we can write 

Let us denote by TI, T2, T3 the three terms in (4.8). We 
observe that 
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In view of Lemma 3.3 and the special choice of the function 
~ = ~(€) it follows from the last inequality that 

E IT212--+0 as €--+O+, uniformly in tE[O,Tol. (4.9) 

Next, because of the Lipschitz continuity of hi and h we have 

E I T312,;;;C6~ (' [C7 + E IXk~ 12 + E IY:12 
Jk~ 

+ E IX:1 2]ds. 
From Lemma 3.3 and Lemma 3.5 the above inequality re
duces to 

E I T312';;;C8~ + C9(~2/€), 
with positive constants Cg, C9 • Using again the special choice 
of ~ we conclude that 

E I T312--+0 aSE--+O+, uniformly in tE[O,Tol. (4.10) 

Now, let us observe that 

(4.11 ) 

For any fixedp and SE[O,~) let us define 

_"'e _ X;aY~ Zs - Yp~+s and Vs - Y S1E . 

Applying Lemma 3.1 we can write 

( 4.12) 

for SE[O,~), where W* is the shifted Wiener process defined 
as in Lemma 3.1. Similarly, by using definition of the process 

xE yE 
Y pi> pi> and Lemma 3.2 we can write 
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(4.13 ) 

for SE[O,a), where W** is the rescaled Wiener process W, 
defined as in Lemma 3.2. By comparing (4.12) and (4.13) 
we come to the conclusion that the process 

A. xE yE 

(X;a,Y;a+s) and (X;a,Ys/~" P") 

have the same distributions for any SE[O,a). Therefore, us
ing (4.11) we obtain 

E 1 T 12.;;.ka2 " E - b (X E yX;"Y~"ds k-I lIla 
I "" ~ A I pa, slE 

p~o ~ 0 

_ h(X;a) 12 

= ka/~IE l~lalEb (X E y X;"Y;")ds 
~ A I pa, s 
p~o ~ 0 

_ h(X;a) 12. (4.14) 

Let p be an arbitrary positive number. Applying the averag
ing assumption we can find a constant 71 > 0 such that for a/ 
c> 71 all terms under the summation sign in (4.14) are less 
than p. Therefore we have 

EITI12<ka2kp<]~p, (4.15) 

for sufficiently small c. Since the estimate (4.15) is k-inde
pendent we conclude that 

E 1 T1 1
2 

..... O as c ..... O+, uniformly in tE[O,ToJ. (4.16) 

From (4.9), (4.10), (4.16), and (4.8) we observe that the 
first term in (4.3) satisfies the following property: 

Elf [b l (X[iP'Y:) - h(X:)] ds1
2 

..... 0 

as c ..... O+, uniformly in tE[O,ToJ. ( 4.17) 

In view of (4.3), (4.4), (4.5), (4.6), (4.7), and (4.17) we 
obtain the following inequality: 

mE(t)<LE + ClOfmE(S)dS, (4.18) 

for tE[O,ToL where C IO is a positive constant and LE is an c
dependent constant. It follows from Lemma 3.6 and from 
(4.17) that LE ..... O as c ..... O+. Now, applying Gronwall's in
equality we obtain 

for tE[O,ToJ. Finally, from (4.19) we have 

sup m€(t) ..... O as c ..... O+. 
/EIO,7;,] 

The proof of the theorem is complete. 

( 4.19) 

Remark 4.1: Let us note that if for any XER n , yERI 

E I ~ IT bl(x,Y?)ds - hex) 1
2 

..... 0 as T ..... 00, 

1120 J. Math. Phys., Vol. 31, No.5, May 1990 

and the above limit is uniform with respect to xERn and 
yERl then the averaging assumption is satisfied. 

Verification of Remark 4.1 follows immediately from 
the equality 

E I ~ lTbl (X~,y,x~Y~)ds _ h(X~) 12 

= EEX'Y' IJ.. (b l (X~,Ys X~Y~)ds _ h(X~) 12 
, I T Jo 

where E with the subscript denotes conditional expectation 
with respect to the specified random variables. 

The averaging assumption that plays a crucial role in the 
proof of the averaging principle may be difficult to verify in 
practice. Therefore any method for obtaining a candidate for 
the function h in the formulation of Theorem 4.1 is of a par
ticular interest. Under certain ergodic type properties of the 
process YXY, a suitable choice of h will be exhibited in the 
following theorem. 

Theorem 4.2: Let us suppose that b2 (x,y) is twice con
tinuously differentiable with respect to y, for each xERn , and 

jl(:;(X,y(t,O,y»)< -{3(x), (4.20) 

where {3(x) is an x-dependent positive number andy(t,O,y) 
is the solution of 

y' = b2(x,y), yeO) = y, 

where jl is the logarithmic norm2 of the Jacobian matrix 
function (Jb2/ Jy) (x,y(t,O,y». Furthermore, let us assume 
that for any xERn there exists a probability Borel measure 
jlx on RI such that 

I E.J( Y?) - L /(z)djlx (z) I <C(x)e - A(Xl', (4.21) 

for yERI, t;;;,O and for any continuous functionj defined on 
RI into R n and having the following property: 

sup E If( Y?) 12 < 00, for xER n, yERl. (4.22) 
s>O 

In (4.21) C(x), A(X) are positive constants possibly de
pending on x. Let us define 

hex) = (bl(x,z)djlX(z), (xER n). JRI 
Then for any xERn , yERl 

E I ~ lTb l (x,Y?)ds - hex) 1
2 

..... 0 as T ..... 00. 

Proof' By applying the Ito formula with regard to the 
random process Zu = y(s,U, Y;'), using assumptions and 
the result in Ref. 2 one can prove that 

sup E 1 Y?1 2 < 00, (4.23) 
s>O 

for xERn , yERl. Now, we can immediately verify relation 
(4.22) for the functionj(z) = bl(x,z) with a fixed xERn. 
For any xERn ,yERI we can write 
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AT = E I ~iT [b l (x,Y?) - b(x) ] ds l
2 

=-4( (E{[bl(x,y?) -b(x)]bl(x,Y?) 
T Jo Jo 
- b(x) ]}dt ds 

= ~ ((E{[bl(x,y?) - b(x)] [bl(x,Y?) 
T Jo Js 
-b(x)]}dtds. (4.24) 

For O.;;;:s.;;;:t the integrand in (4.24) may be estimated as fol
lows: 

E{[ bl(x,Y?) - b(x)] [bl(x,Y?) - b(x)]} 

= E{[ bl (x, Y?) - b(x)] 

XE[(bl(xl,Y?) -b(x»IY?]} 

= E{ [bl (x,Y;Y) - b(x) ]Ey? 

X [bl(x,y;~~) - b(x)]} 

.;;;:M {E IEy:y[ bl(x,y;~::) 

-I, bl(X,Z)d,aX(Z)] 12}1/2 

.;;;:MC(x)e- A(X){'- s), 

where M is a positive constant. The above estimate together 
with (4.24) implies that 

A .;;:: 2MC(x) r (e-A<X){'-S)dtds 
T"'" T2 Jo Js 

= 2MC(x) _ 2MC(x) (1- e-A<x)T). 
A(X) T A(X)2T2 

The assertion of the theorem follows from this. The proof is 
complete. 

Remark 4.2: Since the constants C and A in the formula
tion of Theorem 4.2 depend upon x the convergence in the 
assertion of this theorem may not be uniform in x and y, as 
required in Remark 4.1. However, since we are seeking only 
a candidate for the averaged function b, Theorem 4.2 may 
suggest a choice of such an object. The problem of a formal 
verification of the averaging assumption with regard to the 
function b found in this way will be illustrated by the follow
ing example. 

Example 4:1 Let us consider the following one-dimen
sionallinear singularly perturbed system: 

dX~ = (AX~ + BY~)dt + U I (X~)dW" 

X~ =Xo, 

dY~ = (liE) (CX~ + DY~)dt + (1I..[€)u2dW" 

Y~ = Yo, (4.25) 

for t>O. We assume that A, B, C, D, U 2 are fixed constants, 
Xo, Yo are initial (square-integrable) random variables, 
U 1 = U I (x) is a real-valued, bounded and Lipschitz contin
uous function. It is easy to check that for system (4.25) the 
stability-type condition (i) in Lemma 3.3 is equivalent to the 
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requirement that the quadratic form Q = Q(x,y) generated 
by the matrix [~ ~] is strictly negative definite. In the 
deterministic theory of singularly perturbed systems 
(ul = U 2 = 0) the following stability condition4 is used: 

D<OandAD - BC>O. (4.26) 
Remark 4.3: We note that the negative definiteness of 

the quadratic form Q implies the condition (4.26) and when 
B = C the negative definiteness of the quadratic form Q and 
the condition (4.26) are equivalent. 

In the following we assume that the quadratic form Q is 
strictly negative definite. Let us consider the auxiliary sys
tem (2.2) defined for (4.25) 

dY? = (Cx + DY?)dt + u2dW" y~Y = y, (4.27) 

where x,yER and W is a Wiener process independent of W. 
The problem (4.27) may be solved explicitly: 

Y?=yeD'--x[l-eD'] +U2 eD(,-s)dWs ' C l'-
D 0 

( 4.28) 

We can easily check that 

Y? __ ,ax weakly, as t-- 00, 

where,ax is a normally distributed probability measure with 
the mean - Cx/ D and the variance C 2X2 

/ D 2 + ~ /2D 2. In 
view of Theorem 4.2 it is natural to present the following 
candidate for the function b: 

(xER). (4.29) 

The integral in (4.29) may be computed explicitly: 

b(x) = [(AD-BC)/D]x (xER). (4.30) 

This result is in agreement with a heurestic consideration 
commonly used in the deterministic theory of singular per
turbations. Namely, if we multiply the second equation in 
( 4.25) by E and then formally set E = 0, then the resulting 
algebraic equation may be solved for Y,. Substituting this 
formal solution into the first equation of system (4.25) we 
will obtain the following reduced problem: 

dX, = [(AD - BC)/D] X, dt + U I (X, )dW" Xo = Xo. 

Let us note that the above reduced problem has the same 
form as problem (4.1) defined for system (4.25) with the 
function b given by (4.30). 

In the following we will prove that for linear system 
(4.25) the averaging assumption is satisfied with the func
tion b given by (4.30). First let us note that 

EI ~iTbl(X~,YsX~y~)dS_b(X~)12 

.;;;:2B21 ~ LTeDSdsl2E I ~X~ + Y~12 

+ 2B2~E I ~ LT[feD(S-U) dWu ] ds l

2 
(4.31 ) 

for t, 1>0, EE (0,1). Using the next two lemmas we will show 
that the right-hand side of (4.31) converges to 0 as T --+ 00 

and that the convergence is uniform in t and E. 

Lemma 4.1: For any m-dimensional Wiener process W 
we have 
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Proof: L~t us fix any T> 0 let us define 

{
I, ifs>u, 

/(s,u) = 0 'f 
, 1 s<u, 

for S,UE[O,T]. Using the Fubini-type theorem for stochastic 
integrals (Ref. 5, p. 116) we obtain 

~ iT[feD(S- u) dWu ]dS 

= ~ iT [iT/(s,u)eD(S- u) dWu ]dS 

= ~ iT[iT/(s,u)eD(S-U) dS]dWu 

= ~ iT[iTeD(S-U) dS]dWu • 

Hence 

= ;2i
T
li

TeD
(S-U) dsI

2
dU 

= ~ rT 

[e2D(T- u) _ 2eD(T- u) + 1 ]du 
D2T2Jo 

,;;;,2mID2T. 

The assertion of the lemma follows from this. The proof 
is complete. 

Lemma 4.2: Let us consider the fast solution process yE 
of system (4.25). There exists an 'TJE (0, I) such that 

sup EIY~I<oo. 
t>O.",(O.1/) 

Proof: We will first diagonalize the deterministic part of 
system (4.25). It is easy to see that for sufficiently small 
'TJIE(O, I) and EE (O,'TJ 1 ) both eigenvalues 

1 [ D I( D)2 4BC] A1.2(E) ="2 A +-;±\j A --; +-E-

(4.32 ) 

of the coefficient matrix are negative. Using the correspond
ing eigenvectors we obtain 

r(E)-IM(E)r(E) = [AI~E) A2~EJ 

whereM(E) = [E!IC E~D] is the coefficient matrix and 

a matrix corresponding to eigenvectors is given by 

r [
2EB 2EB] 

(E) = , 
D-AE+ a D-AE- a 

where a = ~ (AE - D)2 + 4EBC . 

For any EE(O, I) the transformation 

diagonalizes the deterministic part of system (4.25). It is 
also easy to see that the transformed system is of the form: 
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+.....!!L]dWr> 
2..{iA 

dV~ = A2(E) V~dt + [D - AE + a O"I(r(E)( U~, V~)) 
4EBa 

- .....!!L]dWr> 
2..{iA 

with transformed initial random variables: 

UE = AE-D+ a x. _I_y' 
° (4EBa) ° + 2a 0' 

VE = D - AE + a x. __ I_y' 
° (4EBa) ° 2a 0' 

We note that 

Y~ = (D-AE+ a)U~ + (D-AE- a) V~. 

Therefore it is sufficient to prove the following facts: 

sup E I (D - AE + a)2U~12 < 00 
t>O.",(O.1/) 

and 

sup E 1V~12 < 00 
t>O.",(O.1/) 

for some positive 'TJ> O. It is easy to check that 

UE = e<,(E)t [AE - D + a x. _I_y'] 
t 4EBa 0+ 2a ° 

+ f'e<,(EHt-S)[AE-D+aO"I(r(E) 
Jo 4EBa 

x (U:,V~)) + .....!!L]dWs , 

2.,fia 
for t>O. This implies that 

E I UEI 2';;;'2e2A ,(E)tE I AE - D + a x + _I_y.12 
t 4EBa ° 2a ° 

+ 2 f'e2A.,(EHt-S) E I AE - D + a 
Jo 4EBa 

XO"I(r(E)( U:,V~)) + .....!!L1
2
dS 

2.,fia 

(4.33) 

for t>O. The first statement in (4.33) may be now obtained 
by multiplying both sides of the last inequality by 
(D - AE + a)2, using boundedness of the function 0"1 and 
applying condition (4.26) along with the fact that 
A1(E) -> (AD - BC)ID as E->O+. Similarly we have 

E I VEI 2,;;;,2e2A,(E)tE I D - AE + a x. __ 1_y.12 
t 4EBa 0 2a 0 

+ 2 f'~A.'(EHt-S)E I D -AE + a 
Jo 4EBa 

XO"I(r(E)(U~,V:))- ~12dS, 
2.,fia 
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for 1;>0. The first term on the right-hand side is globally 
bounded for €E(O, I) and t;>O, the second term may be esti
mated by 

C) f' eU,(E)(t-S) 1 D - A€ + ~ 12 ds 
Jo 4€B~ 

+ C e 2.<,(E)(t-S) __ 2_ ds = T + T it ~ 

20 4cl2 ) v 

for t;>O, where C)' C2 are positive constants. It easy to see 
that T) is bounded for €E(O, I) and 1;>0. Finally, the term T2 
may be estimated as follows: 

C3 [eU,(E)t_I]< -C3 , 

2€A2 (€) 2€A2 (€) 

for t;>O, €E(0,7]2), where 7]2 is a positive number. Using the 
above estimates and the fact that €A 2 (€) -D <0 as €-O+, 
we obtain the validity of statement (4.33) with 
7] = min ( 7] I> 7]2)' The proof of the lemma is complete. 

Remark 4.4: It follows immediately from Lemma 3.3 
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that the assertion of Lemma 4.2 remains also valid for the 
slow solution process XE. In view of inequality (4.31), 
Lemma 4.1 and Lemma 4.2 we conclude that the Averaging 
Principle (Theorem 4.1) is applicable for system (4.25). 
This may be regarded as a formal justification of the heuris
tic method of reduced problem for system (4.25). 
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The property of the associated Legendre functions with non-negative integer indices, P::'(z), 
described by the formula: P::'(cos p) = ( - l)m (alc) n l:;::;;' (n/ m) ( - b fa)n - k 

X P::' _ k (cos r), where a,b,c are the sides of an assigned triangle and a,p, r the respective 
opposite angles, is introduced. A useful application of this series in simplifying the calculation 
of collisional electron-atom cross sections higher than the dipole is mentioned. A proof of the 
stated identity by use of the Gegenbauer polynomials and of their generating function is given. 

I. FORMULATION OF THE PROPERTY 

The aim of the present paper is to introduce and to prove 
a mathematical formula that relates the associated Legendre 
functions with non-negative integral indices P::' (cos P) and 
P::'(cos r), where p and r are two different angles of an 
assigned triangle. We also mention an application of this 
formula in simplifying a problem of atomic physics. Refer
ring to Fig. 1 for the notations, the formula at issue is 

(
a)n n - m (n + m) ( b)n - k 

r::(cosp) = ( - 1)m -; k~O k --; 

xP::,_ k (cos r), (1) 

hereafter referred to as the "triangular property." 

II. APPLICATION OF THE PROPERTY 

We found it useful to apply the triangular property in 
solving-in an alternative way-a well-known problem of 
mathematical physics: The calculation of cross sections for 
electron-atom collisions. 

Wernet this problem in developing a very general theo
retical scheme able to describe the phenomenon of impact 
polarization in a wide variety of physical situations, particu
larly relevant for astrophysical applications. Starting from 
the general principles of quantum mechanics, we derived the 
statistical equilibrium equations for the density-matrix ele
ments of an atomic system interacting with a beam of fast 
electrons (10 eV-lO keY). Our scheme, that is presented 
elsewhere, I reduces to the previous one developed by Oppen
heimer2 when only the diagonal density-matrix elements are 
accounted for. Obviously, the presence of collisional rates in 
the equilibrium equations requires the calculation of the 
electron-atom impact cross section. 

Considering for example an inelastic electron-atom col
lision, the total cross section, U rn _ n , corresponding to the 
transition between the atomic energy levels m and n, can be 
written in the following form: 

(2) 

where I m,n (n) is the differential cross section for the atomic 
excitation from the mth to the nth atomic level, correspond-

ing to the scattering of the incident electron along the direc
tion n. 

When the Born approximation is assumed, the integral 
in Eq. (2) is usually performed introducing the new variable 
K, the momentum transferred to the electron during the col
lision:3 

(Kmax 

U m_n = )Km;n I ;",n (K)K dK. (3) 

As the explicit expression for I ;",n (K) involves associated 
Legendre functions depending on the angle specifying the K 
direction, the total cross section is derived by integrating 
over this angle. 

In our theoretical scheme for impact polarization, we 
found it more natural and convenient, especially for the cal
culation of cross sections corresponding to multipole transi
tion higher than the dipole, to integrate over the angular 
coordinates of the scattered electron. This was achieved by 
making use of Eq. (1). We give a proof of this equation in the 
following section. 

III. PROOF 

To shorten our notations, we introduce the following 
definitions: 

A 

c 

~ B ~..L--------a------_--.J:-..1 C 

FIG. I. Notations employed for labeling the angles and sides of the triangle 
ABC. 
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cpEcos/3, 

CyECOS y, 

xEb/a, 

qEC/a (1+x2 -2xcy )1/2. 

(4a) 

(4b) 

(4c) 

(4d) 

If the associate Legendre functions are expressed as Gegen
bauer polynomials 

P':(z) ( - 1)m [(2m)!/m!2m] 

X (l_r)ml2 C~_m(z), (5) 

where A. m + 1, then Eq. (1) is equivalent to 

C~(cp)qn= i (2A.+k)n k(_X)kCA(C) (6) 
k=O (n-k)! k Y' 

where we have introduced the Pochhammer symbol: 
(a)m = a(a + l)"'(a + m - 1). 

The proof is by use of the generating function. Let s 
satisfy Ixs/( 1 - s) I < 1, mUltiply the left side of the formula 
by sn, and sum over n: 

n~o C~(cp)qnsn = n~o C~ C ;CY}tsn 

= [1- 2(1 - xcy)s + ~j] -A 

= [(1 - s)2 + 2cyxs(1 - S) + X2~J A 

= {(1 - S)2[1- 2cy( - XS/(l - S» 

+ (- XS/(l - SW]}-A 

and by the generating function, again: 

1125 

00 

=(1-s)-u L CZCcy)-[-xs/(l-S)]k 
k=O 

= i CZ(cy ) (_X)ksk(1_S)-U-k, 
k 0 

J. Math. Phys .• Vol. 31, No.5, May 1990 

and, finally. by the negative binomial series: 

00 00 (U + k) 
=LCZ(Cy)(-X)kSk L . isi. 

k 0 j=O J! 
(7) 

The coefficient of s" in this double sum is exactly the right
hand side of Eq. (6), the equivalent form of the triangular 
property. Implicitly, the Chu-Vandermonde sum was used. 

As a final remark, it is worth noting that Eq. (1) can 
also be written in the more compact form: 

n - m [ k (n +k m) akbc"n k ] P':(cos/3) = L (_l)n+m 
k=O 

,P':_k(COSY). (8) 
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Using the Bargmann-Darboux method, the Backlund transformations, n-soliton solutions and 
corresponding wave functions of the Kaup-Newell and Wadati-Konno-Ichikawa systems are 
obtained. These results culminate in an algebraic recursive procedure for the determination of 
multisoliton solutions and their wave functions of the derivative and mixed derivative 
nonlinear Schrodinger equations iQt + Qxx + ia ( I Q 12Q) x ± PI Q 12Q = 0, a > 0, p~O. 

I. INTRODUCTION 

The nonlinear equation 

iQt + Qxx + ia<lQ 12Q)x ±PIQ 12Q = ° (1.1) 

with a, P> 0, describes nonlinear propagation of the Alfven 
wave with a small non vanishing wave number. I It is also 
relevant in the discussion of deformed continuous Heisen
berg ferromagnet2 and in the study of two-photon self-in
duced transparency and ultrashort light pulse propagation 
in an optical fiber. 3 For a = 0, Eq. (1.1) becomes the nonlin
ear Schrodinger (NLS) equation 

iqt + qxx + 21ql2q = ° (L2) 

whose soliton solutions were first obtained, using the inverse 
scattering transform, by Zakharov and Shabat4 (ZS), who 
also formulated an associated eigenvalue problem for this 
equation analogous to the one previously formulated for the 
Korteweg-de Vries (KdV) equation by Gardner-Greene
Kruskal-Miura.5 The ZS eigenvalue problem was enlarged 
by Ablowitz-Kaup-Newell-Segur6 (AKNS) which addi
tionally encompassed the nonlinear evolution equations like 
the KdV and sine-Gordon, among others. The NLS equa
tion occurs in a large variety of physical situations.7 For 
P = 0, Eq. (1.1) reduces to the derivative nonlinear Schro
dinger (DNLS) equation 

iqt + qxx + i( Iql2q)x = 0, (1.3) 

which was discussed by Kaup and Newells (KN). We shall 
call Eq. (1.1) the mixed DNLS (MDNLS) equation since it 
has both the nonlinear derivative term of Eq. (L3) and the 
nonderivative term of Eq. (L2). 

In Sec. II we state the Wadati-Konno-Ichikawa 
(WKI) scattering problem I which results in the MDNLS 
equation (1.1). The KN scattering problemS is then seen to 
be a special case of the WKI problem. The aim of the present 
paper is to obtain the Backlund transformations (BT's), so
liton solutions, and their wave functions for both the above 
systems by extending our earlier work,9.lo wherein we had 
obtained the BT's, the multisoliton solutions, and the corre
sponding wave functions of the nonlinear evolution equa
tions envisaged by the ZS/ AKNS scattering problem.6 The 
organization of the paper is as follows. In Sec. III we discuss 
the KN scattering problem. We start by writing n-soliton 

wave functions in terms of (n - 1) soliton wave functions 
and, using an idea due to Bargmann, II obtain both the space 
and time parts of the BT's for arbitrary q and r in Sec. III A. 
In Sec. III B, we obtain the space and time Riccati equations 
and using Darboux's method 12 obtain the particular solu
tions of these equations which provide the basic equation for 
the determination of soliton solutions. In Sec. III C, we 
briefly indicate how the results obtained can be converted 
into a recursive method for solving the soliton problem for 
the DNLS equation. Finally, in Sec. III D, we display an
other evolution equation to which also the considerations of 
Secs. III A-III C apply. In Sec. IV we take up the WKI 
system for which, instead of following the above procedure, 
we take the cue from Kundu's work 13 to construct a gauge 
transformation to map the KN problem into the WKI prob
lem. This enables us to obtain the complete soliton solution 
of the WKI problem and in particular that of the MDNLS 
equation. We explicitly exhibit the soliton solutions up to 
one soliton case of the nonlinear equations considered in this 
paper in the Appendix. 

II. THE WKI SCATTERING PROBLEM 

The WKI scattering problem is defined by the eigenval
ue equations 

tPlx + iF(;)tPl = G(;)Q(X,t)tP2' 

tP2x - iF(;)tP2 = G(;)R(x,t)tPl , 

where 

F(;) = a;2 + ifij3;, 

G(;) = a; + i~P /2 , 

(2.1a) 

(2.1b) 

(2.2a) 

(2.2b) 

are functions of the eigenvalue ;. The time evolution of the 
wave functions, tPl and tP2' is determined by 

tPlt = .s;1' (;;Q,R) tPl + &J (;;Q,R) tP2 , 

tP2t = ~ (;;Q,R )tPl - .s;1' (;;Q,R) tP2 , 

(2.3a) 

(2.3b) 

where .s;1', &J, ~ are functions of x and t through their de
pendence on Q and R. Equation (1.1) with a, p~o is the 
integrability condition for Eqs. (2.1) and (2.3) if we choose 
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.!iI(~;Q,R) = - 2ia2~4 + 4a~2fJ ~3 + i(4/3 _ a2QR)~2 

+ ~2fJ aQR~ + i(fJ /2)QR , (2.4a) 

~(~;Q,R) = 2a2Q~3 + 3i~2{3 aQ~2 
+ ( - 2fJQ + iaQx + a2Q2R)~ 
+ (- (~fJ /2 )Qx + ia(~fJ /2 )Q2R), 

(2.4b) 

~ (~;Q,R) = 2a2R~3 + 3i~2{3 aR~2 
+ ( - 2fJR - iaRx + a 2QR 2)~ 

+ « ~fJ /2 )Rx + ia( ~fJ /2 )QR 2), (2.4c) 

with 

R= ±Q*. 
As is to be expected, the KNs and the AKNS6 problems 

are special cases of the above WKI system and are obtained 
from it if we, respectively, let 

KN: a = 1, fJ = 0; Q = q, R = r, (2.5) 

AKNS: a = 0, ~2{3 = - i; Q = 2q, R = 2r, 
(2.6) 

inEqs. (2.1)-(2.3). The DNLS equation (1.3) and theNLS 
equation (1.2) are obtained as integrability conditions if we 
useEqs. (2.5) and (2.6) inEqs. (2.4) withr= ±q*. 

From the above results it would be natural to first obtain 
the Backlund transformations (BT's), the soliton solutions, 
and corresponding wave functions for the WKI system and 
then specialize these to obtain those for the KN system. 
While this can be done, the algebra becomes formidable. It 
so turns out that knowing the BT's and the soliton solutions 
of the KN system, one can use a gauge transformation due to 
Kundu 13 to obtain in a simple manner the entire soliton solu
tion of the WKI system. We thus look first at the KN system. 

Ill. THE KAUP-NEWELL SYSTEM 

A. BAcklund transformations 

The KN systemS is defined by the eigenvalue equations 

Vlx + i~ 2V I = ~qV2 , 
V2x - i~ 2V2 = ~rvl , 

( 3.1a) 

(3.1b) 

giving the space evolution of the two-component wave func
tion v = (~;). Here q and r are functions of x and t satisfying 
some suitable nonlinear evolution equations which we do 
not need to specify here and ~is the eigenvalue. To obtain the 
BT's and the soliton solutions of this system, we follow the 
method developed by us in the context of the AKNS sys
tem.9

•
10 A part of the method leading up to the BT's was 

developed independently by Kundu. 13 

It is well-known that the BT's can be interpreted as in
troducing an additional soliton to the existing set. 14 Thus it 
seems possible to obtain the BT's by considering a connec
tion between n - 1 and n soliton problems. We denote the 
quantities referring to n - 1 soliton problem by 
vl =vl(n-l), v2=v2(n-l), q=q(n-l), 
r = r( n - 1), etc. This n - 1 soliton problem is then defined 
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by Eqs. (3.1). We denote the n soliton quantities by placing 
primes over the quantities. Thus vi = vl(n), vi = v2 (n), 
q' = q(n), r' = r(n), etc. The n soliton problem is specified 
by the eigenvalue equations similar to Eqs. (3.1) with all 
quantities, except the eigenvalue ~, replaced by the primed 
ones. 

We concretize the expected relationship between nand 
n - 1 soliton by expanding n soliton wave functions in terms 
of n - 1 soliton wave functions: 

vi = AVI + BV2 , 

vi = CV I + DV2 , 

(3.2a) 

(3.2b) 

whereA, .. . ,D are functions of x and t to be determined. Using 
Eqs. (3.2) in Eqs. (3.1) and in the latter's primed counter
parts we find that A, ... ,D satisfy the equations 

Ax= -~rB+~q'C, 

Bx = - ~qA - 2i~2B + ~q'D, 
Cx = ~r'A + 2i~2C - ~rD, 

Dx =~r'B-~qC. 

(3.3) 

We now invoke an idea due to BargmannJl
,I5 who 

showed that for the Schrooinger equation, - d 2t/J/dx2 

+ V(x)t/J = k 2t/J, and for a potential capable of giving n 
bound states, the wave function can be written in the form 
eikx X(k,x), where X(k,x) is an nth degree polynomial in k. 
It is well-known that the Schrooinger equation is the asso
ciated eigenvalue equation for the application of the inverse 
scattering transform method to the KdV equation.5 These 
considerations have been extended9

,I0,13 to the entire AKNS 
problem. We here extend it further to the KN system identi
fying the n soliton solution of this system with a potential 
giving n bound states. The Bargmann idea then suggests that 
for the KN system v and v' must differ by a quadratic power 
of the eigenvalue ~ since the eigenvalue equations (3.1 ) con
tain powers of ~ up to the second degree. We thus try the 
ansatz 

2 2 

A= I an;n, B= I bn;n, 
n=O n=O 

2 2 
(3.4) 

C=ICn;n, D=Idn;n, 
n=O n=O 

where an , ... ,dn are generally functions of x and t. We use 
Eqs. (3.4) in Eqs. (3.3) and equate equal powers of ~ on 
both sides to obtain a set of algebraic and differential rela
tions involving the expansion coefficients. These equations 
can be easily solved and we display the solution in Eqs. (3.9) 
below. In addition to the above two further differential equa
tions, which are in fact the BT's, are also required to be 
satisfied 

q~e- iX - qxeiX = - 2iab (Eq' + q) 

- (lI2i)(q'r' - qr)(q'e- iX + qeiX ) , 
(3.Sa) 

+ (lI2i)(q'r' - qr)(r'eix + re - iX) , 
(3.Sb) 

where X(x,t) == X( n,n - 1) is given by 
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~: = ~ (q'r' - qr) , (3.6) 

and where a~ and € are essentially constants (they can at 
most be functions oft). Equations (3.5) were obtained ear
lier by Kundu 13 as well as by Boiti et al. 16 

There is a simpler way of writing Eqs. (3.5) which is 
essential for our later discussion. Using Eq. (3.6), we can 
rewrite Eqs. (3.5) as 

(3.7a) 

1]:eiX - 1]xe- iX = - 2ia~ (1]' + €1]) , (3.7b) 

where we have introduced wand 1] through q = - Wx and 
r = -1]x. These are the BT's in terms of the primitives 
(w,1]) of (q,r). What yet remains to be determined is the 
dependence of X on (w, 1]). To this end we note that simple 
manipulations with Eqs. ( 3.7) yield expressions for 
(a lax) (e+ iX) in terms of(w,1]) and (w',1]'). The equations 
resulting on adding and subtracting these latter expressions 
are seen to be integrable only if we set € = =+= 1. This gives 
the possible values of € and X, in turn determined by 

€ = + 1: sin X = - (ia~/2)(w' + w)(1]' + 1]) + p' , 
(3.8a) 

€ = - 1: cos X = (a~/2)(a>' - w)(1]' -1]) + p' , 
(3.8b) 

where p' is a constant of integration. The two values of € 
reflect the possibility that we may have nonlinear equations 
such that if (q,r) is a solution so is ( - q, - r). In such a case 
both values of € are permitted. 

The determination of the expansion coefficients in Eqs. 
(3.4) gives the following expressions for the coefficients 
A, ... ,D in Eqs. (3.2): 

A = fK'(a~ + eiX;2) , 

B = (fK' 12i) (q' e - iX - qeiX)~ 

= a~fK'(€w' + w)~, 
C= (fK'/2i) ( _r'eiX+re-iX)~ (3.9) 

= - a~fK'(1]' + e'l);, 

where K' is another constant of integration. We see from 
Eqs. (3.9) and (3.8) that for each choice of €, the solution is 
given in terms of two parameters a~,p'; the overall constant 
fK" can be chosen at will. For the pure soliton solutions 
these parameters turn out to be constants independent of 
time since, as we shall see, they are related to the soliton 
parameters representing a pole in the complex ~ 2 plane. 

To complete our discussion of the BT's, we still need the 
time BT's. This requires that we specify the time counter
parts of Eqs. (3.1) which would determine the time evolu
tion of the wave functions. These time evolution equations 
have the same form as Eqs. (2.3), except that .sf, f!ll, 'rff 
would now be appropriate to nonlinear evolution equations 
generated by the KN system and .,pI' rf2 should be replaced 
by VI' V2, respectively. As in the AKNS case, we require the 
eigenvalue to be time independent,;, = O. The cross differ-
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entiation of Eqs. (3.1) and the KN versions of Eqs. (2.3), 
mentioned above, and their primed counterparts yield the 
relations 

A, =A(.sf'-.sf) -B'rff + CflJ', 

B, =B(.sf' +.sf) -AflJ +DflJ', 

C, = - C(.sf' +.sf) +A'rff' -D'rff , 

D, = - D(.sf' - .sf) + B'rff' - Cf!ll , 

(3.10) 

where .sf'=.sf(;;q',r'), etc. In view ofthesecond and third 
ofEqs. (3.9), the second and third ofEqs. (3.10) give the 
time part of the BT's. In general, Eqs. (3.10) would deter
mine both the time evolutions of (q',r') given that of (q,r) 
and also the possible time dependence of a~, p'. As noted 
before, for the soliton solutions, a~, p' are, however, expect
ed to be time independent. 

With both the space and time parts of the BT's at our 
disposal, we could attempt to determine the n soliton solu
tions (q',r') [or (w', 1]') ] given the n - 1 soliton solutions of 
nonlinear equations generated by the KN system. This is a 
very difficult, if not well nigh impossible, task. Looking for 
an alternate method we turn to Riccati equations whose par
ticular solutions help us to develop a recursive method for 
obtaining soliton solutions of some special nonlinear equa
tions, like the DNLS equation, without an explicit recourse 
to the above BT's. 

B. Rlccati analysis 

Defining 

r = vllv2 , (3.11) 

we obtain, from Eqs. (3.1) and (2.3) suitably rewritten for 
the KN problem, the space and time Riccati equations as 

rx =~q-2i~2r-~rr2, (3.12a) 

r, = flJ + 2.sfr - 'rffr2. (3.12b) 

Analogously we also define r' = v; Iv;' appropriate to the n 
soliton situation which satisfies equations similar to Eqs. 
(3.12) with all quantities, except the eigenvalue~, replaced 
by the primed ones. 

We are interested in obtaining the bound states ofEqs. 
(3.1). This requires an analytic continuation of the eigenval
ue ~ 2 to the upper half complex plane.8 We thus let 

~2->A'=s'+i1]', s',1J'realwith1]'>O. (3.13) 

The real and imaginary parts of A ' give the soliton param
eters. Besides requiring quantities as functions ofthe eigen
value ~, we shall also need quantities to be evaluated at A'. 
We indicate the latter by placing bars overhead. Thus, for 
instance, Eqs. (3.12) become 

1\ =~q-2U'r-~rr2, (3.14a) 

(3.14b) 

A feature ofEqs. (3.14) that should be noted is that while r, 
q, and r refer to the n - 1 soliton problem, the functions 
r (;) and; in these equations are, however, evaluated at the 
n soliton parameters A ' = s' + i1]'. This step is crucial in the 
development of the recursive method. 
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We now follow Darbouxl2
•
17 to write down the particu

lar solutions of Eq. (3.14). We have from Eqs. (3.2) 

vi =Av1 +Bv2' (3.15a) 

v~ =Cv1 +Dv2 . (3.15b) 

If we set vi = 0 = v~, we obtain 

r= -B/l = -Die. (3.16) 

The second equality requires that A 15 = B C and this is not 
automatically guaranteed. However, from Eqs. (3.9), we 
find that we would have AD = B C if we choose the con
stants ab, p' appearing in Eqs. (3.8) and (3.9) in terms of 
A' = 5' + ir/ through 

[A' - d 1 
H)/2a bp'P - cab2

( 1 - p,2) = O. (3.17) 

In all our subsequent discussion whenever we use the barred 
quantities we shall require that (ab,p') be related to (5 ',r]') 
by Eq. (3.17) so that the validity of the second equality in 
Eq. (3.16) is guaranteed. It is easy to see that Eq. (3.16) 
indeed provides particular solutions of Eqs. (3.14). 

To obtain the particular solutions of the primed version 
ofEqs. (3.14), we note that Eqs. (3.15) giveCvi -Av~ = 0 
and Dvi - Bv~ = 0 in view of AD = B C. These yield 

r'=BID=AIC. (3.18) 

C. Soliton solutions of DNLS equation 

For the DNLS equation (1.3), 

r=Tq* or 'I] = To)*, T= ± 1, (3.19) 

in Eqs. (3.1). The time evolution of the wave functions is 
given by Eqs. (2.3)with the ¢'s replaced by the v's and d, 
!!JJ, Crff obtained from Eqs. (2.4) on setting a = 1, 13 = 0, 
Q = q, and R = r. The equations of the preceding sections 
specialize appropriately in view ofEq. (3.19). Knowing the 
n - 1 soliton wave functions, VI.2, which enable us to obtain 
r, it is now easy to see that using A, ... ,D from Eqs. (3.9) in 
Eq. (3.16), noting Eq. (3.19) and on eliminating e ± ix, we 
can obtain 0)' in terms of the n soliton parameters A ' and 
n - 1 soliton solution and wave functions, 0) and r, respec
tively. Once 0) and 0)' are known we can obtain eix(n.n - I) 

from Eq. (3.16) say, and these quantities in tum enable us to 
determine Vi.2 from Eqs. (3.2) on using Eqs. (3.9). This 
forms the basis of our recursive method. We shall not carry 
out this program explicitly here. We do this later in Sec. 
IV D for the MDNLS case. 

We, however, display the expressions for the DNLS 
equations up to one soliton case in the Appendix. 

D. Another evolution equation 

Besides the DNLS equation we consider another non
linear evolution equation belonging to the class, 'I] = To)*, in 
Eq. (3.19). This is 

O)xt + 0) ± il0)120)x = 0, (3.20) 

which can be obtained as the integrability condition for Eqs. 
(3.1) and the KN equivalent of Eqs. (2.3) with 
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d(~;O),To)*) = - (i12)TI0)1 2 - iI4~2, 

!!JJ (~;O),To)*) = - iO)/2~ , 

Crff (~;O),To)*) = iTo)* /2~ . 

(3.21) 

The difference between the soliton solutions and wave func
tions ofthe DNLS equation and those for Eq. (3.20) arises 
from different dispersion relations, 0) (~) == id (~;O,O), satis
fied by the two. We also display the solutions of this equation 
up to one soliton in the Appendix. 

IV. THE WADATI-KONNo-ICHIKAWA SYSTEM 

A. Gauge transformation 

The space and time evolutions of the WKI wave func
tion are given by Eqs. (2.1)-(2.3). The MDNLS equation 
results when d, !!JJ, Crff are chosen as in Eqs. (2.4) with 
R= ±Q*. 

To obtain the soliton solution of the WKI problem, we 
could follow the same method as in the preceding section. 
This, however, is not necessary since for the present system 
there is another way of obtaining the solution which depends 
on the observation made by Kundu 13 that there exists a sim
ple gauge transformation that maps the KN system into the 
WKI system. The Kundu transformation is a two-step trans
formation. 

( 1) A Galilean transformation 

x ..... x'=x-ut,t ..... t'=t, 

and a relabeling 

(x',t')-+(x,t) 

followed by the mapping. 

(2) ~ ..... z=[ii~+i(~f3/2a), 

q(x + uf,!) ..... [iiQ(x,t)eirp(x.t) , 

rex + uf,t) ..... .J(iR (x,t)e - irp(x.t) , 

VI (x + ut,t) ..... ¢l (x,t)eif(x.t) , 

v2(x + ut,t) ..... ¢2(x,t)eig(x.t) , 

with 

qJ(x,t) = (u/2) (x + ~ut) . 

(4.1 ) 

(4.2) 

(4.3) 

(4.4) 

It is easy to show that under (1) and (2) above, Eqs. (3.1) 
go into Eqs. (2.1), provided we require that 

/(x,t) = (f3/2a)x + a(t), 

g(x,t) = - (13 12a)x + b(t) , 

with 

g-/= - (uI2)x-lu2t. 

Equations (4.5) in tum give 

u=2f3la 

and 

(4.5a) 

(4.5b) 

(4.5c) 

(4.6a) 

(4.6b) 

For the time evolution of the wave functions the above map
ping shows that the d, !!JJ, Crff of the WKI system in Eqs. 
(2.3) can be related to the corresponding functions of the 
KN system through 
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.Q{ (~;Q,R) = .Q{K(z;..JaQei'P,..JaRe - ill') _ i da - iuil , 
dt 

= .Q{K(z;..JaQei'P,..JaRe- ill') + i ~~ - iuil, 

(4.7a) 

~ (~;Q,R) = ~K(z;..JaQei'P,..JaRe - i'P)e - ill' + u..JazQ, 
(4.7b) 

CG' (~;Q,R) = CG'K(z;..JaQei'P,..JaRe - i'P)ei'P + u..JazR . 
(4.7c) 

In the above superscript K indicates the corresponding KN 
quantities. From Eqs. (4.7a) and (4.6b) it follows that 

a = ~u2t = (fP/2a2)t, b = - iu2t = - (fP/2a2)t. 
(4.8) 

These then determine the remaining phase factors in Eqs. 
(4.3) and the gauge transformation from the KN system to 
the WKI, Eq. (4.3), is now completely established. 

B. Backlund transformations 

Using the above mapping the space part of the BT's for 
the WKI system can be trivially obtained from those for the 
KN system, Eqs. (3.7), as 

n~e-'X - nxeiX = - 2iao(En' + n), 
H~eiX_Hxe-iX= -2iao(H'+EH) , 

where nand H are defined by 

Q(x,t) = - nx (x,t)e - i'P(x,t) , 

R(x,t) = - Hx (x,t)ei'P(X,t) , 

(4.9a) 

(4.9b) 

(4. lOa) 

(4.10b) 

and where the function X(x,t) = X(n,n - 1) is given by 

Xx = (a/2)(Q'R' - QR) . (4.11 ) 

C. Relation between nand n-1 soliton wave functions 

We stipulate, as in the KN case, that the n soliton wave 
functions, 1/1;, 1/1~ are given in terms of the n - 1 soliton wave 
functions, 1/11' 1/12' by 

(4.12) 

The expansion functions, A, ... ,D, above can be obtained from 
the corresponding KN quantities in the same manner as we 
obtained Eqs. (4.7). The results, obtained from Eqs. (3.9) 
and the correspondence established above, are 

A(~;Q,R) = .JK'(ao + eixil) , (4.13a) 

B(~;Q,R) = (~K'a/2i)(Q'e- iX _ QeiX)z 

= ~K'aao (EO' + n)e- i'PZ , (4.13b) 

C(~;Q,R) = - (~K'a/2i)(R 'eiX - Re-iX)z 

= -~K'aao(H'+EH)ei'Pz, (4.13c) 

D(~;Q,R) =.JK'( - Eao + e-iXil) . (4.13d) 
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D. Recursive determination of soliton solutions of the 
MDNLS equation 

With the BT's and the expansion functionsA, ... ,D deter
mined, for the Riccati analysis and the recursive procedure 
we may follow the procedure of Secs. III B and III C. We 
here only quote the main results as applied to the MDNLS 
equation ( 1.1 ). This time we analytically continue 
F(~) = il + u/4 in the upper half complex plane and let 
F(~) -+..1 ' = 5' + i7J', 71' > O.AparticularsolutionoftheRic
cati variable, r = '¢I1/'¢I2 is still given by r = - Jj /A 
= -15 /Cwith A, ... ,15. obtained from Eqs. (4.13) on letting 

il -+ A ' - u/4. The condition that AD = Jj C be valid now 
requires that, in place of Eq. (3.17). we must have 

(A' - u/4 - d l + E)/2aop') 2 - Eao
2(l - p,2) = o. 
E= ± 1. (4.14) 

From its definition. Eq. ( 4.11). we see that 
X(x,t) = X(n.n - 1) is a real function for the MDNLS 
case. This implies. from the MDNLS analog of Eqs. (3.8), 
that ao = - iv' for E = + 1 and ao = - v' for E = - 1, 
with v' and p' real. This enables the following parametriza
tion8

; 

E= ± 1, 5' - u/4 = v'p', 

71' = v'(l - p'2) 1/2, - 1 <p' < 1 

V'=A,2>0. p'= -1"cosr', 0<r'<1T. (4.15) 

Here 1" = ± 1 and arises from the MDNLS requirement 
that R = 1"Q *. 

Obtaining A .... ,15 from Eqs. (4.13). using these in 
r = - Jj iA = -15 /C and on eliminating eiX( n.n - I) we 
find that the n and n - 1 soliton solutions of the MDNLS 
equation are related by the recursion relation 

n(n) + En(n - 1) 

2iE1"ei'P g(n - 1 )sin rn 
= 

..Ja[ (Ang*(n - 1 »(Ang(n - 1» + eiTJ'n] , 

where we have introduced 

g(n - 1) = r(n - 1)/~An - u/4 

with 

r(n - 1) = qF(~)-A.n=Sn+i1/n . 
The phase factor. eiX(n,n - I) • is given by 

i(l + E)/2A2 
eiX(n,n - I) = n 

(An - u/4) 

( 4.16) 

( 4.17) 

(4.18) 

X [1 + ..Ja(En(n) + n(n - 1»e- ill'] . 
g(n - 1) 

( 4.19) 

The procedure for determining the solution is as fol
lows. The zero soliton solution of the MDNLS equation 
(1.1) is Q(O) = 0 or nCO) = O. Using this in Eqs. (2.1) we 
determine the zero soliton wave functions 1/112 (0). From 
these we construct reO) or g(O). Use of this i~ Eq. (4.16) 
enables us to obtain O( 1) and hence Q( 1) on using Eq. 
(4.lOa). We then determine 1/11,2 (1) from Eqs. (4.12) and 
( 4.13 ). It should now be clear that this process can be con-
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tinued and the complete multisoliton solution of the 
MDNLS problem obtained. It is essential here to note that in 
the construction off general solutions, 1/11,2, are to be used 
and not the fundamental solutions. We give the explicit ex
pressions up to one soliton case in the Appendix. 

Finally we note that except for the zeroth soliton situa
tion, where one is required to solve a trivial differential equa
tion, the above recursive procedure is entirely algebraic. 

E. Another evolution equation 

The WKI counterpart of the KN equation (3.20) is 

Oxt - (2/3 /a)Oxx + 0 + iral01 20 x = 0 , (4.20) 

with 

d"(t;O,rO*) = - (i/2)arI01 2 
- i/4r 

- i(u2/S) - iur, 

&8 (t;O,rO*) = rae - i'l' [ - (i/2z)0 - uzOx ] , 

~ (t;O,rO*) = rraei'l' [(i/2z)0* - uzOn. (4.21) 

The results obtained in Sec. IV D apply also to this evolution 
equation except that the time dependence of this equation is 
different from that for the MDNLS equation due to the dif
ference in their dispersion relations. We display the soliton 
solutions up to one soliton case for this equation in the Ap
pendix. 
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APPENDIX: SOLITON SOLUTIONS AND WAVE 
FUNCTIONS 

1. MDNLS equation 

a. Zero soliton case 

The zero soliton solution of the MDNLS equation (1.1) 
is 

Q(O) = 0 or 0(0) = 0 . (AI) 

The corresponding zero soliton wave functions obtained 
from Eqs. (2.1)-(2.4) are 

1/11(0) = aoe-iF(~)x+.af(~;o.O)t 
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1/12(0) ={JoeiF(Px-.af(~;O.O)t 

={JoeiF(~)(x+2F(~)tJ , (A2) 

where F(t) and d"(t;o,O) are given, from Eqs. (2.2a) and 
(2.4a), respectively, by 

F(t) = at 2 + iJ2ift, 

w(t) = id" (t;o,O) = 2[F(t) f , 
where w(t) is the dispersion function. 

b. One soliton case 

(A3a) 

(A3b) 

We first obtain 00) from Eq. (4.16) and then obtain 
1/11 (1), 1/12 ( 1) from Eqs. (4.12), (4.13), and (4.19). 

To this end, we find from Eqs. (A2) that 

r(o) = (aol/3o)e- 2;).,(x+2}.,t). 

The choice 

(aol/3o) = - (r~A.1 - u/4 )h~le - iry, 

results in 

g(O) = - (r/ a
l 
)e20, - 2ia, - iry, , 

where 

and 

01 (x,t) = 171 (x + 4sl t) , 

£T1(X,t) = SIX + 2(si -17i)t 

SI = u/4 - rai cos YI , 

(A4) 

(A5) 

(A6) 

(A7a) 

(A7b) 

(A7c) 

171 = a~ sin Yl . (A7d) 

UsingEq. (A6) inEq. (4.16), we get the one soliton solution 
ofthe MDNLS equation as 

(ASa) 

or 

(ASb) 

where rp is given by Eq. (4.4). To obtain the one soliton wave 
functions, we find from Eq. (4.19) that 

eiX(I,O) = _ ri(l + £)/2. cosh(201 + iryl/2) . 

cosh(201 - iryl/2) 
(A9) 

Using Eqs. (ASa) and (A9) in Eq. (4.13), we finally obtain 
from Eqs. (4.12) the two linearly independent one soliton 
wave functions as 

(AlO) 
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It should be noted that "'1 (I) is a linear combination ofthe 
upper two entries in Eq. (A 10) and "'2 ( 1) is the same linear 
combination of the lower two entries and it is these "'1 ( 1 ), 
"'2 (1) that must be used to obtain f (1) necessary for the 
construction of the two soliton solution. 

2. Equation (4.20) 

The dispersion relation here is different from the 
MDNLS case. This alters the time dependence of the soliton 
solutions and the wave functions from those given above. 
The functions () 1 and 0"1 above are now given by 

()1 (x,t) = 1l1(X + ut - t 2 ) , 
4[ (51 - u14) + lln 

0"1 (X,t) = 51 (x + ut) 
(All) 

{ 
(51 - u14) U

2
} 

+ 4[ (51 - U/4)2 + lln -"8 t, 
while the phase factors exp [ ± iF(;)(x + 2F(;) t)] are now 
replaced by 

exp{ ± i[F(;)x + (uF(;) - u2/8 

+ l/4(F(;) - u/4»t]} . (AI2) 

3. DNLS equation 

The relevant expressions in this case can be obtained by 
setting a = I,P = Oin theMDNLSequations (AI )-(AlO) 
along with appropriate notational changes like "'1,2 - V l ,2' 

Q-q, !l-w, X -x, etc. 
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4. Equation (3.20) 

The relevant expressions in this case can be obtained by 
setting a = I,P = 0 in those for Eq. (4.20) along with nota
tional changes indicated in Sec. 3 above. 
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A picture of periodic systems that does not rely on the Hamiltonian of the system, but on maps 
between a finite number of time locations, is developed. Moser or Deprit-like normalizations 
are done directly on the maps, thereby avoiding the complex time-dependent theory. Linear 
and nonlinear Floquet variables are redefined entirely in terms of maps. This approach relies 
heavily on the Lie representation of maps introduced by Dragt and Finn [J. Math. Phys. 20, 
2649 (1979); J. Geophys. Res. 81, 13 (1976) J. One might say that although the Hamiltonian 
is not used in the normalization transformation, Lie oper.ators are used, which are themselves, 
in some sense, pseudo-Hamiltonians for the maps they represent. The techniques find 
application in accelerator dynamics or in any field where the Hamiltonian is periodic, but 
hopelessly complex, such as magnetic field design in stellarators. 

I. INTRODUCTION 

The study of dynamical systems in traditional branches 
of classical mechanics uses the Hamiltonian as a starting 
point, which means that the numerical, as well as the analyti
cal work, is done directly on the Hamiltonian of the system. 
In certain applications, such as dynamics of charged particle 
beams in accelerators, this approach may lead to a dead end. 
To illustrate this point, one needs only to compare celestial 
mechanics to accelerator physics. In accelerator physics, we 
try to understand the potential behavior of circular ma
chines whose Hamiltonian is a very complex position-depen
dent function (the timelike variable is actually a length de
noted by s). For example, even a small synchrotron 
radiation ring can consist of several dozens of bending mag
nets, quadrupoles, sextupoles, orbit correction dipoles, and 
rf cavities. The necessary inclusion of random errors in the 
simulation of such a device implies that the Hamiltonian will 
be a horrible periodic s-dependent function with the number 
of parameters ranging in the thousands. On the other hand, 
the problems of celestial mechanics, which might have a 
higher phase space dimensionality, are parametrized by a 
relatively small number of variables. In addition, accelerator 
Hamiltonians are very discontinuous in the timelike vari
able, which adds to the complexity of using a formalism de
vised for smooth time dependence. 

Analytical computations (such as normalization proce
dures) have emphasized the "flow" (i.e., the Hamiltonian) 
instead of the study of a one-period "map" (i.e., a tum 
around a circular storage ring). Accelerator theorists have 
tried to adapt these tools to the study of circular machines, 
but have always had to restrict themselves to less than realis
tic problems. For this reason, a new approach for under
standing our systems has been developed in recent years: It 
emphasizes the computation and analysis of large time 
maps. We believe that the tools that have been developed 
(software and theory) can be of use in other fields. 

A. A bit of history 

This new approach did not develop overnight. In fact, 
the approach has its roots deep in the field of accelerator 
physics. To orient the reader, we will present a subjective 
(not exhaustive) historical perspective of the use of flow and 
maps in accelerator theory and simulation. Since pioneering 
work in accelerator physics has often been obscure, a histori
cal perspective may be viewed as an attempt at the proper 
recognition of such work. 

Originally, the use of maps entered in the design of cir
cular accelerators as paraxial (linear) representations of the 
ray propagation. The theory was derived from the light op
tics equivalent and consequently, the periodic structure of 
the systems was not properly exploited. Eventually, Courant 
and Snyder, I in their seminal paper on strong focusing, para
metrized the motion around a linear ring in terms of invar
iant quantities, taking full advantage of the pseudoharmonic 
oscillator structure of the motion. In fact, as we will see in 
this paper, the Lie operator associated to the so-called Cour
ant-Snyder invariant is proportional to the Lie operator of 
the linear one-tum map. 

On another front, the inclusion of sextupoles in a ring 
worried a few people in the late 1950's. Because computers 
were not very powerful, Meier and Symon and Laslett et af. 2 

used simple one-dimensional maps to guess at the potential 
harm caused by nonlinearities in a circular machine. As 
computers improved, maps disappeared from simulation 
and were replaced by the so-called kick codes, which are in 
fact second-order explicit symplectic integrators. In these 
codes, each time step of the integrator is derivable from a 
Hamiltonian. These codes are still the main ingredients of 
brute force simulations. 3 

On the nonlinear theoretical front, accelerator theorists 
tried to compute various relevant quantities such as frequen
cy shifts (shear terms known as tune shifts in accelerator 
physics) and distortions of the invariants with the help of 
canonical perturbation theory. The theorists adapted to ac-
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celerator problems the algorithms of Poincare (-Von Zeip
pel)4; Moser-Birkhoff2; and later, Deprit.5 The inherent 
complexity of our Hamiltonians leads to great technical dif
ficulties in the application of such algorithms to realistic 
problems. 

Meanwhile, the use of maps kept creeping into the linear 
theory. This probably culminated in a series of papers by 
Cha06 in the late 1970's, where he computed the equilibrium 
emittances and spin polarization in a circular electron ring 
with the help of a map-based theory instead of a flow or 
Hamiltonian approach. One might ask why accelerator 
theorists continued to write papers on the evaluation of non
linear quantities, relying entirely on the usual canonical per
turbation theory, while linear calculations often used the 
more suitable map approach: We venture to suggest that the 
answer is the Lie representation of the map. Although it is 
obvious after a little thought that the quantities obtained by 
standard canonical perturbation theory are present in a pow
er series expansion of the one-tum map,7 the expansion of 
the final position and momentum ( + spin if you care about 
it) in terms of their initial components is very different in 
form from the central object of canonical perturbation theo
ry: the Hamiltonian. Consequently, without at least an 
awareness of the Lie representation, accelerator theorists 
could not have been expected to rephrase the nonlinear theo
ry in a way suitable for the circular machine, such as they did 
for the linear case. 

At this point enters Dragt. In the 1970's Dragt and Finn 
worked on some version of the Deprit algorithmS and ap
plied it to various problems of plasma physics.9

•
s Dragt be

came involved with accelerator theory and with the help of 
Douglas, they wrote the first version of a code for beam op
tics (MARYLIE) 10 which parametrizes the Taylor series 
maps in terms of their Lie generators. In collaboration with 
the present author, a normal form algorithm was first intro
duced in the code MARYLIE by Dragt et al. s Finally, Dragt, 
in an obscure report, introduced for the first time the con
cept of phase advance from a map point ofviewlJ: His ideas 
were not complete, but they planted the right seed in the 
present author's mind. At this point it became clear that the 
extraction of maps and their subsequent analysis (normali
zation) provided a powerful approach to numerical and ana
lytic computation in accelerator theory. Remarkably, in 
1959, Meier and Symon (Ref. 2) used a Lie representation of 
the map without knowing it. Meier and Symon were study
ing a map consisting of a rotation followed by a sextupolar 
kick. By writing a time-dependent pseudo-Hamiltonian that 
generates the exact same map, Meier and Symon were able to 
compute a canonical transformation in order to simplify it: 
Their pseudo-Hamiltonian was the factorized Lie represen
tation of the map proposed by Dragt and Finn.8 Meier and 
Symon's only error was in not trying to extirpate from the 
theory and normalization the bogus time dependence. 

Most recently, software development has increased the 
numerical power of the map approach enormously. Indeed, 
the extraction of Taylor series representation of maps from 
simulation codes can be very tedious. Chao and, later, the 
present author restricted themselves to codes where the indi
vidual magnets had a simple representation (thin lenses) : At 

1134 J. Math. Phys., Vol. 31, No.5, May 1990 

most we could extract fifth-degree polynomial maps in six
dimensional phase space. 12 Fortunately, Berz has created a 
software package, the Differential Algebra Package, which 
permits exact automatic differentiation of any quantities in
tegrated on the computer, in particular, the position and 
momentum vector that is evaluated in our simulation 
codes. 13 The same tools of Berz permit a user to manipulate 
the resulting power series map into any type of representa
tion and in particular the factored Lie representation sug
gested by Dragt and Finn. S It suffices to say that the theoreti
cal concepts discussed in this paper have all been 
implemented for the power series representation thanks to 
Berz's package. 14 

To set the tone, we will review a few concepts concern
ing symplectic maps. 

B. A few words about symplectic maps15-17 

A symplectic map M transforms a differentiable 
function ! (zo) of the initial phase space into another 
function (l\V') (Zo), wherezo = (qOI,POl>".,qON,PON)' We say 
that M is symplectic if it preserves the Poisson bracket 
of two functions! and g: 

M[f,g] = [Iw,Mg], (la) 

(lb) 

Now consider the motion generated by a Hamiltonian K 
from location So to s. We know that any function! (zo) will 
be transformed at location s into a new function Is (zo)' The 
two functions are connected by a symplectic map M(so,s). 
Using the properties of Hamilton's equations, one can show 
that M(so,s) obeysl7 

d - M(so,s) = M(so,s): - K(zo;s):, 
ds 

:f:g = [f,g], 

M(so,so) = E = identity map. 

(2a) 

(2b) 

(2c) 

Here we follow Dragt's notation for the Lie operator 
[Eq. (2b)]. From Eqs. (2) we deduce that any map of the 
form M(zo) = exp(!(zo):) is a symplectic map. Equation 
(2a) is very similar to Schr6dinger's equation for the 
unitary transformation in quantum mechanics. 
However, here the resulting map will be symplectic. 
Notice that the generator: - K(zo;s): depends only on 
the initial phase space variable zoo It is also easy to show 
that the differential properties of any Lie operator such 
as: - K: imply that 

Is (zo) = (M(so,s) f)(zo) = j{M(so,s)zo) 

=!(z. (zo»' (3) 

Finally, it is worth remembering that symplectic maps act in 
the reverse order from matrix multiplication when expressed 
in terms of the initial phase space variables. To show this 
property, we imagine a two-step process: 
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M N 

o S' - S, 

M(zo)Zo = Za', 

N(z., )Za' = Za· 

(4) 

Here the map M transforms functions of the initial 
phase space at s = 0, while N acts on functions of the 
phase space at s' [throughout this paper, the notation 
M(Zo) indicates that the Lie operators of Mare 
expressed in terms of Zo] . 

Clearly, we can propagate a function/ (Zo) to a location 
s by the composition offunctions rule: 

f. (Zo) = fez. ), (Sa) 

but 

/(z.) = N(Za' )/(Za·) = N(Za' )M(Zo)/(zo), (Sb) 

= N(M(zo)zo)M(zo)/(Zo), (Sc) 

= M(zo)N(Zo)M-1(Zo)M(Zo)/(Zo), (Sd) 

= M(zo)N(zo)/(Zo)· (Se) 

Equation (Sa) is the result of simple composition. In (Sb) 
we apply the definition of the two maps to (Sa). Finally, 
(Sc) and (Sd) are the results of the differential 
properties of the Lie operators associated to the maps. 

Indeed, it can be shown using properties ( 1 ) and( 3 ) that 

exp(;(Mzo):) = exp(:M/ (zo):} 

= exp(M;(zo):M- 1) 

(6) 

The reverse ordering is also present in Eq. (2a), as seen 
by integrating it from s to s + ds. 

We are now ready to introduce our map description of 
complex periodic systems. In Sec. II and Appendix A we 
review in very general terms the basic Hamiltonian and 
canonical transformations used in circular machine 
theory and simulations. In Sec. III A and B we present 
the equivalent map description of our system by 
viewing the ring as an ordered set of maps. In Sec. III C 
we sketch the one-turn map normalization. In Sec. IV we 
use the one-turn map normalization to define the 
Floquet ring. In Sec. V these concepts are applied to the 
second-order normalization of a perturbed Floquet 
ring. In Sec. VI we apply the map approach to linear 
systems in the continuous limit (i.e., in the Hamiltonian 
limit): A set of well-known results follows explicitly. In 
Appendix B we sketch the proof of a few theorems. 

II. THE PROBLEM OF CIRCULAR MACHINES 

As mentioned in Sec. I, the need for a map-based theory 
is most apparent in accelerator physics. Therefore, we will 
describe in very general terms the central problem of accel
erator design. 

Consider a Hamiltonian H(x,t::..;s) , where x is a phase 
space vector of dimension 2N and t::.. is the set of Np param
eters describing the departure of our system from its design 
value (i.e., by definition, the ideal machine is described by 
the case t::.. = 0). We also assume that H is periodic in s with 
period s = 1: 
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H(x,t::..;s + 1) = H(x,t::..;s). (7) 

In addition, we can select a new set of canonical variables 
Z(E) that is generated by a periodic Lie operator associated 
to the function w(Z,t::..;S;E): 

dz 
-= [z,w] =:-w:z, Z(E=O) =X. (8) 
dE 

Ultimately the parameter E is set to 1. It has been shown 
that the variable Z(E = 1) is propagated by a Hamiltonian 
K(s) obeying: 18•19 

K(z,t::..;s) = A (z,t::..;s) ( H(z,t::..;s) + LE

= 1 dE 

XA -I (z,t::..;s)~ W(Z,t::..;S;E») , as 
dz 
-= [z,K]. (9) 
ds 

Here A-I is the periodic canonical map that transforms x 
into z; it is generated by w. Equations (8) and (9) can be 
viewed as the fundamental equations of an accelerator in the 
absence of collective or dissipative effects. The/undamental 
problem of accelerator dynamics is to study the stability of 
the motion generated by K or H as one iterates n turns 
around the machine from s = So to s = So + n (n -+ 00 ). 

Often the theorist attempts to select the generator w in a 
way that will simplify the structure of K. We refer to this 
kind of process as a normalization process. In general, the 
computation of K is extremely difficult because it requires a 
knowledge of A for every value of s! [For completeness, see 
Appendix A for the map equivalent of Eqs. (7)-(9) and a 
derivation of K(z,t::..;s).] 

Typically, no attempt is made to simplify the 
Hamiltonian and one integrates the motion generated 
by H with the help of a symplectic integrator.2o The 
phase space data are then examined at a finite number 
of surface of sections (often only one!) and all hope of 
analytical understanding is abandoned. 

The map description of dynamics described in this paper 
was developed as a direct consequence of the impossibility of 
normalizing a realistic accelerator Hamiltonian by blindly 
applying a Deprit-type algorithm. 

III. THE HAMILTONIAN-FREE OR MAP DESCRIPTION 

A. The motivation 

The map approach is based on a redefinition of the sys
tem in terms of a finite number of maps. In accelerator theo
ry, we are motivated in redefining the problem by the follow
ing facts. 

(i) Most simulations are performed by symplectic inte
grators.21 Only a finite set oflocation {sJ are examined dur
ing this process. The maximum number of locations ever to 
be examined is the number of integration steps around the 
ring. 

(ii) The form of the equations of motion for a computer 
simulation may not and will not in general be suitable for a 
normal form analysis. 

(iii) Although symplectic maps act on the infinite-di
mensional space of functions, the property displayed in Eq. 
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(3) permits us to restrict ourselves to the coordinate repre
sentation of the map z" (Zo) = Mzo. 

Statement (i) simply says that most simulations involve 
very discontinuous Hamiltonians in s. While it is cumber
some to fold a discontinuous Hamiltonian into a Deprit style 
algorithm, the production of maps and their subsequent 
analysis are ideally suited for discontinuous systems. 

Statement (ii) points to the necessary discrepancies 
between the world of a computer and the world of 
theoretical analysis. The process we will describe 
allows for a total decoupling. One may extract maps 
using a noncanonical set of coordinates and later 
transform these maps into canonical variables quite 
independent of the system that produced them. For 
example, the calculation of the motion through some 
complex fringe field may be easiest in noncanonical 
variables, in some cases using even time as the 
Hamiltonian parameter. 

Statement (iii) is extremely important: It implies that our 
efforts should be in the direction of extracting a 
representation of z.. For example, in the case of a 
Taylor series representation of z., we mentioned that 
Berz has developed powerful software tools ( the 
Differential Algebra Package) that perform automatic 
differentiation to arbitrary order on a computer, 13 

making it possible to extract z. as a power series 
around some trajectory in phase space (usually the 
periodic closed orbit). The same tools used by Berz 
allowed Irwin and the present author to write the 
necessary software for the normalization of the one
turn map. 14 Needless to say, a Taylor series 
representation may not be always suitable. Presently, 
non power series representations are being studied by 
Warnock et al. who have also developed methods to 
normalize the map. Warnock et al.'s representation can 
permit the study of very nonlinear processes and they 
succeed in many cases at finding numerically 
approximate invariants of the motion near chaotic 
regions.22 Unfortunately, Warnock et al. do not have 
tools as flexible as the Differential Algebra Package of 
Berz. For this reason, thanks to Berz's tools, the power 
series representation of z. is the only representation 
for which all the concepts presented in this paper are 
and have been implemented. 

B. The redefinition of the system 

1. Definition of the ring 

A ring is an ordered m-tuple m = (Ni i + 1 ) of m maps 
connecting m surfaces of sections or observation points (see 
Fig. 1). Here, the index i runs from 1 to m with the conven
tion i + m = i. The maps in m = (Ni i + I) are symplectic. 
Without loss of generality, we assume that these maps trans
form the origin of phase space into itself: 

Vi Nii+lZoIZo~o = o. (10) 

Clearly, the number of maps will depend on the particular 
aspect of the problem being studied: Again, we emphasize 
that it cannot exceed the number of steps in our symplectic 
integrator. 

We are now in a position to define standard concepts on 
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FIG. J. Schematic view of the ring!n. 

our ring. The reader must remember that the underlying 
assumption in this paper is our ability to extract and manipu
late maps to any order in the perturbation [i.e., in the case of 
a power series this would be the degree in the vector (Zo,8), 
where 8 is a subset of the total parameter set fl. of Eq. 
(7)] .13,14 

C. The one-turn maps and their normallzatlon23 

In the following we sketch the steps of the 
normalization of a one-turn map. This formal procedure 
is explained in detail in Ref. 14. Given the ring m, we can 
easily compute the one-turn map from location Sj back to Si' 

This map is simply given by a left to right product: 

and 

i+m-l 

Mi = II Nkk + 1 
k~; 

(Ila) 

(11b) 

The new m-tuple ~ that is created out ofm is not equivalent 
to m, as we will see in Sec. IV when we define the Floquet 
ring. 

The first property we will assign to our map is linear 
stability. To define linear stability we expand the coordinate 
representation ofM! around the origin: 

z,,; (zo) = L;zo + ... . (12) 

We assume that the 2N X 2N matrix L; has 2N distinct eigen
values on the unit circle: 

iLl =exp( ±i21TVj ), O<vj <l, j= I,N. (13) 

Associated to the matrix L; is a Lie map Li. Clearly, the 
eigenvalues of L; do not depend on location since Lj is ob
tained from Li by a similarity transformation (the same is 
true for the full nonlinear map): 

j-I 

Lj =LIj-1LiLij, where Lij = II~k+I' (14) 
k=; 

For the linear part of the map, we claim that their exists 
a linear transformation ALi such that 

ALi LiALi -I = exp(: - WJ:) = RL, (15a) 
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f1-j = 21TVj> (l5b) 

(15c) ~ «ZO;2j_I)2 + (ZO;2j)2)/2. 

The transformation Au depends on the location Si' How
ever, the map RL is universal once a tune Vj has been as
signed a given plane j. The transformation done in Eqs. (15) 
is always possible for a stable linear map with distinct eigen
values. Let us go back to the nonlinear map MI' Following 
Dragt and Finn,16 we express it in a factored form: 

No 

M, LI (Li -IMi ) = Li II exp(ifk (Zo):) (16) 
k=1 

In the case ofa power series representation ofMJ, No - 1 is 
the degree of the polynomial approximation of the function 
z"t (Zo) and k + 2 is the degree in Zo of the Lie exponent. For 
a different type of approximation the reader can view No and 
k as the degree of some smallness parameter. Our ultimate 
goal is to normalize MI partially or totally. In a total norma
lization, we must find a transformation Ai (analytic around 
the origin) such that 

Aj Mi Ai -I = exp(: - WJ + D(J):) = R. (17) 

For analytic Ai one can show that R is unique for a given 
ordering of the planes and independent of the location (see 
Appendix B). 

Obviously, using Eqs. (15), we factor Ai into linear and 
nonlinear parts: 

Ai ANiAu, 

ANI AN,,i ... Ali' 

Aki exp(:Fk:), k = I,No· 

Applying (18) on Mi gives us 

No 

(18a) 

(18b) 

(l8c) 

AJMiAi -I = ANiRL II exp(:gk; (ZO):)ANi -I, (19a) 
k=1 

where 

(19b) 

The normalization of the nonlinear map starts with Eqs. 
( 19). To see the type of operators involved, let us compute 
the effect of Ali on the second-degree map RL exp(:gli:): 

AURL exp(:gli:)Au - 1 

as 

= exp (:FIi:)RL exp(:gli:)exp(: - FIi :) 

= RLRL -I exp(:FJj:)RL exp(:gli:)exp(: - Fli :) 

= RL exp(:RL -IFli:)exp(:gli:)exp(: - F li :). (20) 

To first order in the Lie exponents, we can rewrite (20) 

RL exp(:RL -IF\j:)exp(:gli:)exp(: FIi :) 

= RL exp{: - (E - RL -l)FIi + gli:) + order(g2) 

= RL exp(: - TFI ; + gl;:) + order(g2)"', (21a) 

T = E - RL -t, (2Ib) 

where E is identity map. 
From the Eqs. (21), we see that the operator T is central 

to the understanding of the effect of any similarity transfor
mation. Since T is essentially RL, we must study the Lie 
operator :WJ:. As pointed out by Cushman et ai., 24 as well as 
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Dragt and Finn,8 the operator :WJ: is a semisimple endo
morphism of the space P k of homogeneous polynomials of 
degree k;;, 1 in Zo; hence it is true that 

Pk=ImT$KerT. (22) 

In fact, it is easy to derive Eq. (22) by simply constructing 
the linear eigenfunctions of T (or :WJ:) (Ref. 8): 

:wJ :h l = ± if1-j h l, 
h l = Z2j_ I ± iZ2j =.J2];, exp( + iqJj)' 

where 
[ qJj,JJ ] = DiJ 

are the only nonzero brackets, 

~ =~h/hj-' j= 1,N. 

(23a) 

(23b) 

(23c) 

For completeness, in (23b) we displayed the connection be
tween our eigenfunctions and the usual set of action-angle 
variables (~,qJj)' 

Using these linear eigenvectors, we can construct an ei
genbasis for P k : 

Im,n} = (hl+)m'(hl-)n""(hN+)mN(hN-)"N 

:wJ:lm,n) = i(m - n)· .... lm,n). (24) 

Since T is diagonal in the Im,n) basis, it follows that Pk 

decomposes into the direct sum of its image and its kernel. In 
fact, if the f1-'S are irrational among each other, the kernel is 
given by 

Im,n)EKerT=>m-n 0, i.e.,lm-nl O. (25) 

In a partial normalization, we decide to leave in the final map 
terms for which m n:;60 [or often (m - n)· .... aO]. This 
allows us to study islands produced by a resonance. 

We say that MI is partially normalized into the map R if 

A/MiAi -I exp(: WJ + D;(J) 

+ I Dm.n;;lm,n):) = RI, 
m-neI,. 

(26) 

where Ir = {kEZ N I k = selected resonances}. As indicated 
in (26) by the index i, in a partial normalization the final 
map will depend on the location in the ring. According to 
Eqs. (21), we obtain R by inverting T. In fact we can rede
fine T- 1 using a projection operator: 

Tim -lg = T-1Plmg 

Amn ) . Im,n, 
exp(i(m - n)''''') 

Pimg = I Am,n Im,n), 
m - n,tI,U{O} 

g I Am.n Im,n). 
m.n 

(27a) 

(27b) 

(27c) 

Provided that one knows how to compose the maps in
volved in the normalization and extract their leading order 
Lie representation, the maps Akl can be computed by iter
ation using Tim -1 as defined in Eqs. (27). This procedure 
was first implemented to third order in the Taylor series by 
the present author and Dragt in the context of the code MAR-
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YLIE. lO Later, Neri and Dragt pushed the process to fifth 
order using the same code. Recently, the present author and 
Irwin, in close collaboration with Berz, 14 developed the algo
rithm and software necessary to extend the map normaliza
tion to an arbitrary order. The process is semianalytic since 
in practice only a small number of components of 11 [see Eqs. 
(7)-(9)] can be retained. This number can vary depending 
on the order of the normalization, the phase space dimen
sion, and the power of the computer used. 

For our purpose, it suffices to know that one can define 
(exactly for linear maps and formally in the nonlinear case) 
a normalized map R. Although we concentrate in this article 
on a normal form algorithm based on the semisimple opera
tor :WJ:, it is possible and sometimes desirable to study sys
tems that are not semisimple. 14

,24 What can be done on the 
Hamiltonian can also be done on the map. 

IV. THE FLOQUET RING 

Let us assume that we have achieved a complete norma
lization of the ring. As described by Eq. (17), we have 

p(Mj ) = Aj, p:~-symplectic maps, 

AjMjAj -1 = exp(: - WJ + D(J):) = R. 
(28) 

The transformationp introduced in (28) can be viewed as a 
map over the set of one-turn maps ~ defined over!R. Usingp 
we can define a new ring: the Floquet ring. We first proceed 
by mapping the m-tuple ~: 

~p = p(0) = (o(Mj )Mjp(Mj ) -1) = (R,R, ... ,R). 
(29) 

The fact that ~p contains only R is demonstrated in Appen
dix B by generalizing Eq. (14) to the maps Nk k + 1 and using 
the assumed analyticity of the maps that are involved. 

More important, we must find out what happens to !R. 
We first state the result. 

(i) Thenewringp(!R) (or!Rp) is made out of amp li
tude-dependent rotations (called phases). The angles of 
these rotations reduce to the so-called linear phase advance 
in the linear regime. 

(ii) Two different normalizations p and p' can only dif
fer by a phase for a given ordering of the tunes. 

Corollary: The phase advance between two matched lo
cations (M; = M j ) is the same for any definition ofp. 

Proof: We now prove the above results. 
Property (i): Using the normalization p, we conclude 

from Eq. (29) that 

p(Mj )M;p(Mj ) -1 = p(Mj )Mjp(Mj ) -I = R. (30) 

Using the definition of~, we may write 

M j = Nij -IMjNjj . (31) 

We can substitute (31) into (30): 

p(Mj )Mjp(Mj )-1 

1138 

= p(Mj )NIj -IMjNijp(Mj)-1 

::::}Mj = p(Mi ) -Ip(Mj )Nij -IMjNijp(Mj ) -lp(MI) 

::::} R = p(Mj )Nij -Ip(Mj ) -IRp(MI )Nijp(Mj)-I 

::::} R = Bij -IRBij, 
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where 

(32) 

We now take advantage of the Lie algebraic representation 
ofR: 

R = BIj -1 exp(: - WJ + D(J):)BIj 

::::}exp(: - WJ + D(J):) 

= exp(:Bij -I( - WJ + D(J) ):). (33) 

Using the assumed analyticity of the various maps involved in 
Eq. (33), one can show that BIj can depend only on J(see 
AppendixB);henceitcanbewrittenwithasingleLieoperator 
<I> ij: 

Bij = exp(: - <l>ij(J):). 

The angle of the rotation produced by Bij is simply 

a<I> .. 11<1> .. = _ __ I) 

I} aJ 

(34) 

(35) 

Using Eqs. (32) and (35), we can define the Floquet 
ring !Rp associated to p to be the m-tuple 

!Rp = (Bkk + 1) such that 

Bkk + I =p(Mk )Nkk +1P(Mk+ I )-1. (36) 

Property (ii): Finally, from Eq. (30) and the unique-
ness ofR, we obtain a relation identical to Eq. (33) in the 
presence of two different normalizations p and p': 

R = exp(: - WJ + D(J):) 

=p(Mj )p'(MI )-1 exp(: - WJ + D(J):) 

Xp'(Mj)-lp(Mj). (37) 

Hencep(Mj )p'(Mj ) -I is a rotation and equivalent normal
izations can only differ by a phase. It is a simple exercise to 
prove the corollary on matched locations. 

V. PERTURBATION OF THE RING m 
Often ·one perturbs a Hamiltonian at several locations. 

One would like to know how the ring !R and its Floquet 
counterpart p (m) are affected by perturbations, in particu
lar Hamiltonian perturbations. 

Let us assume that the ring is perturbed at the ith loca
tion by a Lie operator Cj = exp (: - Vi:)' In accelerator 
physics, this kind of question is often asked. For example, CI 
could represent a nonlinear multi pole error or a beam-beam 
kick: The list is endless. Clearly, the perturbed ring !RP is just 
the m-tuple 

(38) 

More interesting, we would like to examine the perturbed 
Floquet ring: 

!Rj = (AICIAI -IBjj + 1) 

= (exp(: - A; Vj:)BiI + 1) 

= (exp(: - V;(Al zO):)BII + 1 ). (39) 
In Dragt's original paper on lattice functions, II he refers 

to AI -1 as the "irritability": In some sense, it gives the true 
extent of the damage done on the Floquet ring. 
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As an example of the use ofEq. (39), let us completely 
normalize 9fJ to second order in the perturbation Vi' This has 
practical application in the design of a large synchrotron ring, 
where one needs to keep the shear terms resulting from 
sextupoles under control. This process is schematically 
displayed in Fig. 2. 

To proceed as before, we first compute the one-turn maps: 

i+m~l 

Ri = II exp(: - Vk (Ak Zo) :)Bk k + I' 
k~i 

:;y; = (Ri )· 

(40) 

We then isolate the perturbations on the rhs of the factored 
product of Ri : 

Ri = RR-IC+if I exp(: - Vk(BikAkZO):»)R, 

Ri = RC+Jf I exp(: - Vk (Bki + m -IAkZO):»). 

Ri=RTIi' 

(41) 

To second order in the perturbation, we can factor TIi : 

TIi = exp(: WIi:)exp(: W2i :)"', (42a) 
i+m-l 

Wli = L - Vk (Bki + m -IAkzO)' 

k~i 

(42b) 

The expression for W2i is the result of a simple application of 
the Campbell-Baker-Hausdorff formula. 

The normalization starts with the application of 
Ali = exp( :FIi :): 

Ali RiAli -I = AliRTIiAU -I, 

Fli = Tim -IWli , Dwl (J) = (E - P im ) W Ii · (43) 

In the case ofa complete normalization, Dwl (J) is often 
known as the average (or secular) term, which in the usual 
action-angle representation of (23b) has the form 

1 l21T l21T N Dwl(J) = (WI) =-- .,. WIi(rp,J)d rp. 
(21T)N 0 0 

The resulting map is given by 

Ali RiAU -I = R exp(:Dwl (J):)exp(:Wi;:), 

wt = U Dwl ,Pim Wli - 2FIi ] 

+ ~ [FWPim WIi ] + W2i · 

(44) 

(45) 

We now proceed with the second-order calculation: 

F2i = Tim -IWt 

= T-IH DWi ,Pim Wli - 2FIi ] 

+ Tim -leu Fli,P lm Wli ] + W2i )' 

Dw2 (J) = (E - Plm ) eH Fli,Pim W li ] + W2i ). 

(46a) 

(46b) 

The first term of W ii is entirely in the range of the operator T. 
This completes the second-order normalization process. To 
second order in the Ci's, the Floquet ring is given by 

9ft = (exp(:F2k :)exp( :Flk :)AkCkAk -IBkk + 1 

xexp(: - FI k + I :)exp(: - F2k + I :», (47a) 

0t = (R exp(:Dwl (J) + Dw2 (J):» 

= (exp(: - WJ + D(J) + Dwl (J) + Dw, (J):». 
(4Th) 

VI. THE LINEAR PHASE ADVANCE 

When new techniques are introduced, it is instructive to 
compare the approach with the old techniques 
whenever they exist. The difficulty in doing so is 
proportional to the enhanced power the new methods 
provide over the old ones. Therefore, while the 
mathematical equivalence is not in doubt, it is hard to 
work out a nontrivial and nonlinear example which 
explicitly displays the mathematical equivalence. 
Therefore, we will settle for a linear example. The 
reader with a knowledge of accelerator theory will see 
here an explicit connection between the two methods 
by allowing our ring to become an "oo-tuple," i.e., by 
reverting to the Hamiltonian. Clearly, from Eq. (2a), the 
Hamiltonian picture corresponds to the maximum ring 
9f oo : 

9fpoo = lim (Nss+ ds ) = lim (E + ds: - H(xo;s):) 
ds_O ds_O 

.\E[O.I) SE[O.I) 

(48) 

First, let us state a few well-known results. In the one
dimensional case, where the Hamiltonian is given by 

H = !(P2 + k(S)q2), x = (q,p), (49) 

a stable one-turn map can be parametrized by the so-called 
Twiss parameters l5

: 

Ls = exp(: -pI:) = exp(: - ~c:), (50a) 

c = r(s) q02 + 2a(s)qoPo + {J(S)P02, 1 + a 2 = {Jr. 
(SOb) 

It is easy to verify that the matrix representation Ls ofLs is 
given by 1,15 

L = (COs p + a sinp {Jsin p ) (51) 
s _ r sin p cos p - a sin p . 

Orlgmal Original Perturbed First Order Second Order 0' ~Mi)1 '5 ''''-',,1 (5 . ''''-',,1 '~ 

'J - p(M,1 (~' • .. p(" ~ .. ,,' CJ 
oJ . 1]' 2J 
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FIG. 2. Schematic view of the second-order 
normalization process. 
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The invariant c of Eqs. (50) is called the Courant-Snyder 
invariant in accelerator physics literature. From our pre
vious discussion it is clear that the Twiss parameters (a,/3, y) 
are s dependent. Incidently, the maps L. define our one-tum 
00 -tuple, while H defines the ring 

moo = lim (E + ds: - ~02 + k(S) Q02):), (52a) 
ds-O 2 

se[O,lJ 

~oo = (L. )se[O,1 J' (52b) 

To proceed further, we must define the mapp(L. ). Following 
Courant-Snyder, I we definep(L,.) as 

AL'=P(Ls)=(~a/fi3 ~/fi3)' (53) 

Equation (53) uniquely defines AI.. given a linear map L •. 
Given (52) and (53), we will prove, using our concepts, that 
the Ploquet ring and resulting phase advance are given by 

mpoo = lim (E + ds: - _1_(P02 + Q02):) 
ds-O 2/3 

se[O,lJ 

= lim (E + ds: -l..J:), 
ds-O /3 

SE[O,IJ 

i s'ds 
6.<11", .. , = -. 

s" /3 

(54a) 

(54b) 

Before proving a generalization of this result, we point out 
that the choice of Courant-Snyder was dictated by the kind 
of perturbation expected in an accelerator. In our machine, 

we expect the perturbation CI = exp (: - Vi:) of Sec. V to 
depend mostly on the position vector q because the leading 
contribution to the perturbed Hamiltonian is proportional 
to the longitudinal component of a magnetic vector poten
tial. Therefore, a choice of p (Ls) that minimizes the change 
in the functional form of Vi is best. We can generalize the 
Courant-Snyder choice to a higher dimensionality. The re
sulting phase advance formula is given for the Hamiltonian 

1 2N 

H(x;s) = - L Hij (s)XiX) 
2 i=IJ=1 

and for A =p(L) such that 

AU-12i-1 >0, A2i-12i = 0, i = I,N; 

by [(55a) and (55b)] 

d<lli ~ H2ijAj2i 
=>--= £.. 

ds j=1 AU-12i-1 

(55a) 

(55b) 

(55c) 

Proof We rewrite Eq. (32) for an infinitesimal change 
ins: 

B.1.<I> = exp(: - 6.<II.J:) 

= A.(E + ds:H(xo;s):)As+cIs -1 

=>A. + cis 

= (E + :6.<II.J:)A. (E + ds: - H(xo;s):) 

+ O(d~)··· . (56) 

Next we assume that As obeys (55b) and we impose on 
A. + cis the same condition (j and k are summed over): 

As+ clsXO;2i-1 = (E + :6.<II·J:)A.(XO;2i_1 + ds[ - H(xo;s),xo;u_1 ]) 

= (E + :6.<II.J:)A. (XO;2i- I + ds H2ijXOJ) 

= (E + :6.<II.J:) (A 2i _ 1 kXO;k + ds H2ijAjkXO;k) 

= (A2i _ I kXO;k + ( - 6.<IIkA 2i _ I 2k _ I XO;2k + 6.<IIk AU _ I 2kXO;2k _ I + ds H2ijAjkXO;k»' (57) 

We extract from (57) the (2i - 1,2i) component of As+ ds 
and set it to zero: 

0= ds H2ijAj2i - 6.<IIiA 2i _ I 2i _ I 

=>property (55c). (58) 
Q.E.D. 

We can apply formula (58) to a problem already solved by 
Edwards and Teng25, where they accidently chose the same 
definition for the transformationp(L). 

In Edwards and Teng's case, the Hamiltonian matrix 
Hijwas 

H~( ; 0 K 

-~} 1 L 
L G o ' 

-L 0 0 1 

(59) 

they parametrized the matrix A as 

_ _ (ICOSt/J D-
I 

sint/J) 
A - Be, B - D' A. I A. ' 

- SIn,/, cos,/, 
(60a) 

1140 J. Math. Phys., Vol. 31, No.5, May 1990 

cos(t/J) >0, I = (~ ~), D = (: !), IDI = 1, 

(60b) 

c~(t~ ~b,1'b'~C~~ l/~) 
(60c) 

Because the map A obeys (55b), we can compute the phase 
advance using (55c): 

d<lll (1 - Lb tan(t/J» 
ds 

(61a) 

d<ll2 (1 + Lb tan(t/J» 

ds /32 
(61b) 

Results (61) are exactly those obtained by Edwards and 
Teng through a totally different method.25 
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In a final exercise, we would like to explore the relation
ship between two definitions of the phase advance. Going 
back to the original one-dimensional problem of Courant
Snyder, I we can examine the following definition: 

A =p'(L) = (VIY 
L, S 0 

-allY) . 

IY 
(62) 

If the world was made out of primarily velocity-dependent 
potentials, Courant and Snyder would have selected p'. The , 
L. +ds = Ns~~ ds L•N •• +ds 

= N.~~ds exp(: - ~C:)Nss+ds = exp(: - ~N.~~dSC:) 

phase advance is obtained by a symmetry argument [canoni
cally exchanging q and p and applying (55c) ]: 

aCP = (" k(s)ds . (63) 
sos. Js. 

"', y 
Using the ring given by (48) and the underlying Hamilto
nian given by ( 49), we can derive a famous set of rules for the 
evolution of the Twiss parameters (a,{3,y). This will allow 
us to relate the phase advances of p and and p' explicitly. 

= exp(: - ~(E - ds: - !(p02 + k(S) q02):)(Y(S) q02 + 2a(s)qrPo + (3(S)P02):) 

= exp(: - ~(c - ds[ - !(p02 + k(S) q02),y(S)q02 + 2a(s)qrPo + (3(S)P02] ):) 

=> da =(3k _ y, d{3 = _ 2a, dy = 2ak. 
ds ds ds 

Using the relations of (64) and the relation 1 + a 2 = {3y, we 
obtain 

aCP = is' k(s)ds = is' y + dalds ds 
"'~, {3 

So Y "', r 
= rS'~ds+tan-l(a)ls=sl. (65) 

J..., (3 s = So 

In Eq. (65) we explicitly demonstrated that matched 
(a l = a 2 ) locations are separated by the same phase ad
vance. If we then multiply p' - I by P [Eqs. (53) and (62)], 
we obtain another advertised result: 

(IY allY) ($ 0) 
o vIY - al$ V$ 

( 
1/..JT+(iT a/..JT+(iT) 

= - a/..JT+(iT v..JT+(iT . 
(66) 

As we stated previously, the matrix in (66) is a rotation; 
two definitions of p can only differ by a phase. In fact, the 
angle ofthe rotation in (66) is tan - I (a), in perfect agree
ment with (65). 

We close the present discussion with a remark on Dragt's 
original definition of the phase advance. In Ref. 11, Dragt 
defined the canonical transformation p in terms of maps. 
However, Dragt artificially introduced the timelike variables 
of the original Hamiltonian in the definition of p. As a result, it 
was not true that 

(67) 

Although it is conceivable to imagine cases where (67) 
should be discarded on the basis of connecting two different 
types of perturbations, it is unacceptable to do so at random 
using the Hamiltonian parameter s. In that sense, Dragt's 
treatment was not totally Hamiltonian-free. 

VII. CONCLUSION 

We would like to summarize the actual achievements of 
the Hamiltonian-free theory. First, as we emphasized 
throughout this paper, our apporach goes directly to the 
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(64) 

I 
quantities of interest; this greatly simplifies the theory for 
any representation of the map. 

Second, our ability to generate and analyze Taylor series 
maps allows us to study arbitrarily complex systems, in par
ticular, circular accelerators. One can define a Floquet ring 
and perturb it by Hamiltonian and/or stochastic effects. For 
example, one can easily implement the stochastic calculation 
of the final emittances proposed by Chao in any tracking 
code.6 We are no longer restricted to simple models: This 
could become important in understanding the behavior of 
small light sources because of the nontrivial fringe fields they 
generate. 

Finally, other areas of physics could benefit from such 
an approach. For example, in the design of toroidal stellara
tors, one can show that the magnetic field line pattern is (in 
some variables) a two-dimensional symplectic map. The 
computation of this map is extremely complex and tedious 
since one must integrate the Biot-Savart law around the stel
larator. Hanson and Cary, in a paper on the stochastic na
ture of this map,26 did exactly that: Had they known of the 
automatic differentiation of Berz,13 they could have at
tempted to compute a one-tum map with some dependence 
on the current parameters they used to reduce the stochasti
city. In fact, the stellarator problem seems to typify a proper 
use of a map-based theory: the map is simple (two-dimen
sional), but the Hamiltonian generating it is extremely com
plex (i.e., Maxwell's equations). In addition, the field lines 
are best integrated using non-Hamiltonian variables. One 
can convert the two-dimensional map into canonical vari
ables at the end of the calculation, just before feeding it into 
some canonical perturbation theory algorithm. 

By this example, we just wanted to point out the genera
lity of certain concepts. Since not all problems are identical, 
we are convinced that the greater the selections of tools, the 
more efficiently a researcher or designer can attack a com
plex problem. 

VIII. PROSPECT FOR THE FUTURE 

We began this paper by pointing out that the essential 
problem of accelerator dynamics is to study the long-
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term stability of the one-tum map. In fact, from a strict 
analysis of error propagation, accelerator simulation 
integrates the motion of particles far beyond a 
rigorously reasonable limit. Given this fact, can we then 
use a one-tum map in our simulation? Experience has 
shown that truncated Taylor series produced 
nonsymplectic maps with vastly different long-term 
behavior. Indeed, the motion can settle on a fixed point 
in phase space after a relatively short number of turns, 
despite a highly accurate Taylor series representation. 
However, with our ability to extract maps and 
manipulate them, we can reexpress the Taylor series 
representation into various exactly symplectic 
representations. This is being extensively studied at 
the moment, driven by projects such as third
generation synchrotron light sources, small "pocket" 
light sources and large hadron rings such as the 
contemplated Superconducting Super Collider (SSC). 

We are also trying to understand quasisymplectic 
maps. For example, in light sources and so-called 
"beauty factories," electrons radiate a substantial 
amount of energy. In the classical regime, this leads to a 
nonlinear map with damping. This map can be easily 
extracted with automatic differentiation techniques, 
but its analysis in the nonlinear regime will require new 
developments beyond those advertised in this paper. In 
particular, it will not be possible to express the one-tum 
maps using symplectic Lie generators, but it is hoped 
that a new expanded set of Lie generators can be 
found. 

These problems and others are now within reach 
thanks to the type of rethinking introduced in this 
paper. 
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APPENDIX A: A MAP DERIVATION OF THE NEW 
HAMILTONIAN USING THE ADJOINT 
REPRESENTATION OF THE LIE OPERATOR ALGEBRA 

Assuming that we are interested in all surfaces of 
sections, the ring becomes an "00 -tuple," as described 
inEqs. (2), (8), and (9). In terms of maps, (2), (8), and (9) 
take the form 
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~ A -1(Zo;S;E) = A -1(Zo;S;E): - w(Zo;S;E):, 

d 
ds M(zo;s) = M(zo;s): - K(Zo;s):, 

K(zo;s) = A(Zo;S)( H(zo;s) 

(Ala) 

(Alb) 

l €= 1 a ) + dE A -l(Zo;S)- w(Zo;S;E) , (Alc) 
o as 

M(zo;S = so) = E = identity. (AId) 

Equations (AI) must be integrated from So to So + I if 
one is to obtain a one-tum map. For a complete 
normalization, (Al) must be accompanied by the 
boundary conditions 

(A2a) 

(A2b) 

The periodicity of (A2b) and the normalized form 
imposed on K in (A2a) renders the direct solution of 
Eqs. (AI) and (A2) very difficult unless the original 
Hamiltonian H is simple. The process involves the 
computation of various Green's functions upon which 
the proper boundary conditions are imposed (see Ref. 
5). 

In this Appendix, wewillconcentrateonEq. (Alc) (first 
obtained by Dewar18 and then Cary19): It can be derived 
very elegantly using homomorphic Lie algebras. Let us 
denote by N the map generated by H: 

d 
ds N(zo;s) = N(Zo;s): - H(zo;s):. (A3) 

Using Lie properties of maps, we can write M(zo;s) as 

Ms = AoNsAs -I. (A4) 

In Eq. (A 4) all the maps transform functions of the initial 
coordinates zoo First, Ao (zo) brings us to the original 
variables; these are propagated with the help of 
N. (zo,so) and are finally taken back into the new 
variables by A. (zo) -I. To obtain the new Hamiltonian K, 
we take the derivative of (A4) with respect to s: 

d M _ A (d ) -I (d -I) ds s - 0 ds Ns As + AoNs ds As 

= AoN.As -lAs 

X' -H'A -I + A N A -IA (~A -I) 
. 's ~ss sds' 

= Ms (: - As H: + A. (! As -I)) . (AS) 

Comparing (AS) with (Alb), we conclude that 
A.«d /ds)A. -I) must be a Lie operator: To evaluate it, 
we use the equation of A. and A. -I: 

~A (~A -I) 
dE • ds s 

= :W:A.(! As -I) + A.(! As -I: - w:) 
= {:W:,A.(! A. -t)} +: - ! W:, 
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a d 
-w=-w. 
as ds 

(A6) 

Here {,} denotes the commutator of two Lie 
operators. Denoting by G the operator A,.{(d /ds)A. -I), 
we rewrite (A6) as 

d a 
- G - #w#G = : - - W:. 
dE as 

(A7) 

Here #w# is a super operator that acts on the space of 
Lie transforms by taking a commutator. These 
commutators form a Lie algebra. Notice the 
homomorphism between the Lie algebra of super 
operators, Lie operators, and Poisson brackets l5

: 

#f#:g: = {;f:,:g:} = :[f,g]:. (A8) 

To solve (A7), we make use of (A8) by writing G in terms 
of an E-dependent super operator: 

G(E) = PGo• 

We first solve the homogeneous equation 

~ P - #w#P = O::::}P = A{#W(E) #). 
dE 

(A9) 

(AlO) 

To obtain P in (AlO), we notice that the formal functional 
dependence of P on the super operator #w# must be 
the same as the dependence of A on Lie operator :W:; 
similarly, p- I must have the same functional 
dependence on # - w# as A -I has on: - W:. 

To solve the nonhomogeneous equation, we allow Go to 
depend on E (variation of parameters). For the 
particular solution Gp we obtain 

Gp = A{#W(E)#) f dE' A -I{# - W(E')#) 

: -~W(E'):. 
as 

(All) 

The general solution is the sum of the homogeneous 
and particular solutions: 

G = A{#W(E) #)( Go + f dE' A -I{# - WeE') #) 

: - ~ WeE'):). 
as 

We impose the boundary condition at E = 0: 

(G(E = 0) = O::::}Go = 0); 

therefore, 

(AI2) 

G = A{#W(E)#) dE' A -I{# - W(E')#): - - WeE'):. 1£ a 
o & 

(A13) 
Finally, here the homomorphism enters between the 

three Lie algebras of (A8): 

A{#W(E)#) dE' A- I {# - w(E')#): - - w(E'): 1£ a 
o as 

= : - A{:W(E):) dE' A -1(: - W(E'):)7- WeE'):. i' a 
o as 

(AI4) 
Substitution of (A 14 ) into (A5) gives the advertised 
result. 

1143 J. Math. Phys., Vol. 31, No.5, May 1990 

APPENDIX B: THE UNIQUENESS OF R AND THE PHASE 
ADVANCE 

We first prove that given a map M, the assumed 
analyticity of the similarity transformation insures the 
uniqueness of R. 

We start by postulating the existence of two normalized 
rotations: 

Al MAl -I = RI, AzMAz -I = R2, 

which in turn imply that 

(Bl) 

A2AI -IRIAIAz -I = Rz. (B2) 

Equation (B2) is a generalization of Eq. (33) for the 
phase advance: 

exp{:A2AI -Ie - ~I·J + DI (J) ):) 

= exp{: - ~2·J + D2(J):). (B3) 

Using analyticity, we follow Dragt and Finnl6 by 
factorizing AzAI -I: 

(B4) 

where·· ·rk = exp(:Pk+2:) andpk+2 is a homogeneous pol
ynomial of degree k + 2 in the phase space variables. 

Except for a mere relabeling of the planes, let us 
assume that the uniqueness of R is true in the linear 
regime (the proof would be quite different for linear 
maps and amounts to the uniqueness of eigenvalues!). 
Then (B3) takes the form 

exp(:···rkrk_ 1 ···r l ( - WJ +DI(J»:) 

= exp{: - WJ + D 2 (J):). (B5) 

To go further, we proceed by induction. Assuming that 
for k <j - 1, the r k 's are rotations, we collect the terms of 
degree j + 2 and obtain an equation for Pj + 2 : 

:wJ:PH 2 = D 2 (J) - DI (J)!H 2 component • (B6) 

Using the direct sum decompositian (or the eigenbasis) 
and the mutual irrationality of the tunes [Eqs. (22), (23), 
and (25)], we conclude from (B6) that PH 2 cannot 
contain anything from Im(:wJ:). In addition, since the 
lhs of (B6) must be in Ker(:wJ:), the only consistent 
solution to (B6) is 

PH 2 EKer( :wJ :), 

The rest follows by induction, starting withj = 1. 

(B7) 
Q.E.D. 

Equation (B7) also proves the statement on the phase 
advance because it is a special case of (BI). 

Finally, by generalizing Eq. (14) to the nonlinear maps, 
we can easily see that R does not depend on the 
location: 
Mj = Nij -IM1Nij' where Nij = II Nkk + lI (B8a) 

k=i 

AIMjAI -I = Ri , AjMjAj -I = Rj, (B8b) 

(B8a) and (B8b)::::}AjNij -IM1NijAj -I = Rj . (BSc) 
Equations (B8a) and (B8b) violate the uniqueness of R 
for a given map M. 
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The space of relative velocities in special relativity has a three-dimensional hyperbolic 
structure. This provides not only a geometric interpretation of the Einstein velocity addition 
law, but also a purely three-dimensional reformulation of both special and general relativity on 
a three-manifold whose tangent bundle is endowed with a hyperbolic distance function on each 
fiber. Here the basic concepts are that oflocal physical observers and local time in terms of 
nonsingular vector fields and their local flows. The hyperbolic structure on the tangent space 
enables one to define a relative velocity function between two physical observers, as well as 
space and time measurements and inertial physical observers. It is possible to rederive Lorentz 
time dilation and gravitational and cosmological redshifts and reformulate Maxwell (or Yang
Mills) equations in a purely three-dimensional framework instead of the traditional four
dimensional space-time approach. 

I. INTRODUCTION 

The Lorentz group acts as an isometry group on the flat 
Minkowski space-time with signature ( - + + + ); it also 
acts as an isometry group on the space of relative velocities 
which is a three-dimensional hyperbolic [but Riemannian 
with signature ( + + + )] space of constant curvature 
equal to - 1. This provides the motivation for a purely 
three-dimensional reformulation of both special and general 
relativity on a three-manifold whose tangent bundle is en
dowed with a hyperbolic distance function on each fiber. 

In this paper we propose the framework of an underly
ing three-dimensional manifold providing a background for 
physical observers relative to which it is possible to define 
space and time measurements in conformity with the princi
ple of relativity. The motivation for this comes from the hy
perbolic structure of the space of relative velocities in special 
relativity. Relative to some reference inertial system, the ve
locities {u = (u',u2,u3

)} of all other equivalent inertial sys
tems, with velocities less than the velocity of light, form a 
three-dimensional open disk D 3. Let G be the standard hy
perbolic metric on D3. Then H3 = (D 3,g) is the standard 
hyperbolic three-space of constant curvature equal to - 1. 
H3 is geodesically complete and has a hyperbolic distance 
function d(u,v), where u,v are the velocities of two inertial 
systems relative to the reference inertial system. Then it can 
be shown that the relative velocity w between the two sys
tems, as given by special relativity, can be expressed as 
IIwll = tanh{d(u,v)}. The isometry group ofH 3 is known to 
be PSL(2,C), the projective special complex linear group in 
two dimensions. 

The action of the Lorentz group L!+ on the space of 
relative velocities H3 is next considered in some detail and 
the infinitesimal operators, that is, the Killing vector fields 
of L !+ as an isometry group of H 3, are worked out explicitly. 

The transition from special to general relativity is ac
complished, in general, by the passage to an arbitrary mani
fold whose tangent space has the structure of special relativi
ty. We are thus led to consider a Riemannian three-manifold 

(M,g) whose metric g determines, in an obvious manner, a 
hyperbolic structure on the tangent space Tm (M) at each 
point meMo A physical observer is then defined to be a non
singular vector field X on M with g(X,x) < 1 (which takes 
into account the limiting velocity oflight). With the help of 
the hyperbolic structure on T m (M) one can then define a 
relative velocity function V(X,Y) between any two physical 
observers X, Y. Two observers X, Yare then inertially equiva
lent if VeX, Y) = const on M. 

We next consider the problem of constructing a class of 
inertial observers starting from a representative physical ob
server. In the general case where (M,g) =1= (R\8), the prob
lem leads to the definition of a "generalized Lorentz matrix" 
with appropriate "generalized" properties, which reduce to 
the usual properties of Lorentz matrices when gik = 8ik • 

If c: I -+M is a particle path, i.e., a smooth curve on M, 
and X is a physical observer, we can define space and time 
intervals of c(l) relative to X in such a way that if Y is an
other physical observer inertially equivalent to X, then the 
space and time intervals relative to Yare related to that of X 
by a Lorentz transformation. 

The Maxwell equations for electric and magnetic fields 
as observed by an arbitrary physical observer X can be cast in 
a particularly concise and elegant form in terms of three
dimensional differential forms on M and are susceptible to 
obvious generalization to the non-Abelian Yang-Mills case 
by considering the SU(2) Lie-algebra-valued three-dimen
sional differential forms on M. 

Finally, we indicate briefly how dynamical problems 
such as gravitational and cosmological redshifts can be han
dled in this three-dimensional framework. 

It is hoped that the rich topological and geometrical 
structure of three-manifolds and their vector fields may pro
vide a new tool or insight to problems in general relativity. 

II. ACTION OF L~ ON THE SPACE OF RELATIVE 
VELOCITIES 

In the special theory of relativity, the velocity transfor
mation formula relating the relative velocities U,V,W ofthree 
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equivalent inertial systems is given by (in units c = 1) 

IIwl12 = [(u - V)2 - (UXV)2]1(1 - U'V)2 . (1) 

Equation (1) has the following geometrical signifi
cance. Let us choose some reference inertial system and con
sider the velocities u = (u' ,U2

,U
3

) of all other equivalent in
ertial systems relative to this reference inertial system. Since 
for physical inertial systems lIuli = [l:{ (u i )2] '/2 < 1, the 
space of relative velocities is topologically a three-dimen
sional open disk 

D3 = {uE]R31I1ull < l}. 

(For tachyons the appropriate space to consider would be 
the complement of the closure of D 3, that is ]R3<l5 3.) Let us 
now introduce the standard (positive definite) hyperbolic 
metric G on D 3 by 

i.e., 

d? = L Gik (u)dui duk 

i.k 

[l-l:i(Ui)2] [l:i(du i)2] + [l:iu i du i ]2 

[l-l:i(Ui)2]2 
(2) 

Then H 3 = (D 3,G) is the standard hyperbolic three
space of constant curvature - 1. This is the so-called Poin
care disk model of H 3 (Ref. 1). Alternatively, introduce ho
mogeneous coordinates S = (sO,S"S2,S3) by Si = SOUi and 
define for S = (sO,S"S2,S3)' 'T/ = ('T/0,'T/,,'T/2,'T/3) the inner 
product (S,'T/) = so'T/o -l:iSi'T/i' Then 

d? = (ds,s) (s,ds) - (S,S) (ds,ds) . 

(s,s )2 

or, in homogeneous coordinates, 

(3) 

(5) 

We expect that the distance d (u,v) has something to do 
with the relative velocity w between the two inertial systems 
whose velocities relative to the reference inertial system are u 
and v. To see the actual relationship3 note that the reference 
system is at rest relative to itself. Now from ( 4), 
d(O,v) = cosh-'{l/(1 -lIvI1 2)'/2} = tanh-'lIvll. That is, 
IIvll = tanh{d(O,v)}. We can now reinterpret Eq. (1) as a 
relation between the relative velocity wand the hyperbolic 
distance d(u,v): 

The isometry group of H 3 is intimately connected with 
the Lorentz group, as can be seen from the following. 

First consider an abstract R4, with the Lorentz metric 
gR' given by d? = (dX2)2 + (dX2)2 + (dX3)2 _ (dX4)2. 
Consider now the hypersurface M of]R4 (see Fig. 1), 

M = {x = (x',X2,X3 ,X4)ER4
1 (X')2 

+ (X2)2 + (X3)2 _ (X4)2 = - l}, 

which has the components M' = {xEM Ix4>1} and 
M" = {xEM IX4 <: - l}, each of which is diffeomorphic to 
D 3. The diffeomorphism map is given by 

(x' ,X2,X3,X4)I-+(u' ,U2,U3) , 

u i = Xi/X4 (i = 1,2,3) , 

with its inverse 

Now let gM be the induced Riemannian metric on M 
obtained from gR. on ]R4. In coordinates (u i

), gM is given 
exactly by (2). Thus H3 = (D3,G) is isometric to 
(M',gMIM') and (M",gMIM")' 

The isometry group of H 3 was shown by Poincare4 to be 
PSL(2,C), the projective special linear group in two com
plex dimensions; it is thus isomorphic to L '+ , the ortho
chonons Lorentz group. It is clear from (5) that the iso
metry group of H3 leaves the inner product 
(s,'T/) = so'T/o -l:iSi 'T/ i , in homogeneous coordinates, in
variant: Thus let its action be given by (from now on we shall 
use the summation convention for repeated indices) 

where 

til = L~sa' L~EL '+ (,u,a = 0,1,2,3) . 

Since iii = tJto, L '+ acts on H3 as a fractional linear 
transformation 

x~ 

1'1' +1 

xi 

MH -I 

IIwll = tanh{d(u,v)}. (6) FIG. l. The hypersurfaces M',M". 
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(7) 

Let us consider next the infinitesimal operators of this 
action. We first write L ~ in terms of its infinitesimal genera
torsKA and the parameters aA (A = 1, ... ,6) asL~ = L~ (a) 
= (exp aAKA)~ and write (7) as Ui~Ui =p (u,a). Then 

Thus 

XA = {( (KA )~ + (KA )511 ] 

. 0 0 . } a - u'[ (KA)o + (KA )ju'] -.' 
au' 

(9) 

For example, in the case of the one-dimensional special 
Lorentz transformation with boost a, f(u,a) = (u - a)/ 
(1 - ua), so that the infinitesimal operator (or vector field) 
on H I is X = (u2 - l)a /au. 

In general, let {KI,K2,K3} be the generators of rotations 
and {K4,Ks,K6} that of boosts, i.e., 

K'~(~ 
0 0 

~} K'~(~ 
0 0 

V' 
0 0 0 0 

0 0 0 0 

0 1 - 1 0 

K'~(~ 
0 0 

) C 
-1 0 

V' 
0 -1 o -1 0 0 

0 ~ , K4 = ~ 0 0 

o 0 0 0 0 

K,~e 
0 -1 

V' 
0 0 

-1 0 0 

0 0 0 

K'~( ~ 
0 0 

1} 0 0 

0 0 

-1 0 0 

Then from (9) we obtain 

XI =U2~_U3~, X2=U3~-UI~, 
au3 au2 au I au3 

X3=UI~-U2~, 
au au 

a a a X4=«ul)2-1)-+ulu2-+ulu3_, (to) 
au l au2 au3 

Xs = U2Ul ~ + «U2)2 - 1)~ + U2U3~, 
au l au2 au3 

a a a 
X6 = U3UI- + U3U2_ + «U3)2 - 1)-, 

au l au2 au3 
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the infinitesimal operators are the vector fields X A on H3 
given by 

X A = (:~~ ) a = 0 :Ui . (8) 

Now 

whose Lie brackets satisfy 

[XI,x2] = - X3, [X2'X3 ] = - XI' [X3,x1] = - X2, 

[X4,Xs] = X3, [XS,x6] = XI' [X6'X4] = X2, 

[XI'X4] = 0, [X2,XS ] = 0, [X3,x6] = 0, (11) 

[Xt,XS ] = - X6, [X2'X6] = - X4, [X3'X4] = - Xs , 

[Xt,X6] = Xs, [X2'X4] = X6, [X3,XS ] = X4 · 

Note that if [KA,KB] =C~BKc, then [XA,xB] 
- C~BXC' 

III. RELATIVITY ON A THREE-MANIFOLD 

When one wants to make a transition from special to 
general relativity one considers a manifold whose tangent 
space has the structure of special relativity. This suggests the 
following general formalism of relativity on a three-mani
fold. 

Let (M,g) be a three-manifold with a Riemannian met
ric g. Here M should be regarded as some sort of a universal 
substratum and not the absolute space of Newton. By an 
observer or particle path in M we shall mean a smooth curve, 
i.e., a smooth map c: 1-+ M from a real interval I into M. 
Since to every such curve c one can associate locally a vector 
field c* (Ref. 5) such that cis an integral curve of c*, it is 
preferable to regard the set of all nonsingular vector fields on 
M as the set of all observers in M. We must demand nonsin
gularity in order to avoid an observer being at absolute rest 
relative to the substratum M. Therefore, each nonsingular 
vector field X on M represents an observer. To each such X 
corresponds a local flow X T' i.e., a local one-parameter group 
of local diffeomorphisms of M. Here r represents the "flow 
of time" as perceived by X. Time is thus a local concept since 
X is not necessarily complete unless M is compact. 

Let us now consider only those nonsingular vector fields 
X such that g(X,X) < 1. Such observers will be called phys
icalobservers (corresponding to the fact that no such observ
er can attain the velocity oflight) and let O(M) be the set of 
all physical observers. 

We now define a map V, called the relative velocity map, 
from a pair of physical observers to a smooth function on M 
as follows: 
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V: OeM) X O(M)~C co (M) 

(X,Y)~V(X,Y) = tanh{cosh- i F(X,Y)} , 

where 

F(X Y) - 1 - g(X,Y) (12) 
, - [1-g(X,X)p/2[1-g(Y,y)]i12 

Note that if (M,g) is Euclidean, i.e., M = R3 with 
the Euclidean metric g = 0, then VeX, Y) (m) 
= tanh{d(X(m),Y(m»}, mEM, where d is the hyperbolic 

distance function given by (4). Thus V defines a "hyperbo
lic" distance function on the tangent space T m (M). 

We now introduce an equivalence relation - in OeM) 
by 

x - Y iff vex, Y) = constant function on M. (13) 

In other words, the observers X and Yare said to be 
inertially equivalent if the relative velocity function VeX, Y) 
between the two is a constant function on M. . 

We shall now give a theoretical definition of space and 
time intervals of a physical particle path relative to any phys
ical observer X. Let c: I ..... M, A.~(A.) be a particle path and 
c* any representative corresponding vector field associated 
with it such that c is an integral curve of c*. For a physical 
particle path, 0 <g(c*,c*) < 1 on c(/). From now on all ob
servers and particle paths would be physical. The time inter
val of c relative to observer X will be denoted by t:.:rx and 
defined by an integral over I. (See Fig. 2.) 

Definition: 

t:..7X = i F(X,c*)dA.. (14) 

We now parametrize c by 7x , where d7xldA. = F(X,c*), 
and define t:..Dx , the space interval of c relative to observer X 
by the following definition. 

Definition: 

t:..Dx = i V(X,C*)d7x = i V(X,c*)F(X,c*)dA.. (15) 

Note that if X = c*, i.e., c is an integral curve of X, then from 
(12), F(X,c*) = F(c*,c*) = 1 and V(c*,c*) = 0, so that 

t:..7x = i dA.=t:..A., 
(16) 

t:..Dx = O. 

In other words, X is at rest relative to c. Thus an observer X is 
at rest relative to a particle ifit traces out one of its own inte
gral curves. 

If (t:..7y,t:..D y ) are time and space intervals of c relative 
to another observer Y, then (t:..7x,t:..Dx) -+ (t:..7y,t:..D y ) pro
vides a space-time transformation from observer X to ob
server Y. 
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rx X2 

AX X 1X 2 

1 +AX X 2X 2 

Ax X 3X 2 

/' 

r 

FIG. 2. The space and time interval of c relative to observers X. Y. 

In general one has, for any particle path c and any pair of 
observers X, Y, 

( :; r -(d~x r = ( :; r -(d~x r = 1 . 

A. Lorentz time dilation 

Consider two inertially equivalent physical observers X, 
Ysuch that 

VeX, y) = v = const. 

Then 

F(X,y) = [1- V(X,y)2]-1/2= (1-v2)-i/2=r. 

Let c be an integral curve of X, i.e., X = c*. Then, again from 
(12), t:..7x = SI dA. = t:..A.. However, relative to the observer 
Y the time interval of c is given as 

t:..7 y = iF(y,C*)dA.= iFCY,X)dA.= irdA.=rt:..A., 

sothatt:..7y = r t:..7x , which is the Lorentz time-dilation for
mula. 

IV. A CLASS OF INERTIAL OBSERVERS 

We shall now consider the problem of constructing a 
class of inertial observers starting from a representative 
physical observer: in other words, given a physical observer 
X, the problem of constructing an observer Y such that 
VeX, Y) = const. 

The solution to this problem is obvious in the special 
case: (M,g) = (R3,o). Let X =,Xi (x)(a laxi

) in some glo
bal coordinates (Xi) in R3. Consider the Lorentz matrix with 
thepureboost - X(x) = (_Xl(X), -X 2 (x), -X 3 (x»: 

(17) 
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where rx = (l_X'Xi)-1/2, Ax = (rx l)IXiX i, and the vector field y= yt(x)(alaxi ), where [v= (vl,'?,v3
), a 

constant vector] 

Li ( X) +L'k' ( X)vk 
yi(X) = ~ 0 

Lo(-X)+L k ( X)vk (18) 

Then V 2 (X,y) = Vi Vi . This can be seen by writing (18) as Vex) = L_x(x) v and noting that v = Lx(x)L X(x) v. That is, the 
relative velocity between X(x) and L _ X(x) V is ± v. More directly, one uses the well-known properties of Lorentz matrices 

L~L~ = (L8)2 - 1, 

L';'Lj=L?LJ+8ij , 

L';L';'=L8L? 

to show that 

(19) 

(L 0)2 + (L °Vi )2 + 2L 0 L °vi _ L I L j _ 2L I L I vm - (L I vm)2 1 _ vV [I-g(Y.Y)] = 0 J 0 J 0 0 0 m m = _____ _ 
, [L8 +L%Vk]2 [L8 +L~Vk]2 

and 

so that 

V2(X Y) = 1 _ [1 - g(X,x)][1 -g(Y,y)] = vlv;. 
, [I-g(X,y)]l 

In general, if (M,g) =f: (R.3,8), the above prescription does not work and has to be modified to take into accountg=f:8. 
Let X be given in some local coordinates by X = X' (x) (a I axi ). Consider now a "generalized Lorentz matrix" corre

sponding to (17): 

YXXI YxXz ex _ Yx X1 - I - I 1 +AxX XI AxX X2 

L~( - X) = Yx XZ - 2 AXXXI - 2 1 +AxX Xl 

rx X3 - 3 AXXXI - 3 AxX X 2 

where Yx = (l_X'Xj )-t/2, Ax = (Yx -l)IX;X;, 
XI = g;kX k. In other words, we use the metric g to lower 
(raise) indices and now distinguish between the contravar
iant and covariant indices. Thus 

-0 - -k k - k Lo( -X) =rx, L j ( - X) ={)j +AxX ~, 
-0 - -k - k L k ( -X) =rXXk' Lo( -X) =rxX . 

Then it is easily seen that the "generalized Lorentz matrix" 
(20) satisfies the following "generalized" properties: 

-f-k -0 2 
glkLoLo = (Lo) -1, 

- m- n -0-0 
gm"LiL j =L;L j +{)ij' (21) 

- - -0-0 
gm"L';L7=LoLj' 

If one now defines Y = yt (x)(a laxl) by 

. Z ~ ( - X) + Z ~ ( X)vk 

Y'(x) = -0 -0 if 
L 0 ( - X) + L k ( X) 

(22) 

one can show, using the generalized properties (21), that 
V 2(X,y) = g(u,v) = glkViVk

• Thus from a vector field v with 
g( v, v) = const, we can construct a class of inertial observers 
starting from X. 
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hX, ) - 1 Ax X X3 
(20) 

Axx 2X 3 ' 

1 + Axx 3X 3 

v. MAXWELL EQUATIONS 

The Maxwell equations are usually expressed in terms 
of four-dimensional differential forms in order to exhibit 
their relativistic invariance, as well as their concise and ele
gant form; however, they can also be expressed in a concise 
form in the present three-dimensional formalism. 

Relative to an observer X let the electromagnetic vari
ables E, H, B, D, j, p (the usual electric, magnetic fields and 
inductions, current, and charges) be expressed (in some lo
cal coordinates) in terms of the following three-dimensional 
differential forms on our three-manifold (M,g): 

one-forms ax,/:JxEA'(M): 
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Yx = L YXij dxiAdxj
, B = (YXI2'YX23,YX31) , 

i<j 

Dx = L DXij dxiAdxj
, D = (DX12,Dx23,Dx31 ), 

i<j 

Ex = L EXij dxiAdx!, j = (EX12,Ex23,EX31)' 
i<j 

three-form TfxEA3(M): Tfx =P dx l Adx2Adx3. 
The index X specifies the observer X relative to which all 

physical variables are to be measured. In view of the way we 
have defined the "flow of time" as measured by X in terms of 
its local flow X T' it is clear that the "time derivative" relative 
to X is determined by the "Lie derivative" !f x relative to the 
vector field X. Thus the Maxwell equations 

aB 
curlE= --, at 
curl H = 41Tj + aD, at 
div D = 41TP, 

div B = 0 

can be written as 

dax = -!fxYx, 

d/3x = 41TEx + !f x Dx , 

dDx = 41TTfx , 

dyx = o. 

Since 

2" x = ix'd + d'ix , 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

where i x is the contraction operator relative to X, we obtain, 
from (24) and (27), 

dax = Ux·d + d'ix)Yx = - dUxYx) 

or 

drx =0, where rx =ax +ixYx' 

Similarly, from (25) and (26), 

or 

d/3x = 41TEx + (ix'd+d'ix)Dx 

= 41T(Ex + ixTfx) + dUxDx) 

dOx =0x , 

where 

(29) 

Ox = /3x - ixDx, 0 x = 41T(Ex + ixTfx) . (30) 

Thus the contents of the Maxwell equations (24 )-( 27) can 
be succinctly incorporated in the following: 

drx=o, 

dOx =0x , 

where 

1150 

r x = ax + ixYx , 

Ox =/3x - ixDx, 

0 x = 41T(Ex + ixTfx) . 
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(31 ) 

(32) 

In vacuum Ex = Tfx = 0 x = 0; thus the vacuum Maxwell 
equations are 

drx=O, 

dOx =0. 
(33) 

The continuity equation follows by taking the exterior 
derivative of the second equation in (31), i.e., d0x = O. 
From (32) we obtain 

0= d(Ex + ixTfx) = dEx + (2" x - ix 'd)Tfx . 

Since Tfx is a three-form on a three-manifold, dTfx = O. Thus 

!fxTfx +dEx =0, (34) 

which is the continuity equation relative to the observer X if 
we keep in mind that the Lie derivative !f x corresponds to 
the time derivative a I at and that dE x is the divergence of the 
current j relative to X. 

VI. GRAVITATIONAL RED SHIFT 

We shall now indicate how dynamical models can be 
treated in this formalism. 

Consider the problem of gravitational red shift in the 
field of a massive spherical object whose mass would deter
mine the metric g of our three-manifold (M,g) according to 
some field equations, which we leave for the moment unspe
cified. Let us suppose only that g =/= D, the Euclidean metric. 

Essential to this problem is the notion of similar clocks. 
By a clock we shall mean a periodic (or closed) curve c or a 
corresponding vector field c* with periodic (or closed) inte
gral curves. For example, in two dimensions in R2, a clock at 
the origin would be given by c* = - yea lax) + x(a lay), 
with the integral curves c: A -+ (x = a cos A, y = a sin A). 
Note that strictly speaking, a clock is not a physical observer 
since it is allowed to be a singular vector field (however, on 
R2 - {O}, c* is nonsingular). Two clocks would be consid
ered similar if there exists a differentiable transformation 
between the corresponding vector fields. For example, cf 
= yea lax) + (x - r l ) ca lay) and c! = - yea lax) 
+ (x - r2 ) (a lay) represent two similar clocks at (rl,O) 

and r2,0) in R2 (or in a two-dimensional M). Relative to 
some physical observer X, the time intervals of C I and C2 

would be given by 

r21T r21T 

6.7JP = Jo F(X,cf)dA, 6.7<]) = Jo F(X,c!)dA. 

Since g=/=D, in general, 6.7\1)=/=6.7<]). More generally, one 
should perhaps consider a certain class {X} of physical ob
servers or vector fields of (M,g) representing, for example, 
the free-fall observers in a gravitational field determined by 
g, instead of similar clocks as defined above. 

Some examples of special classes {X} of vector fields in 
(M,g) are (where V is the Levi-Civita connection deter
mined by g and V z is the corresponding covariant derivat
tive operator) 

parallel vector fields: V zX = 0, for all Z , 

geodesic vector fields: V xX = 0 , 

Killing vector fields: !f xg = 0, 

Ricci-constant vector fields: !f x Ricc(g) = 0 . 
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Note that parallel vector fields are also inertially equiva
lent observers. For a Levi-Civita connection, 

Z(g(X,y) =g(VzX,Y) + g(VzY,X) 

for all vector fields X, Y, Z. Hence, if X, Yare parallel, 
g(X,X),g( Y,y), andg(X,Y) are constants and thus V(X,y) 
is also a constant function. 

VII. COSMOLOGICAL RED SHIFT 

We shall briefly sketch how problems of cosmology, for 
example, cosmological red shift can be treated in this formal
ism. 

A cosmological model would consist of a three-mani
fold M with Riemannian three-metric g and a class {X} of 
vector fields (see above), the so-called cosmological observ
ers, determined by (M,g). The relative acceleration of 
two cosmological observers X,Ye{X} is given by 
2' x V(X,y) = y(V(X,y) or X(V(X,y). Ifsuch a model is 
to predict a cosmological red shift a necessary condition 
would be, for example, 

y(V(X,y) = aV(X,y)F(X,y), VX,Ye{X}. (35) 

Such a relation would imply a simple Hubble law of relative 
velocity strictly proportional to distance, with a as the con
stant of proportionality. 

The problem then would be to determine whch (M,g) 
and for what class {X} of vector fields relation (35) holds. 
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VIII. CONCLUSION 

It thus seems possible to reformulate the essential ingre
dients of both special and general relativity in a purely three
dimensional framework instead of the traditional four-di
mensional space-time approach. 

The Maxwell equations (31) can be generalized to the 
non-Abelian Yang-Mills case by considering SU(2) Lie-al
gebra-valued three-dimensional differential forms on M. 

We have not touched upon dynamics of particles or field 
equations for the metric g. Other topics for further study 
would be to consider Hamiltonian mechanics and subse
quent quantization in this three-dimensional setup. 
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In a recent paper, Moreira [Res. Rep. IF/UFRJ/83/25, Universidade Federal do Rio de 
Janeiro Inst. de Fisica, Cidade Univ., Ilha do Fundao, Rio de Janeiro, Brazil] obtained a 
nonlinear second-order differential equation that leads to the first integral of a modified 
Emden equation. He also obtained two particular solutions of his equation. This paper 
completely integrates Moreira's equation and uses it to get a class of solutions of a coupled 
Korteweg-deVries (KdV) equation, recently studied by Guha Ray, Bagchi, and Sinha [J. 
Math. Phys. 27, 2558 (1986)]. 

I. INTRODUCTION 

In a recent paper, Moreira 1 has studied the modified 
Emden equation 

qtt + a(t)qt + qn = ° (1.1) 

and found the following first integral: 

1= exp( m r a(t')dt){q; + aqqt(2 - m) 

+ [2/(n + 1) ]qn + , 

+ ~tT(m - 2) [(m - l)a2 + at p, (1.2) 

where m = 2(n + 1 )/(n + 3), provided the function a(t) 
satisfied the differential equation 

all + (3m - 2)aat + a3 (m 1)m 0, (1.3) 

where at -=daldt,att -=d2aldt 2. 

Moreira 1 did not find out the general solution of Eq. 
( 1.3), but gave two particular solutions 

aCt) = 2/mt, a(t) [em l)tJ 1. (1.4) 

The above results can also be found in a paper by Leach,2 

which gives some other particular solutions of Eq. (1.3). In 
the present paper, we intend to obtain the complete solutions 
of equation 

, au +aaat +ba3 =0, ( 1.5) 

which is a more general solution ofEq. (1.3) where a and b 
are constants. Further, we intend to apply the solutions of 
Eq. (1. 5) to obtain some new solutions of some coupled 
Korteweg-deVries (KdV) equations, recently studied by 
Guha Ray, Bagchi, and Sinha,3 which are 

u t + Avvx + /3uu x + 8uxxx = 0, 

Vt + y(uv)x = 0, 

( 1.6a) 

(1.6b) 

where Ux -=aulax and so on and A, /3,8, y were kept arbi
trary. 

II. SOLUTIONS OF EQ. (1.5) 

Equation (1.5) can be rewritten as 

at dat 2 
---+aat +ba 0, 
a da 

i.e., 

d(at ) aat + ba2 

--2-+ 0, 
d(a ) 2a, 

which gives 

2 ds e de 
-s- = e 2 - (aI2)8 + b12' 

(2.1 ) 

where 

s = l/a, e = - aJaz. (2.2) 

Equation (2.1) admits two solutions. 
Solution 1: e constant given by e 2 

- (aI2)e + b I 
2 0, i.e., 

a = C ± ~a~ _ 8b )+ . (2.3 ) 

In particular when a = 3m 2 and b = m (m - 1) one gets 
the solutions obtained by Moreira. ' 

Solution 2: e i=constant. Equation (2.1) can be integrat
ed to give 

S4 =/(e), (2.4) 

where 

and A is any integrating constant. 
Differentiating (2.4) with resPect to (w.r.t.) land using 

(2.2), one can get 

/'/4 f/1/4 
t+B=--+ -2-de, e 0 

(2.6) 

where B is an integrating constant. 
Also, from (2.4) and (2.2) 

a = 1/~/( e) , (2.7) 

where/CO) is given by (2.5), 
Hence from (2.6) and (2.7) we can say a is a function of 

t through the parameter e. 
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III. EQUATIONS (1.6) WITH uxxx=O 

In this section, we present a class of solutions of Eqs. 
( 1.6) by introducing a simplifying assumption 

Uxxx = o. (3.1) 

It can be shown that Eqs. (1.6) together with Eq. (3.1) 
imply 

U xx = 0, 

i.e., 

U = xl(t) + r(t), (3.2) 

provided {3 #0, y#O. 
The proof is given in the Appendix. 
The solutions of Eqs. (1.6) will be done by using the 

solutions of Eqs. (1.5) obtained in the previous section. 
Using (3.2), Eqs. (1.6) reduce to 

I,x + r, + (AI2)(v2 )x + ({312)(u2 )x = 0, 

v, + y[(lx + r)vx + Iv] =0. 

Integrating Eq. (3.3a) w.r.t. x, 

x21 A 2 {3 2 F 0 - , + xr, + - v + - u + (t) = , 
222 

where F(t) is any arbitrary function of t. 
Differentiating (3.4) w.r.t t, and using (3.3b) 

(x2/2)/1I +xrll-Ay[(lx+r)vvx +IV2] 

+ {3(lx + r) (l,x + r,) + F, = O. 

( 3.3a) 

(3.3b) 

(3.4 ) 

(3.5 ) 

Substituting the values of v2 and vVx given from (3.4) into 
Eq. (3.5) we get a second-order polynomial equation of x 
where its coefficients are function of t only. From this one 
can obtain 

III +4y{3e+ (4y+2{3)ll, =0, (3.6a) 

rll + 4y{312r + (3y + {3)lr, + ({3 + y)rl, = 0, (3.6b) 

2y{31r+ (y+{3)rr, +2ylF+F, =0. (3.6c) 

Equation (3.6a) is exactly the same form as Eq. (1.5). We 
can solve l(t) from (3.6a). Substituting the values of l(t) in 
(3.6b) we get r(t) and finally F(t) from (3.6c). 

The solutions are presented in an article to follow. 

IV. EXPLICIT SOLUTIONS OF EQS. (1.6) 

A. Case I 

Equation (3.6a) has two particular solutions 

1= lI{3t, 

1= 1I2yt. 

( 4.la) 

(4.lb) 

Using (4.la), Eq. (3.6b) can be solved, and from it we get 

r = cllt + c2f I - 3YlfJ, (4.2) 

where C I and C2 are constants. 
Using (4.la) and (4.2) onecanobtainfromEq. (3.6c) 

F= c~ l.+ cJ3 t2-6YI{3 

2(y-{3) t 2 2({3-2y) 

where 
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+ csfJ t - yl{3 + c
6

, 

y 
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(4.3) 

c3 = ci ({3 - y), c4 = (c~/{3)(3y - {32), 
Cs = (c lc2yl{3) ({3 - 3y), 

c6 = constant of integration, 

and with the help of (4.la), (4.2), and (4.3) we get solutions 
for Eqs. (1.6) through Eqs. (3.2) and (3.4). 

Similarly, using (3. 7b) we get another solution for Eqs. 
( 1.6). 

B. Case" 

With the help of Eqs. (2.6) and (2.7) one can get from 
(3.6a) 

1= lI~g(4)) (4.4a) 

and 

where QI is an integrating constant; 

and 

(4.4b) 

g(4)) =A I [(4)-K)NI(4>-M)N-2], (4.5) 

where 

K = [2y + {3 ± (2y - {3) ]/2, 

M= [2y+{3 + (2y-{3)]l2, 

N= (2y+{3)1 ± (2y-{3) + I, 
A I = constant of integration. 

Substituting r = ly in Eq. (3.6c) we get a differential equa
tion for y that can be solved, and from this one can get 

- 2c f (4) - K)p d4> 
r- ~g(4)) (4)-M)P+1I2 ' 

whereg(4)) is given by (4.5) and 

c = constant of integration, 

P={31 ± 4(2y-{3) -~. 

(4.6) 

(4.7) 

Using (4.4a) and (4.6) in Eq. (3.6c) one can get the follow
ing solution: 

F=A _112(4)-K)Y
I

=F(2
Y-

fJl f [y +{3!!... 4> 
\ 4> - M 2 /2 

r r (4) - K)P+ \ ] 
- y{3 J2 - 2c( Y + {3), (4) _ M)P- 112 

(4) - K){31=F 2(2 y -{3l - 3/2 
X d<jJ, (4.8) 

(4) - M){31 + 2(2y - fJ) + 3/2 

wherel(t), r(t), and Pare given by (4.4a), (4.6), and (4.7). 
Hence, the solutions of Eq. (1.6), i.e., u and v can be 

determined from Eqs. (3.2) and (3.4) with the help of Eqs. 
(4.4a), (4.6), and (4.8), respectively. 

V. CONCLUSION 

In summary, we state that Eq. (1.5) admits two types of 
solutions. The first type of solution is in explicit form given 
by Eqs. (2.3) and the second type is in parametric form 
given by (2.6) and (2.7). Equation (1.5) has two important 
uses. The first one is through a special case of Eq. (1.5), 
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which is Eq. (1.3). It has been shown by Moreira I that if 
a(t) of modified Emden equation (1.1) satisfied Eq. (1.3) 
then the first integral of Eq. (1.1) is given by Eq. (1.2). 
Moreira 1 also noted here that Eq. (1.2) admits a solution of 
the form given by Eq. (2.3). The second application of Eq. 
( 1.5) is toward obtaining the particular solutions for cou
pled KdV equations (1.6). In Sec. III we solved Eqs. (1.6) 
foruxxx = o with the help of the solutions ofEq. (1.5) in two 
cases. The solution is as follows: u and v are given by Eqs. 
(3.2) and (3.4), where l(t), r(t), and F(t) satisfy Eqs. 
(3.6). Equation (3.6a) is of the same form as Eq. (1.5) and 
hence its solutions are known; r(t) and F(t) are then ob
tained from (3.6b) and (3.6c). These solutions are obtained 
explicitly in Sec. IV. 

APPENDIX: DERIVATION OF EQ. (3.2) 

Differentiating Eq. (1.6b) w.r.t. x and using (1.6a) 

(u, +puux ), + 2yux(u, +(3uux ) -lI.yv2uxx 

+ YUx(u t +(3uux ) + yu(u, + (3uux )x =0. (AI) 
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Differentiating (AI) w.r.t. x twice and using Eqs. (3.1) and 
(1.6a) one can obtain, after simplification 

(5y + 3(3)uxuxx, + (9y + 3(3)uxx ux , + 24y{3u~uxx 
+ l2y{3uu~ + Uxxtt = O. (A2) 

Again differentiating (A2) w.r.t. x and using (3.1) 

(14y+ 6(3)uxx uxx, + 6Oypuxu;x = 0, 

which on differentiation gives 

6Oy{3uxx = O. 

Hence the result. 

II. de C. Moreira comments on "A direct approach to finding exact invar
iants for one-dimensional time dependent classical Hamiltonians," Res. 
Rep. IF/UFRJ/83/25, Universidade Federal do Rio de Janeiro Instituto 
de Fisica, Cidade Universitana, Ilha do Fundiio, Rio de Janeiro, Brazil. 

2p. G. L. Leach, J. Maths. Phys. 26, 2510 (1985). 
lc. GuhaRay, B. Bagchi, and D. K. Sinha, J. Math. Ph'ys. 27, 2558 (1986). 
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Remarks on a system of coupled nonlinear wave equations 
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Department of Mathematics and Computing, Sultan Qaboos University, Al-Khod, P. 0. Box 32486, 
Muscat, Oman 

(Received 1 November 1988; accepted for publication 13 December 1989) 

It is shown that a generalized system of coupled KdV-MKdV equation exhibits solitary wave 
solutions. It has been shown that an increase in nonlinearity in one variable in a particular 
fashion does not affect the existence of solitary wave solutions. The periodic traveling wave 
solutions of the system have also been investigated. 

I. INTRODUCTION 

Lots of work has been done on the solitary wave solu
tions of coupled nonlinear wave equations. l

--6 Recently 
Guha-Roy7 has shown that a generalized system of com
bined KdV-MKdV equations in the form 

u, + av2vx + (3u 2ux + AUUx + YUxxx = 0, (1.1) 

v, + 8(uv)x + EVVx = 0, (1.2) 

where a, {3, A, 1', 8, and E are arbitrary parameters, possesses 
solitary wave solutions. In this paper, we will now show that 
an equation of the form 

u, +av2vx +(3u2ux +AUUx +yuxxx =0, (1.3) 

v, + 8(uv)x + EV3Vx = ° (1.4) 

also exhibits solitary wave solutions. 
It is remarkable that an increase in nonlinearity in the 

variable v in Eq. (1.3) with a corresponding increase in non
linearity in the same variable in Eq. (1.4) does not affect the 
existence of solitary wave solutions. Also, we have found the 
periodic traveling wave solutions of the generalized system 
with increased nonlinearity. 

II. THE COUPLED EQUATION 

Considering traveling wave solutions of Eqs. (1.3) and 
( 1.4) in the form 

u=u(x-ct), v=v(x-ct), s=x-ct, (2.1) 

where c is the wave velocity, we obtain 

a 3 {33 A 2 
- cUs +"3 (v )s +"3 (u )s +"2 (u )s + YUss; = 0, 

- cVs + 8(uv)s + (EI4)(v4 )s = 0. 

Integrating (2,3), we get 

U = (k 18v) + (cI8) - (EI48)v3
, 

where k is the integration constant. 

(2.2) 

(2.3 ) 

(2.4 ) 

Without loss of generality we can impose k = ° to have a 
regular U everywhere so that (2.4) reduces to 

v3 = (4/E)(C - 8u). (2.5) 

Substituting (2.5) in (2.2) and assuming the solitary wave 
boundary conditions that u, up and uss ..... o as lsi ..... 00, we 
arrive at 

2 2 3 4 Us = a2u + a3u + a4u , (2.6) 

where the parameters a2, a3 , and a4 are given by 

a2 = (111') (c + 4a8!3E) , 

a3 = -AI3y, 

a4 = -(316y. 

(2.7) 

(2.8) 

(2.9) 

Now we shall consider a system of equations with non
linearity increased in v by one degree in both Eqs. (1.3) and 
(1.4) in the form 

U, + av3vx + {3u2ux + AUUx + YU xxx = 0, 

v, + 8(uv)x + EV
4Vx = 0. 

(2.10) 

(2.11 ) 

Following the same procedure as above, we arrive at two 
equations: 

a 4 {3(3 A 2 
- CU s + "4 (v ) s +"3 u) s + "2 (u ) s + yu sss = 0, 

(2.12 ) 

v4 = (5IE)(c - 8u). (2.13) 

Substituting (2.13) in Eq. (2.12), integrating twice, and 
rearranging the terms with the same boundary conditions, 
we get 

2 2 3 + 4 Us = a2u + a3u a4u , 

where a2, a3, and a4 are given by 

a2 = (111') (c + 5a8!4E), 

a3 = -AI3y, 

a4 = -{316y. 

(2.14 ) 

(2.15 ) 

(2.16) 

(2.17) 

So, we notice that Eq. (2.14 )-(2.17) have the same form as 
that ofEq. (2.6)-(2.9) which differ only in (2.15). 

We may generalize the system in the form 

U, + avrvx + {3u 2ux + AUUx + YU xxx = 0, 

v, + 8(uv)x + EVr+ tvx = 0, 

which will reduce to 
2 2 3 4 Us = a2u + a3u + a4u 

with 

a
2 

= ...!.. {c + (r + 2) a8} , 
y (r + I)E 

and a3 and a4 will remain unchanged. 

(2.18 ) 

(2.19) 

(2.20) 

(2.21 ) 

The investigation of solitary wave solution is a routine 
procedure that is already well known. 7 However, for the sake 
of completeness, we rederive solitary wave solution of Eq. 
(2.20). 
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III. SOLITARY WAVE SOLUTIONS 

We put U = l/U and transform Eq. (2.20) into 

U~ = a2U2 + a3U + 04' (3.1) 

Equation (3.1) has a solution in the form 

U(s) = {D cosh [ Fa;" (s + So)] - a3} /2a2' (3.2) 

for a2 > 0 and a~ > 4 a2a4. Here, D = ~a~ - 402a4 and So is 
an integration constant. 

Therefore, the system of Eqs. (2.18) and (2.19) have 
solutions in the form 

U(s) = 2a2/{D cosh [Fa;"(s + so)] -a3}' 

(
r+ 2)11('+\) 

v(s) = -
E 

(3.3a) 

X c- 2 
( 

2/ja )11('+ \) 
D cosh [Fa;"(s + So)] -a3 • 

(3.3b) 

The denominator of (3.3a) may vanish for certain positive 
a3 which could lead to a singularity, and so a physically ad
missible solution for (2.20) will be valid only for a3 <0. In 
other words, A. and y should be of the same sign. 

It is clear from the form of (3.3b) that E should be non
zero for a nonsingular solution. Of course, it is evident from 
the form of a2, a3, and a4 that y should be nonzero for the 
existence of solitary wave solutions, which is even otherwise 
clear because y = 0 is the case on nondispersive waves. 
Therefore, to ensure that U and v do not blow up, we have the 
conditions that E is nonzero and that A. and yare of the same 
sign. 

For U and v to be real valued, a~ > 402a4• This gives rise 
to certain restrictions on the coefficients. We can see that for 
a positive y, P should always be greater than - A. 2/6 and 
for a negative y, P should always be less than A. 2/6. Apart 
from these, from the form of (3.3b) one could see that E and 
D are positive with the condition that D < c(D - a3 ). Here, 
without loss of generality, we have assumed that c is positive. 

Therefore the system (2.18) and (2.19) has solitary 
wave solutions that are bounded and real valued, given by 
equations (3.3a) and (3.3b) with the following constraints 
on the coefficients, viz., 

(i) A. and yare of the same sign, E#O, 

(ii) P > - A. 2 for y> 0, 
6 

A. 2 

p<-fory<O, 
6 

(iii) E> 0, D> 0, D < c(D - a3 ) for positive c. 

IV. PERIODIC WAVE SOLUTIONS 

Following the same procedure adopted in Sec. II, we 
arrive at two equations from the system (2.18) and (2.19) in 
the form 

a ('+ j) f3 (3) A. ( 2) - CUs + -- v s + - U S + - U S + YUm 
r+ 1 3 2 

= 0, (4.1) 
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v'+ j = «r + 2)/E)(C - DU). (4.2) 

Substituting (4.2) in (4.1) and integrating twice, we get 

u~ = ~ [K2 +Kju 

+ {..:...+ (r+2)aD} U2_~U3_Lu4], 
2 (2r + 2)E 6 12 

where K j and K2 are integration constants. 
Now, (4.3) can be written in the form 

u~ = ao + a\u + a2u2 + a3u
3 + a4u4, 

where 

(4.3) 

(4.4) 

ao=2K2 , a\=2K1 , a2=..:...+(r+2)aD, 
y y 2 (r+ l)E 

a3 = - A. /3y, a4 = - P/6y. (4.5) 

It can be shown by direct substitution that Eq. (4.4) has a 
real-valued periodic wave solution 

u= uocn(ps), (4.6) 
1 - (a\uoI4oo)cn(ps) 

where Uo and p are positive real parameters and cn is the 
Jacobian cosine elliptic function with modulus k given by 

k2=~+(a2_-2..~) Ip2. (4.7) 
2 2 16 ao I J 

We note that the condition O<k< 1 imposes a restriction on 
p: 

(4.8) 

It may also be noted that the constants of integration K I and 
K2 should be of different signs for a nonsingular solution. 

In the solitary wave limit when k-+ 1, 
cn(ps) -sech(ps) and the governing equation will reduce 
to 

2 2 3 4 Us = a2u + a3u + a4u . (4.9) 

The solution of ( 4.9) will now be 

u(s) = Uo sech(ps) , 
1 - E sech (Ps) 

(4.10) 

202 a3 
Uo = , E = -;=.~~==-

~a~ - 402a4 ~a~ - 402a4 
p = Fa;", 

(4.11) 

We can easily see that the solution (4.10) is exactly the same 
as (3.3a). 
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The free Dirac operator defined on composite one-dimensional structures consisting of finitely 
many half-lines and intervals is investigated. The influence of the connection points between 
the constituents is modeled by transition conditions for the wave functions or equivalently by 
different self-adjoint extensions of the Dirac operator. General relations between the 
parameters of the extensions and the eigenvalues resp. the scattering coefficients are derived 
and then applied to the cases of a bundle of half-lines, a point defect, a branching line, and an 
eye-shaped structure. 

I. INTRODUCTION 

The increasing interest in spatially one-dimensional 
quantum mechanical models during the last several years 
has two reasons: On the one hand one tries, with the aim of 
enlargement and completion of insights into the structure of 
quantum mechanics, apart from continuing general math
ematical investigations, to construct further rigorously solv
able models that can serve to illustrate already known state
ments of general character and to get hints for interrelations 
not yet noticed. One-dimensional models play an important 
role in this connection because of their good tractability. 

On the other hand, methods have been found in the last 
several years to make structures with high electron mobility, 
which can be regarded as one-dimensional owing to the 
small diameter of their components. Metallic structures of 
this kind have been realized some years ago l and the quan
tum mechanics of the electrons moving therein has been 
studied by Exner and Seba.2

,3 choosing a description of these 
devices by composite one-dimensional structures. They de
scribed the effects of the connection points by transition con
ditions (boundary conditions) for the wave functions and 
equivalently by different self-adjoint extensions of the free 
Schr6dinger operators on these graphs and obtained results 
for the S matrix. They also considered problems of this kind 
on (partially) two-dimensional objects in Refs. 4-6. 

Gerasimenko and Pavlov7 treated arbitrary compact 
and noncom pact graphs, starting with a general setting ad
mitting potentials in the Schr6dinger operators. They limit
ed, although, the considered extensions to the particular 
ones given by the requirement of continuity of the wave func
tions at the connection points and the vanishing of the sums 
of their derivatives at these points and obtained general re
sults on the Green's function, the spectrum, and the scatter
ing coefficients of the problem. 

Looking for further solvable models it is natural to 
study the Dirac operator on the same sort of geometrical 
objects as has been done for the Schr6dinger operator. In the 
present work in Sec. II, using the extension theory for sym
metric operators, boundary conditions in the form of linear 
equations characterizing different self-adjoint extensions of 
the free Dirac operator are derived for structures consisting 
of a finite number of half-lines and intervals. With the help of 
these equations we derive necessary and sufficient condi-

tions for the eigenvalues and relations for the scattering coef
ficients of these extensions. 

In Sec. III we apply the results obtained in Sec. II to 
certain special cases that can be expected to be the most 
relevant ones in practice and thus demonstrate the applica
bility of the general formalism to special problems. These are 
mostly explicitly solvable models for the one-dimensional 
Dirac operator in the sense that the eigenValues and the scat
tering coefficients of the problem can be expressed by the 
parameters of the chosen extension of the Dirac operator (or 
equivalently of the transition conditions). We treat in detail 
the bundle of half-lines, then as special cases thereof a point 
defect in a line, and a branching line; furthermore an eye
shaped structure. 

A physical model using the Dirac operator in one spatial 
dimension occurs in the treatment of electron transport in 
certain polymer molecules, taking into account the electron
phonon coupling. Its continuum limit results in a two-band 
model that is formulated by means ofa Dirac operator.s 

II. GENERAL THEORY 

A. The Dirac operator on bounded intervals and on the 
half-line 

Let I be an open interval in R, bounded or unbounded, 
"""2,1 (/) the Sobolev space of order lover I, and 111,1 (/) 

the subspace of it consisting of the functions vanishing on the 
boundary of I. The two Dirac operators D 0,/ and D I are 
given by the differential expression 

(2.1 ) 

with domains !iJ (DO•1 ) = 111.1 (/) ® (;2 and !iJ (D1 ) 

= """2.1 (/) ® (;2. From these definitions we have the follow
ing lemma. 

Lemma 2.1: DO.I is closed and symmetric with adjoint 

Dt,I = D 1 • 

In order to construct explicitly self-adjoint extensions of 
Do,I for the cases Ibeing the half-line or 1= ( - 1,1) accord
ing to von Neumann's theory,9,10 we must specify bases in 
the deficiency spaces. In what follows, double signs ± or 
=t= always refer to Ker(D1 ± i) in the corresponding posi
tions. As linearly independent solutions in the form (~) of 
the equation for the deficiency spaces we choose 
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II = e - v2x, gl = [(i + l)/v1]e - v2x, 

h=e+ v2x
, gz= [( ± 1-i)/v1]e+ v2x

• 

(2.2) 

The deficiency index of Do,l being (1,1) in the case of the 
half-line and (2,2) in the other case, we introduce the nota
tion 

a ± ~ (i ~ 1). E ~ (2 smh(2v2W"', 

and take as bases in the deficiency spaces 

/± = e- v2x ®a±E Ker(DR + ± i), 
e l± = Ee- v2x ®a ± } 

± v2x ± E Ker(D( _ 1,1) ± I). 
ez = ee ®u3a 

(2.3 ) 

(2.4) 

Thus we obtain orthogonal bases whose elements are nor
malized to 2- 1/ 4 . 

B. The Dirac operator on composite structures; 
self-adjoint extensions and boundary conditions 

Turning to the treatment of composite one-dimensional 
structures consisting of n half-lines and m bounded intervals 
we take as the natural closed and symmetric operator whose 
extensions will be studied, 

in 

(2.5) 

as it has been done in Refs. 4-6 for the Schrodinger case. 
Adjoint and deficiency spaces of D are direct sums of the 
corresponding quantities of the summands, so as a basis for 
the deficiency space of D we take 

d/ = (0, ... ,0,/ ±, 0, ... ,0) for jE{I, ... ,n}, 
j-I n+m-j 

d!+ 2j-1 = (O,.:.,O,e l± ,0, ... ,0)} 
n+J-I m-J . { } forJE 1, ... ,m , 

d n±+ 2j = (0, ... ,0,e2± ,0, ... ,0) 
n+j-I m-j 

(2.6) 

both deficiency numbers of D being n + 2m. The self-adjoint 
extension D u of D belonging to the matrix UE~ (n + 2m) is 
then explicitly parametrized by 

§(Du ) = §(D) 

+ C~lm ( ajd j- + n;~lm ~;a;d / ) I a;EC} , 

Du =D*I.9ilwvJ . (2.7) 

In the following a characterization of the extensions by 
boundary conditions (transition conditions) fulfilled by the 
functions belonging to the domain:s of the Du will be given, 
which is needed for the applications of this general setup. 
Noting that every vector <fJ in the domain of Du is a direct 
sum of two component spinors we have 

-1._ n+m 'l'j (n CYP' (JR+)Z) 
(

-1.(1 J) 
'I' - $ j= I <fJ?J E $ j= 1 " 2,1 

$ ( $1'=1 'lrz,1 « - 1,1»2) , (2.8) 

where we choose the following splitting of a vector aECn + 2"; 

from the deficiency space of D: 

for IE{1, ... ,m} . 

(2.9) 

Using the matrix 

_ (efi e- fi
) tl.- , 

e- fi efi 
(2.10) 

we introduce the following notation for the set of all bound
ary values of a function in § (Du): 

ti 
iE{I,2} and 

, or { } IE 1, ... ,m . 
(2.11 ) 

The decomposition (2.9) leads to a corresponding decompo
sition of the matrix U entering in (2.7) 

~I,2 

~2,2 

~m+I,2 

~I,m+1 ) 
~2,m+1 

tLm+~,m+1 . 

(2.12) 

Here, ~ 1,1 is a nXn matrix describing transitions between 
the half-lines, ~ I,k + I are 2X n matrices describing transi-
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tionsfrom thek thinterval to the half-lines, ~ k+ 1,1 arenX2 
matrices describing transitions from the half-lines to the k th 
interval, and the ~ k + 1,1 + 1 are 2 X 2 matrices describing the 
transition from the I th to the k th interval. 

Theorem 2.2: The following statements are equivalent: 

(a) </JE§ (Du) , 

(b) </JE( $ ; = 1 'lr 2,1 (JR + ) 2} $ [ $ J= 1 'lr 2,1 « - 1, 1 ) )2] , 

(2.13 ) 

where <fJ fulfills the boundary conditions 
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0 - m(2) 1 + i \T,(\) + m~ I 6), (\T,(2) i-I \T,(1») 
-Tk ---Yk k 7~k,J Tj ---Yj , 

Ji j= I Ji 
(2.14) 

for kE{1, ... ,m + 1} . 
Proof Because of (2.7), t/JE~ (D u) is equivalent to 

VkE{I, ... ,n} 3~k,OE7I1,1 (R+)2, 

VkE{n + 1, ... ,n + m} 3~k,oE7I1,1{( -1,1)2, (2.15). 

3aECn + 2m 

such that 
n+2m 

~k = ~k,O + akf- + L Uk,jajf+, for kE{1" .. ,n}, 
j= I 

~n+k =~n+k,O +an+2k_Iel- + an + 2k e2-

n+lm 
+ L aj(Un+2k_l,jet + U n+ 2k, j et), (2.16) 

j= I 

for kE{l, ... ,m}. 

Since the ~k,O vanish on the boundaries, using (2.4) we ob
tain by straightforward manipulations with the notation 
from (2.11) and (2.9) 

ke{I, ... ,m + 1} . 

This is equivalent to 
m+1 

<1>1,1) = Uk + ~ ~ k ·u· k ,J J 

(2.17) 

(i) } 
kE{I, ... ,m + 1}. 

j= I 

_ 1 - i \T,(I) + I \Tt(2) 
Uk ---Tk -Yk 

2 Ji 
(ii) 

(2.18) 

Inserting of (ii) into (i) yields (2.14). If we assume 

(2.14) we can choose Uk = [(1- 012]qtl,l) + (lIJi)qt1,2) 
in order to obtain (2.18), which in tum together with the 
first condition in (2.14) is equivalent to (2.13) by the con
siderations above. 0 

c. Scattering states and elgenstates 

The scattering states of Du are solutions of 

D~=E~, E>l, (2.19) 

where D is now regarded as an operator on the set of abso
lutely continuous, locally square-integrable functions fulfill
ing (2.14). The solutions of (2.19) are 

~ = :;; [/3je
ikx ® G) + rje-

ikx ®( _Ik)] 

/3j,rjEC, k = ~E2 - 1, ko = ~(E - l)/(E + 1) . 

(2.20) 

In order to describe an electron approaching on the.rth half
line we set rs = 1, and rj = 0, forjE{1, ... ,n}\.{s}. 
Writing 
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0 
}S-I 

b,=GJ e. = 1 (2.21) 

0 

}n-s, 
0 

b /+ 1 = (PI+n) for/E{I, ... ,m}, 
rl+n 

(
e- ik eik

) 
r(E)= eik e- ik ' 

and introducing the E-dependent matrices 

A(E) = (liE) [Jikoq3A -lrq3 - (1 + i)A -Ir] 

= 2E ( Ksinh(Ji - ik) 

- 1]* sinh ( Ji + ik) 

-1]. sinh(Ji + ik»), 

Ksinh(Ji - ik) 
(2.22) 

= 2E ( 1] sinh(Ji - ik) 

- K* sinh ( Ji + ik) 

- K· sinh(."fi + ik») , 

1] sinh ( Ji - ik) 
where 

K(E) = Jiko - 1 - i, 1](E) = Jiko + 1 - i, (2.23) 

we obtain for the boundary conditions in this situation 
m 

[1]* + K*~ 1,1 ]es = [K + 1]~ 1,1 ]b l + L ~ I,j+ IObj+ I , 
j=1 

m 

K*~ 1,1 e. = 1]~ 1,1 b l + Ab l + L ~ I,j+ I Obj + I' (2.24) 
j=1 

for le{2, ... ,m + 1} . 

Considering the eigenvalue problem we distinguish the 
three cases 

(a) IE I> 1 , 

(b) lEI = 1, 

(c) IE 1< 1. 

(a) The general solution of the eigenvalue equation has 
been given in (2.20). Since in contrast to the case treated 
before the solutions must now be eigenvectors, we must take 

b l = 0 and rj = 0, forjE{1, ... ,n}. (2.25) 

The boundary conditions (2.14) tum into 

m 

0= L ~1,j+IObj+I' 
j= I 

m 

o = Abl + L ~ I,j+ IObj+ I , /E{2, ... ,m + 1} . 
j= I 

(2.26) 

The solvability of this system of 2m + n equations for 2m 
unknown numbers /3i + n and rj + n' occurring in the bj + I 
[cf. (2.21)] is the condition for possible eigenvalues IE I > 1. 

(b) The solutions of the eigenvalue equation are 

W. Bulla and T. Trenkler 1159 



                                                                                                                                    

E= -1, tjJ= $j:~n/3j(~)+rj(_12ix)' 

E = + 1, cp = $1=+1 n /3j(~) + rj e~x) . (2.27) 

limits of the matrix functions in (2.22) for E.... ± 1. 
(c) The appropriate form of (2.20) is now 

n + m [ _ ( 1) - (1)] 
cp= j!1 /3je

kx
® -ik +rje-

kx
® ik ' (2.29) 

As before we must take /3j = rj = 0 forje{I, ... ,n}. Setting with 

-Ie Al = u3a 0 1)_I+;a-I C 
1 Ji 1 

- 21) 
2; , 

-Ie 0 1 = u3a 0 1)+ 1-; a-IC 
1 Ji 1 

- 21) 
2; , 

(2.28) 

-1 C A_I = u3a 1 
2; ) _ 1 +; a _I (0 

- 2; Ji 0 !) , 
-IC 0_ 1 = u3a 1 2; .) + 1 - i a -I (0 

- 21 Ji 0 !) , 
we obtain again the form (2.26) for the boundary condi
tions. Formally all energies IE I> 1 can be treated in the same 
way. We remark however, that A±I and O±I are not the 

Pj,rjeC 

and 

k=~I-E2, ko=~(1-E)/(1 +E)eR+. 

Now we must put /3j = 0 for je{I, ... ,n}. Adapting 
(2.21) and (2.23) to the case considered, 

1'1 =(~I), b/+ 1 = r/+ n

), 

rn rl+ n 

r(E) = e~ k e~kk)' (2.30) 

iL = - 1 + (.J2·ko - l)i and J.l = 1 + (Ji'ko -1);, 

and setting 

- . (-(2i+J.l)Sinh(Ji-k) 
A(E) = (I/e) [ - iJi'koU3a-lrU3 - (1 + i)a-

1r] = 2e iL sinh(Ji + k) 
- iL sinh(Ji + k) ) 

- (2i + J.l ) sinh ( .J2 - k) , 

we obtain for the boundary conditions 
m _ 

0= (iL + J.lo/£ 1,1 )1'1 + L 0/£ I,j+ 10bj+ I , 
j= I 

0= J.lo/£ I,dI'I + Ab1 + f 0/£ I,j+ IObj+ I , 
j=1 

(2.32) 

for ie{2, ... ,m + 1} . 

III. EXAMPLES 

A. Bundle of half-lines (m=O) 

In this case the structure consists of n half-lines. The 
matrix Uin (2.12) reduces to 0/£1,1 and Eqs. (2.24), (2.26), 
and (2.32) simplify, allowing the deduction of specific state
ments. 

Eigenvalues E with IE I> 1 cannot occur, because the 
corresponding eigenfunctions must vanish on all half-lines. 
In the case IE 1< 1 from (2.32) only 

(iL + J.lU)YI = 0 (3.1) 

is left. Because of - iL = J.l* andJ.l#O [cf. (2.30)] we have 
the compatibility 

l-iL/J.l] = 1, (3.2) 

with the eigenvalue condition (3.1). Assuming that a matrix 
U defining a particular extension Du is given, we establish 
the connection between the spectrum of U and the energy 
eigenvalues. For this purpose we analyze the function 
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(2.31) 

J.l sinh ( .J2 + k) ) 

- (2i + iL ) sinh ( Ji - k) , 

- (iL /J.l)(E). From (2.30) we obtain, setting r = Ji 
'ko-l, 

_~= l_r2 +i -2r =!(r)+ig(r). (3.3) 
J.l l+r2 l+r2 

From koeR+ it follows that ~ (j) = ~ ( g) = ( - 1,00). 
The argument rp ( r) of - iL / J.l now maps ( - 1, 00) in the 
following way into [O,21T): 

rp( - 1,0] = [0, ;), 
(3.4) 

rp(O,I] = [3; ,21T). rp(l,oo) = (1T, 3;). 
Thus we obtain the following. 

Theorem 3.1: To each eigenvalue of U not lying in the 
second quadrant is ass~ciated exactly one energy eigenvalue, 
given by the inverse of the function rp(r(E»: 

E = (sin rp + cos rp)/(2 - sin rp + cos rp) . (3.5) 

Scattering states: Using that 1]#0 for all IE I > 1, (2.24) 
can be written as 

(1/1])[1]* + K*U]es = [K/1] + U]bl . (3.6) 

From (2.23) follows IK/1] I # 1 for all IE I > 1, so [K/1] + U] 
is always invertible, and (3.6) can be solved for bl: 

b l = [K + 1]U] -1[ 1]* + K*U]es • (3.7) 

Using 
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(t + U)-I( s+ U) = 1 + (S-t)(t+ U)-I, 
(3.8) 

we get 

b l = (1h7> [K* + (11]1 2 
- IKI2)(K + 1]U) -I ]es • (3.9) 

As a check we note thatthe matrix in (3.9) is unitary; so 
the sum of squared moduli of the reflection coefficient Ibl,s 12 
and of the transition coefficients Ib l,jI2, (je{I, ... ,n}'\{s}) 
equals 1, thus satisfying the elasticity condition for the scat
tering. 

B. Defect point (n=2,m=O) 

Two half-lines connected by a transition point can be 
regarded as a simple model for a defect in a polymer chain. 
The transition between the two half-lines is described by a 
unitary (2X2) matrix that is left in (2.12). Choosing the 
parametrization 

U=e'S . 
. ( cos /3ei(a + 8) 

_ sin /3e,(a - 8) 

we obtain, introducing 

sin /3e - i(a - 8») 
cos/3e-i(a+8) , 

q = (11]1 2 - IKI2)/det(K + 1]U) 

= (11]1 2 - IKI2)/(~ + 2K1]eis cos /3 cos(a +~) 

(3.10) 

+ 1]2~iS) (3.11) 

for the scattering coefficients: 

(3.12) 

s = 2, b l ,2 = ~ {K* (~) + q[K (~) 

+ 1]e
is 

( -c~::;(~::~8)]} . 

If we specialize by requiring that the two spinor compo
nents should be continuous at the defect point, we introduce 
a kind of point interaction that cannot be described by a ~ 
interaction. In terms of (2.11) the continuity condition be
comes 

(3.13 ) 

and putting uj = C0.1 + C0.2' je{I,2}, (2.14) gives 

(3.14) 

Since at least one of the {{lj can be chosen different from zero 
( otherwise D u would not be self-adjoint, ), the two equations 
(3.14) coincide, so U I = U2• This yields with (3.10) the 
equations 

cos/3sin(a +~) = 0 and sin/3cos(a -~) = 0, 
(3.15 ) 

and for U the form 

U = eis (cos/3 
i sin/3 

( 3.12) specializes to 

i Sin/3) 
cos/3 ' 

s = 1, bl,1 = (l/1]){k* (~) + q[K (~) 

is ( cos/3 )]} + 1]e _ i sin /3 ' 

s = 2, b l•2 = O'lbl•1 • 

( 3.16) 

(3.17) 

Remark: If we demand invariance of the situation with re
spect to an interchange of the half-lines instead of continuity, 
we obtain the same results for U, so both requirements are 
equivalent. 

Finally we obtain for the transmission probability T 

,fiko sin2/3 
T=----------------------------~--~--~----------------------------- (3.18) 

I (1 + 2eis cos /3 + e2iS ) k ~ + ,fi [(1 - i) e2is - i cos /3 eis - (1 + i) ] ko + (i - eis cos /3 - ie2isW 

The reflection probability R is then given by R = 1 - T. 
Thus this example is explicitly solvable in the sense, that 
starting with some choice for the extension D u the scattering 
data can be calculated analytically. 

C. Three half-lines (n=3,m=O) 

We treat the special case in which two of the half-lines 
are connected symmetrically to each other, whereas the 

I 

1161 

- eia _ sin /3 ei( S - y) 

eia _ sin /3ei( s- Y) 

,fi cos/3 
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third one has different transition parameters. Therefore we 
choose for U 

b 

a 

c 

which can be parametrized by 

,fi cos/3 ) 
,fi cos/3 . 

2 sin/3ei(Y-s) 

W. Bulla and T. Trenkler 
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Now we make the ansatz (K + 'l'/U) -1 = Cl + C2U + c3 U*. 
Inserting into the identity (K + '1'/ U) - 1 (K + '1'/ U) = 1 yields 
the cj • With the abbreviations 

C -l(E) = '1'/2(22 - d(a + b» - K7J(a + b + d) - ~, 

(3.21) 

and 

X(E) = 'l'/2(C2 - ad) - Kn(a + d) -~ 
K+'I'/(a-d) 

Y(E) = 'l'/2(bd - 2) + K'I'/b , 
K+ 'I'/(a-d) 

we obtain the result 

(K+'I'/U)-l 

(

X(E) 

= C(E) Y(E) 

'l'/c 

Y(E) 

X(E) 'l'/C ) 
'l'/c , ' (3.22) 

'l'/C -K-'I'/(a+b) 

and finally for the scattering coefficients 

s~ I, b", ~ ~ { .. G) + <I'll' -IKI') 

XC<E{~~l (3.23) 

s~2, b", ~ ~ { .. (D+ <I'II'-IKI') 

xC(m(~~;:)} , (3.24) 

s ~ 3 b", ~ ~ {K* m + <I'll' - IKI') 

Xc(E)( ~; )} . 
-K-'I'/(a+b) 

(3.25) 

By this result it has been shown that even this case, with 
remarkably greater complexity as the foregoing one, gives us 
an explicitly solvable model at least with respect to scatter
ing theory. It was not possible, however, to get manageable 
expressions for the eigenvalues of U in terms of the param
eters introduced in (3.20), so we omit the treatment of the 
energy eigenvalues. 

D. Eye (n=m=2) 

In this case the geometry is given by two half-lines that 
are connected by two intervals joined at their end points. In 
order to avoid obstructive complexity we demand symmetry 
with respect to interchange as well of the half-lines as of the 
intervals. So we put 

(

aE A A) 
U= BCD, 

B D C 
(3.26) 

1162 J. Math. Phys., Vol. 31, No.5, May 1990 

whereaeC, lal < 1, andA,B,C,.De&8 (C2,C2
). The conditions 

of unitarity of U expressed in terms of the block elements in 
(3.26) can be shown to be equivalent to 

~A, ~BeU(2), -V 1 - lal
2 -V 1 - lal

2 

A = __ l_ B *(C+D) , (3.27) 
a* 

and 

(1/lal)(C + D), C - .DeU(2). 

Having in mind (3.27) the boundary conditions (2.26) 
for energy eigenvalues IE I> 1 reduce after two steps to 

Ab2 = - Ab3 , 

Ob2 = -Ob3 , 

(A+ (C-D)!l)b2 =0, 

(A + (C-D)O)b3 = 0, 

while for energies IE 1< (2.32) yields 

'VI = - [11(..1. + /1-a) ]An(b2 + b3 ) , 

(3.28) 

0= [A + (C - D)n](b2 - b3 ) , (3.29) 

0= [A + (C + D - [2/1-/(..1. + /1-a) ]BA)n](b2 + b3 ) • 

As 1..1. 1/1-1 = 1 and lal < 1 no problems in the denominator 
occur. So in order to obtain nontrivial solutions we have to 
demand 

IEI>I, det[A + (C - D)O] = 0, (3.30) 

{

o = det[A + (C - D)n], 

or 

0= det[A + (C + D 

- [2/1-1(..1. + /1-a) ]BA)n] 

lEI <I: (3.31) 

as can be shown easily. 
Scattering states (for energies staying away from eigen

values): In this case, (3.30) not being valid, we obtain from 
(2.24) the following conditions: 

IKI2 -1'1'/12 
(i) Be, 

K+'I'/a 

= [A + Ka* + '1'/ 1 (C + D)O]b2 , 
K+ 'l'/a a* 

(ii) bl = - lI(K + 'l'/a) 

X [('1'/* + K*a)e. - UOb2 ] , 

(iii) b3 = b2 , 

(3.32) 

in the special case that K + 'l'/a =1= O. In order to get the scatter
ing coefficients b i from the system (3.32), (i) must be solv
able. If K + 'l'/a = 0, (2.24) yields 

K* 2 (iv) b l =-es - [2/(1-lal )'1'/] 
'1'/ 
XB*[A+ (C+D)Ob2 ] , 

(3.33 ) 

(v) ['1'/* + K*a]e. = UOb2 , 

where v must be solvable to get scattering data. 
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Note: For the regular m-gon the condition for the exis
tence of eigenvalues has been considered. The condition of 
the vanishing of the determinant of a 2m X 2m matrix fol
lowing from the general results in Sec. II C has been reduced 
to the condition of the vanishing of the determinants of cer
tain 2 X 2 matrices. Because of the length of the deductions 
giving this result they are not exposed in this place. 
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A procedure for the construction of nonspurious harmonic oscillator wave functions with 
arbitrary permutational symmetry has recently been proposed. The resulting wave functions 
are expressed in terms of normalized Jacobi coordinates, and involve a new type of harmonic 
oscillator coefficients of fractional parentage. A simple algorithm to transform these states 
from the Jacobi coordinates to the single particle coordinates is presented. This is a 
generalization to an arbitrary number of particles of the harmonic oscillator transformation 
from center-of-mass and relative coordinates to single particle coordinates. 

I. INTRODUCTION 

Harmonic oscillator wave functions have been widely 
used in molecular, atomic, and nuclear physics, and recently 
also in nonrelativistic quark calculations. I In all these appli
cations the eigenvectors of a translationally invariant Hamil
tonian are evaluated in terms of harmonic oscillator eigen
states. The harmonic oscillator states used in these 
calculations should have a separable dependence on the tri
vial center-of-mass motion: Spurious states, in which the 
center-of-mass is excited, must be eliminated. 

In order to construct nonspurious states of n identical 
isotropic three-dimensional harmonic oscillators, we must 
use a set of coordinates consisting of the center-of-mass coor
dinate and n - 1 internal coordinates. Among the various 
sets of coordinates satisfying this requirement, the normal
ized Jacobi coordinates 

1 n 

PI=R=- L rj ; 

[ii j= I 

p,'-l ( 1 i-I) 
P· = -- r· --- '" r· 

I • I • 1 £.. J ' 
1 1- j= I 

i = 2,3,oo.,n (1) 

were found to be preferable because each internal coordinate 
Pi i = 2,oo.,n depends on the first i single particle coordinates 
only. This property enables the formulation of a recursive 
procedure for constructing the harmonic oscillator nonspur
ious states.2 

In calculations involving clusters of identical particles, 
it is necessary to construct wave functions that belong to 
well-defined irreducible representations (irreps) of the sym
metric group Sn. Interesting examples include the study of 
the characteristics of cluster knock-out reactions in nuclei 

I 

(such as spectroscopic factors and distributions of mo
menta)3 and the nonrelativistic description offew nucleon 
systems in terms of clusters of three quarks. 1 

The quantum states in these examples are labeled by 
multiple angular momentum quantum numbers (i.e., L-S, 
L-S-T, L-S color and flavor) . In these cases it is very useful4 

to factor the space of the states into products of subs paces, 
one for each angular momentum quantum number. Wave 
functions belonging to the various irreps of Sn should be 
constructed within each subspace and ultimately coupled to 
form a totally antisymmetric state. 

The harmonic oscillator center-of-mass coordinate and, 
consequently, the corresponding wave function, are totally 
symmetric with respect to permutations of the particle co
ordinates. On the other hand, the internal coordinates do not 
have simple symmetry properties with respect to permuta
tion of particle indices. 

The recursive algorithm recently proposed for con
structing internal wave functions belonging to irreps of Sn 
(see Ref. 2) starts from (n - 1)-particle internal states be
longing to a given irrep r n _ I of Sn _ I . A set of n-particle 
internal states with resultant angular momentum An and 
energy liw(En + ~(n - 1) is constructed. Finally, the two
cycle class operator of Sn is diagonalized in this basis. Al
though this operator is the sum of all the (n - 1) n/2 trans
positions (i,i')i< i' = 2,oo.,n, it was shown that only the 
matrix element of the transposition (n - l,n) has to be eval
uated. After diagonalization, the eigenvalues uniquely iden
tify the n-particle irrep of Sn, and the eigenvectors are the 
appropriate harmonic oscillator coefficients of fractional 
parentage (hocfps). 2 

The resulting expression for the n-particle internal wave 
function, symmetry adapted to S n , can be written in terms of 
the hocfps in the form2 

IYnAnEnan; P2P3'''Pn> = L [Yn_IAn_IEn_Ian_INnLnAnl}YnAnEnan] 

1164 

A,,_IE,,_ la,,_ IN"L II 

(ell = E,,_ 1 + 2N,,+ L,,) 
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where Y,. is a Yamanouchi symbol, which is equivalent to 
the set of good quantum numbers r 2r 3' .. r,. labeling the 
irreps of S~3 ... S,.. It satisfies Y,. = Yn _ I r n' Here N,. and 
L,. are the individual harmonic oscillator radial and angular 
quantum numbers of the nth degree of freedom (dof), in 
Jacobi coordinates. The symbol a,. takes care of remaining 
degeneracies in the n-particle internal states. The sum in Eq. 
(2) is over the coupled products of the states of the nth dof 
and the (n - 1 )-particle internal states consistent with the 
energy relation written under the summation, and with the 
angular momentum coupling relation A,. _ I + Ln = An. 

The n-particle harmonic oscillator wave function is ob
tained by coupling the center-of-mass wave function to the 
internal wave function, obtaining 

The permutational symmetry is not affected by the center
of-mass state, which is totally symmetric. The total angular 
momentum .!f n is different from An when LI #0. For n-

I 

particle nonspurious states, the center-of-mass wave func
tion is always in the ground state and therefore L I = O. 

II. TRANSFORMATION TO SINGLE-PARTICLE 
COORDINATES 

The n-particle harmonic oscillator states [~3)] are 
expressed in terms of the normalized Jacobi coordinates 
[Eq. (1)]. However, in many calculations in atomic and 
nuclear physics it is useful to have expressions for the wave 
functions in terms of the single particle coordinates. This is 
particularly important when the harmonic oscillator states 
are used as a basis set in a calculation involving nonharmonic 
potentials, which are not easily expressible in Jacobi coordi
nates. 

We propose a recursive algorithm to transform an n
particle harmonic oscillator state with a well-defined permu
tational symmetry from Jacobi into single particle coordi
nates. This method is based on using the hocfps defined in 
Eq. (2). The internal wave function in the state (3) is rewrit
ten as in Eq. (2), obtaining for the state (3) the expression 

L [Yn_IA,._IE,._lan_IN,.L,.Anl} Y,.A,.E,.an] 
An_1En _ .an_tNnLn 

(En = En _ I + 2N" + Ln) 

(4) 

In order to separate the wave functions of the center-of-mass (p I) and of the nth dof (Pn ) from the (n - 1) -particle 
internal state we use the change of coupling transformation,5 obtaining 

h ]:L [ [I Yn- I An - I En _I an _ I ;P'2/J3" 'Pn _ I) INnLn;Pn)] "INILI;PI) . " 

= L (_1)h,,-,+Ln+L'+:/'''~(2An + l)(U + 1) {An_I Ln 
A LI .!fn 

X [I Yn- I An_I En_lan_I ;P2P3" 'Pn-I) [INnLn;Pn)INILI;PI)]A rY
", (5) 

where An _ I + J... = .!f n' 

The two harmonic oscillator functions coupled to a re
sultant angular momentum J..., are expressed in terms of the 
coordinates Pn and PI where 

PI = (llfii)(rl + ... + rn) , 
(6) 

Pn= -- rn---(rl+"'+rn_ l ) . P-l (1 ) 
n n-l 

These coordinates can be rewritten in terms of the normal
ized center-of-mass coordinate of the (n - I) particles, 
PI = (l/~)(rl + ... + r n _ I ), and the nth particle 
coordinate r n as 

PI = ~[ (n - 1)/n]PI + (lIfii)rn , (7) 
Pn = - (lIfii) PI + ~[ (n - l)ln] rn . 

This transformation is actually a rotation of the coordinates 
by an angle .0 where cos .0 = ~n - lin and sin .0 = lIfii. 
Therefore, the rotation of the coordinates PI and Pn by the 
angle - .0 yields the coordinates 
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PI = PI cos .0 - Pn sin .0 , 
rn = PI sin .0 + Pn cos .0 . 

(8) 

The harmonic oscillator wave functions expressed in 
terms of the coordinates Pn and PI in Eq. (5) can be trans
formed into harmonic oscillator wave functions expressed in 
terms of the coordinates PI and r n [Eq. (8)] by using the 
harmonic oscillator brackets6

: 

[INnLn;Pn) INILI;PI)]A 

= __ k _ «Nl,iinLn)J...I(NnLnNILI)J...) 
N,L,NIILII 

(9) 

The sum in Eq. (9) is finite because of energy conservation, 
i.e.,2Nn + Ln + 2NI + LI = 2Nn + Ln + 2NI + LI and of 
the angular momentum coupling condition Ln + L, = A. 

A useful recursive relation for calculating harmonic os
cillator brackets for particles with equal masses was pro
posed by Moshinsky7; extensive numerical tables were pre
pared by Brody and Moshinsky.s The harmonic oscillator 
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brackets in Eq. (9) involve two particles with different 
masses. Using group theoretical methods, Gal9 showed that 
these brackets can be expressed as a sum over two equal mass 
transformation brackets, with a phase factor depending on 
the rotation angle. [Note that /3 as defined in Eq. (8) is half 
as large as that introduced in Gal's9 Eq. (3.14).] Therefore, 
the calculation of the harmonic oscillator brackets in Eq. (9) 
is straightforward. 

The harmonic oscillator transformation [Eq. (9)] en
ables us to express the wave functions on the right-hand side 
of Eq. (5) in terms of the wave functions 

[I Yn - I An_I En_I a n- I;P2P3" 'Pn-I) 

X [INILI;PI) INnLn;rn)]" 1""· (10) 

Recalling that the coordinate PI is the normalized cen
ter-of-mass coordinate of the (n - 1 )-particle system we 
note that by separating the wave function ofthe nth particle 
in Eq. (10) we obtain an expression involving the (n - 1)
particle total wave functions. This is carried out by using the 
change of coupling transformation,S which yields for the 
wave function (10) the expression 

,.? (_1)A,,_,+I,+I"+:£'''~(2)''+ 1)(22'n_1 + 1) 
. :£ 11- I 

X [[I Yn_IAn_IEn_Ian_1 ;P2P3" 'Pn-I) 

xINILI;PI)]""-'INnLn;rn)] :L". (11) 

The (n - 1 )-particle state with a total angular momen-
tum 2' n _ I can be transformed into an expression in terms 
of (n - 2)-particle wave functions and the wave function of 
the (n - l)th particle (expressed in terms ofr n _ I ) by ap-
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plying the same algorithm again. Thus by successive applica
tion of the same algorithm (n - 1) times we finally trans
form the nonspurious state (1) from the Jacobi coordinates 
to the single particle coordinates. This transformation con
stitutes a generalization of the harmonic oscillator transfor
mation from center-of-mass and relative coordinates to sin
gle particle coordinates,6 to an arbitrary number of particles. 

We conclude by pointing out that the complete set of 
nonspurious harmonic oscillator wavefunctions is obtained 
most efficiently using a recursive procedure for the construc
tion of the internal many-particle state in terms of Jacobi 
coordinates. 2 On the other hand, the expression for the non
spurious states in single particle coordinates is obtained by 
means of a recursive procedure starting from the total wave
function in Jacobi coordinates, which includes the (totally 
symmetric) center-of-mass motion. 
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Bounded and 1T-periodic eigenfunctions of the operator d 2/ dv2 + [2(u - v 
+ (,u + v + 1)cos 2v)/sin 2v] (d /dv) + 85" cos 2v + 4y sin2 2v are studied. These solutions 
are new special functions, particular cases of which will be the spheroidal, the Coulomb 
spheroidal, and the hyperspheroidal harmonics. The algebraic technique due to the quantum 
inverse scattering method is applied to obtain the three-term recursion relations for the 
coefficients of eigenfunctions expansion at the Jacobi polynomials series and hence the suitable 
equation (the continued fraction is equal to zero) for eigenvalues. The special functions 
considered generalize the Truskova polyspheroidal periodic functions (r = 0). 

I. INTRODUCTION 

Polyspheroidal periodic functions (PPF's) and modi
fied PPF's were introduced and studied by Truskova in 
1982.1 Both these special functions arise in the solution of 
the Helmholtz equation in the coordinate systems of N-di
mensional (N)4) ellipsoids and hyperboloids of revolution 
and are necessary for a number of physical problems. Analy
tical expressions were found and the main properties of the 
new functions were considered (see Ref. 1). Here we deal 
with the generalized (r#O) PPF's that satisfy the differen
tial equation 

H<P = [ _ ~ ~ _ ~,u - v + (,u + v + 1 ) cos 2v .!!.... 
4 dv2 2 sin 2v dv 

- 25" cos 2v - y sin2 2V]<P = h<P, ,u,v,5",yER. 

(1) 

They are bounded and 1T-periodic eigenfunctions of the Her
mitian operatorH. The solutions form a new class of special 
functions, particular cases of which are the spheroidal, the 
Coulomb spheroidal, and the hyperspheroidal harmonics. 2 

For 5" = r = 0, Eq. ( 1 ) turns into the equation for the Jacobi 
polynomials.3 

We proceed from the main notions of the quantum in
verse scattering method (Q ISM) .4 Let us consider the prin
cipal problem of quantum mechanics for integrable systems, 
which is to obtain the spectrum and eigenfunctions of the 
complete set of commuting integrals of motion. The method 
we apply here consists of the separation of variables, the R
matrix scheme, and the so-called "functional Bethe an
satz."s 

In quantum mechanics one works with the Hermitian 
operators in Hilbert space. Let them belong to the envelop
ing algebra U(g) of a certain Lie algebra g. Let g have the 
rank n. Then an integrable system is defined by n commuting 
operators from U(g). In the future an important role will be 
played by the transformation of g into the direct sum. 
Ei) 7= 1 aj of n Lie algebras aj' each having rank 1. The scheme 
of construction of this transformation implies the quantum 

separation of variables, i.e., the fact of transition from the 
multidimensional spectral problem for commuting integrals 
of motion to n one-dimensional ones with the common spec
trum. We will call the direct sum A = Ei) 7= 1 aj an "algebra of 
separated equations." 

In this paper the expansions of generalized PPF's into a 
series of the Jacobi polynomials are obtained by applying the 
separated equations algebra technique. The generalized 
PPF's and their particular cases appear when one solves the 
principal problem of quantum mechanics for different inte
grable systems (Secs. II and III). 

In Sec. II g is e ( 3 ) ( the Euclid algebra) and 
aj = so(2,1), the generalized hyperspheroidal harmonics (a 
particular case of PPF's, see Ref. 1), emerge as eigenfunc
tions of a certain top, when one considers the representation 
of e (3) through the Euler angles. The separated equations 
algebra technique depends on the transformation 
e(3) -so(2, 1) Ei) so(2,1) (an analog of the separation of 
variables in classical mechanics) but is invariant about the 
representations both of the former algebra and the latter one. 
By choosing a particular representation we are able to derive 
nonlinear equations for the spectrum of integrals of motion 
and three-term recursion relations for the coefficients of ei
genfunctions expansion into the series of Jacobi polynomials 
by algebraic means only. The Jacobi polynomials themselves 
(in the representation chosen) form the Cartan basis of irre
ducible unitary representations of algebras a j = so (2,1). 

In Sec. III generalized PPF's are connected with the 
quantum one degree of freedom integrable system on the 
algebra g = e (2). Here n = 1, a 1 = so (2,1). 

II. REPRESENTATION OF THE QISM I ALGEBRA AND 
GENERALIZED HYPERSPHEROIDAL HARMONICS 

First, we give the definition of a QISM I algebra (see 
Refs. 4 and 5). It is an associative algebra defined by the 
generators TaP (u) (a,/3 = 1, ... ,d; UEC) considered as the 
elements of the square matrix T( u) with the commutation 
relation 
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I 2 2 I 
R(u - v)T (u)T (V) = T (v)T (u)R(u - V), (2) 

where 
I 2 

T (U) = T(U) ®Id, T (V) = Id ® T(v). 

The matrix R(u)eAut(ed xed) is a solution of the quan
tum Yang-Baxter equation. The commuting integrals of 
motion are extracted from the trace of the matrix T( u ). In 
this paper we consider the simplest case d = 2 when T( u) is 
the 2 X 2 matrix, 

T(u) = (~ ;)(U), r(u) = tr T(u) =A(u) + D(u), 

(3) 

and R (u) is the R matrix of the XXX type given by 

R(u) ~ u + ixP. p~(~ : ; v. xeC. (4) 

In Ref. 6, a new representation of the QISM I algebra 
I 

L(u) = (~ ;) 

= (U 2 
- 2J3u - n - Ji -j - (jl2 - j)/x~ 

ib(x_u - ~ {x3,J_}) 

where X ± = XI ± ix2, J ± = J I ± iJ2, and the symbol {".} 
signifies an anticommutator. One can directly verify that 
L(u) satisfies the fundamental equation (2) of the QISM I 
algebra T(u) with x = 2i. The trace r(u) of L(u) is the 
generating polynomial of the integrals of motion, 

r(u) = u2 - 2J3u - H. (9) 

Let us list the commutators that follow from (2): 

[A,A] = [B,B] = [C,C] = [D,D] = 0; 

[A,B] = [ - ix/(u - v) ](AB - ~~), 

[B,A] = [ - ix/(u - v) ](BA - ~~), 

[A,C] = [ - ix/(u - v) ](CA - g~), 

[C,A] = [-ix/(u-v)](AC-~g), 

[B,D] = [ - ix/(u - v) ](DB - Q~), 

[D,B] = [ - ix/(u - v) ](BD - ~Q), 

[D,C] = [ - ix/(u - v) ](DC - Qg), 

[C,D] = [ - ix/(u - v)]( CD - gQ), 

[A,D] = [ - ix/(u - v) ](CB - g~), 

[B,C] = [ - ix/(u - v) ](DA - Q~), 

[C,B] = [ - ix/(u - v) ](AD - ~Q), 

[D,A] = [ - ix/(u - v) ](BC - ~g). 

( 10) 

(lla) 

(lIb) 

(llc) 

( lId) 

(lIe) 

(l10 

(llg) 

( Ilh) 

(l2) 

Here we use the following notation for brevity: [A,B] means 
the commutator [A (u) ,B( v) ], where the first parameter is u 
and the second one is v; DA stands for the noncommutative 
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T(u) (L operator) was constructed for a given R matrix 
( 4). This new L operator is connected with a special integra
ble top. The Hamiltonian has the form (jl,beR) 

H-J2 +J2 b 2x2 + (11.2 1)/x2 + I - I 2 - 3 r- - 4 3 4' (5) 

Variables Ji, Xi' i = 1,2,3, are the generators of the Lie alge
bra e (3) obeying the following commutation relations: 

[Ji'~] = - iEi/Jk' [Ji,Xj] = - iEi/kXk, [Xi,Xj] = O. 
(6) 

Everywhere below the values of the Casimir operators of this 
algebra are restricted by 

3 3 

L X7 = 1, 1= L XiJi = O. 
;=1 ;=1 

(7) 

The pair of commuting integrals of motion Hand J3 makes 
this top an integrable dynamical system on the algebra e ( 3 ) . 
The variables J i , Xi> and the Hamiltonian Hare the Hermi
tian operators in some Hilbert space. 

The L operator for the model is 

(8) 

operator product D(u)A(v); and DA signifies D(v)A(u) 
(here v is a first parameter). In Sec. II, x = 2i. 

To find the eigenstates of r(u) [(9)] we apply the sepa
ration of variables method worked out in Ref. 5. We briefly 
remind the reader of the main results of Ref. 6 as applied to 
the top considered. Our aim is to construct the above-men
tioned algebra A of separated equations. The essential part of 
this algebra consists of the separated variables determined as 
mutually commuting [see (l0)] roots ofthe operator equa
tion C( u) = O. This equation for the L operator (8) has one 
nilpotent root, in contrast to the Goryachev-Chaplygin gyr
ostat, its generalization, and the Toda lattice in Ref. 5. To 
overcome this difficulty we replace the L operator (8) with 
the L operator 

L- 0'1 + 0'3 (A (u) = L(u)(O'I + 0'3) = -
2 C 

~) (u), 

(13) 

where the O'i are Pauli matrices. Here L(u) satisfies Eqs. 
(10)-( 12), the trace of L(u) coincides with that of L(u), 
and therefore L (u) describes the same dynamical system. 

The QISM I algebra (2) has an important property: if 
TI ( u) and T2 ( u) are some representations of the algebra T 
in the spaces WI and W2 , respectively, then the product 
T( u) = TI (u) T2 (u) is also a representation of Tin WI ® W2 
(comultiplication operation). In particular, one can choose 
TI (u) =K, where K is a representation of Tin e l that is 
simply a 2 X 2 matrix K satisfying the equality 
[R(u),K®K] =0, for any u. This property was used in 
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transformation (13). 
From Eqs. (12) one can derive the quantum determi

nant d(u) of L(u) [equal to that of L(u)] generating the 
center of the QISM I algebra, which has the form 

d(u) =A(u + 1)D(u -I) - C(u + I)B(u-1) 

=A(u -I)D(u + 1) -B(u -I)C(u + I) 
=D(u -I)A(u + I) - C(u -1)B(u + 1) 

=D(u+ I)A(u-1) -B(u+ I)C(u-1) 

= b 2 (u2 - p?). (14 ) 

Commuting separated variables are now defined as 
roots of the square equation 

C(u) = 0 

and are given by 

U\,2 = J3 + bX2 

± [(J3 + bX2 )2 + J~ + ~ + (p? - !)/x~ 

+ (J2 - bX3)2] \/2. 

The variables u \.2 are Hermitian operators. 

(15) 

(16) 

Let us introduce two more operators Al ' for each uj : 

A j- =A(u=:}uj ), A/ =D(u=:}uj ). (17) 

Here the left substitutionofu\.2 inA (u) andD(u) is chosen. 
The rewriting of the L operator in terms of Uj,A / is single
valued [the quantum analog of the Lagrange interpolation 
of operator polynomials A (u) and D( u) must be used] : 

+ u - U \ A 2- + U - U2 A \- , 
U2 - u\ u\ - U2 

D(u) =! (u - u\)(u - u2 ) 

+ u - u\ At + u - U2 At, (18) 
U2 - u\ u\ - U2 

C(u) =! (u - u\)(u - u2), 

where the formula for B(u) follows from any of the equali
ties (14). 

The operators up A l possess the conjugation proper
ties 

uj* = uj , (A l )* = [l/(u\ - u2) ]Al (u\ - u2), 
(19) 

and satisfy the following algebraic relations: 

[A l ,ud = ± 2DjkA f, [A l,A f ] = [uj,uk ] = 0; 
(20) 

where d(u) is the quantum determinant (14). Equations 
(19)-(21) are derived from the fundamental relations 
( 10 )-( 12) and ( 14) and the interpolation (18) by means of 
the technique developed by Sklyanin in Ref. 5. 
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Let us derive the commutation relation (20) between 
A j- and Uk' Consider the equality (11c), 

(i) [A(u),C(v)] 

= [2/(u - v) ](C(u)A(v) - C(v)A(u», 

and substitute u=:}uj . Using the definition (17) and the fact 
that, by virtue of (10), [C(v),uj ] = 0 and C(u=:}uj ) = 0, 
one obtains 

[A j- ,C(v)] = [ - 2I(uj - v)] C(V)A j-' 

Substituting expression (18) for C(v), one arrives at 

(ii) A \- s(u\,u2) = s(u\ - 2,U2)A \-, 

A 2- s(u p u2 ) = S(U\,U2 - 2)A 2-' 

which holds for any symmetric function s(u\,u2). But, as the 
spectrum S of operators U\'U2 belongs to the lower right 
quadrant ofR2 (since u \ is positive definite and U2 is negative 
definite), (ii) is valid for any function s(u\,u2) including 
s(u\,u2) = u\ and S(U\,U2) = u2 • 

The rest of the relations (19) and (20) can be proved in 
a quite analogous way. As for the relations (21), their proof 
contains more tedious calculations (see the original proof of 
Sklyanin in Ref. 5). 

Let us tum Al into ml by 

ml = (u\ - u2)-\/2A l (u\ - u2)\/2. (22) 

Notice that the difference u \ - u2 is positive definite and the 
new operators obey another property (ml ) * = ml besides 
that for A / [( 19) ]. Eventually we have six Hermitian oper
ators 

z~\) = (l/4b) (mn+ + m;; ) 

= (1/2~u\ - U2) [bx~ + unx2 -! {X3,J2} ]~u\ - u2 , 

Z~2) = (i/4b)(mn+ - m;;) (23) 

= (1/2~u\ - u2) [unx\ -! {X3,J\}]~u\ - U2 , 

Z~3) = un/2 = ! [J3 + bX2 ± [(J3 + bX2)2 

+ J~ + ~ + (",,2 _ ~)/~ + (J2 - bX3f] \/2] 

satisfying the standard commutation relations of the Lie al
gebraA = so(2, 1) Ell so(2,1), 

[ z!..") ,z~fJ) ] 

= - iDmnEafJyz<,:)ayt;, a = diag( - 1, - 1,1). (24) 

The Casimir operators are 

en = aYfJz~Y)z~fJ) =! (",,2 - 1) =jU + 1), (25) 

whereEqs. (14) and (19)-(21) were used. 
Consider discrete D ± series of unitary irreducible rep

resentations ofso(2,1). In accordance with (25) we are in
terested in the following "spin": 

(26) 

We bear in mind the projective representations wherej is any 
negative real number U < 0) and hence"" > - 1. We remind 
the reader that they are single-valued representations of the 
covering group of SU ( 1, 1 ) .7 

Then choosing a representation in which compact gen-
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erators Z~3) =! Un are diagonal, "spin" value} (26) defines 
the discrete spectrum S of operators U\,2: 

S = {(U\,U2)ER2
: (u\,u2 ) 

= ( - 2j + 2n\,2j - 2n2),n\,n2 = 0,I,2, ... }, (27) 

whereweputD + foru\ andD - foru 2 as u\ > U2 [( 16)]. The 
eigenfunction space of the system can be realized as the space 
!L' 2 (S) of square-summable functions on the spectrum S: 

!L' 2(S) = V(u\,U2): (u\,u2)ES, 

(U'~)ES Ij(u\,u2)1
2

< oo}. (28) 

It is easy to check that the operators m!, acting on ei
genfunctions ¢ of Un, 

as 

(un¢)(U\,u2) = un¢(u\,u2), 

(mt'¢)(u\,u2) = d \/2(U\ ± 1 )¢(u\ ± 2,u2), 

(m2±¢)(u\,u2) = d \/2(U2 ± 1)¢(U I ,U2 ± 2), 

obey all the relations (20) and (21) or (24) and (25). Let us 
now consider ,!he spec~al problem for the generating func
tion 7(U) = A(u) + D(u) = u2 - 2J3u - H. It has the 
form [see (18) and (22)] 

t(u)f(u\,u2) 

= (u - ul)(u - U2)j(U I ,U2) + (u - u2) 

X (u l - U2)-\/2(mt + mi )(u l - U2)-1/2 

xj(U I ,U2) + (u l - u)(u l - U2)-1/2 

X (m2+ + m2- )(ul - U2)-1/2j(UI ,U2), 

(29) 

where jE!L' 2 (S) is the eigenfunction of 7( u) and t( u) 
= u2 - 2mu - h, where m and h are eigenvalues of J3 and 

H, respectively. 
It appears that, for the separation of variables U I and u2, 

we ought to write 

j(U I ,U2) = (u l - U2)1/2¢(U I ,U2). (30) 

Now, putting u = Un, n = 1,2, in (29), we get two separated 
one-dimensional equations: 

t(un )¢n (un) = d 1/2(Un - 1 )¢n (Un - 2) 

+ d 1/2(Un + 1)¢n (Un + 2), (31) 

where the function ¢(U I ,U2 ) is factorized as 

¢(U I ,U2) = ¢1(U I )¢2(U2). (32) 

Such a form of the function ¢(U I ,U2) allows us to speak 
about separation of variables and reflects the structure of a 
direct sum of the algebra (24) A = so(2,1) EIlso(2,1). The 
two one-dimensional spectral problems are the three-term 
recursion relations (TTRR's) for the coefficients ¢n (un ), 
where the variables U\,2 belong to the lattice S depending on 
the value of p. 

The scalar product for the functions ¢(U I ,U2 ) [(30)] is 

(¢Ix) = I (u\ - u2)¢(u\,U2)x(U I ,U2), 
(u.,u2 )eS 
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therefore the norm of eigenfunctions ¢n (un) (32) of Eqs. 
( 31) has the form 

(33) 

The numerical iterations of the TTRR's (31) require 
the knowledge of the initial values of m and h for b -+ O. We 
have 

h Ib=O = (Ii +J~ +! + (p2 - V/x~) 

= - (u\u2)lb=O =4( -}+nl )( -}+n2) 

= (2n l + fl + I)(2n2 + fl + 1), (34) 

m = (J3 ) = «u\ + u2 )/2) Ib=O = n l - n2, 

nl>n2 = 0,1,2, ... , 

where the brackets ( ) stand for the eigenvalues of an opera
tor. The eigenvalues h can be computed in complete analogy 
with the computations in the theory of spheroidal and Math
ieu functions in Refs. 2 and 3. We note only that the TTRR's 
(31) imply that two convergent continued fractions are 
equal to zero and this gives nonlinear equations for the eigen
values m and h. For m = 0, ± 1, ± 2, ... fixed it is enough to 
work with the one continued fraction with the additional 
condition 

h I b = 0 = 4 ( - ) + n)( - } + n + I m I ), n = 0,1,2, .... 

The standard way to solve the principal problem of 
quantum mechanics for the Hamiltonian H (5) is to express 
the generators Ji,x i in the Euler angles ¢, t/J, 0 and the corre
sponding momenta 

. a . a . a 
P¢> = - I a¢' Pt/J = - I at/J' P8 = - I ao . 

The explicit formulas are 

sin t/J cot 0 . 
J\ = P8 cos t/J + P¢> -. - - -- {sm t/J,Pt/J}, 

sm 0 2 

J 
_ . cos t/J cot 0 

2- -P8 smt/J+p¢> -. ----{cost/J,Pt/J}, 
sm 0 2 

(35) 

J3 = Pt/J, XI = sin t/J sin 0, X 2 = cos t/J sin 0, X3 = cos O. 

Remember that (p¢» = 1=0 [(7)] and (J3 ) = m [(34)]; 
hence one can factorize the eigenfunctionjofthe Hamilto
nianH [(5)] as 

j(¢,t/J,O) = exp( - imt/J)cf>(O), (36) 

where cf> (0) satisfies the equation 

_--~+b2COS20 
[ 

d2 m2_1 

dO 2 sin2 0 

_ fl2-! +h +m2] cf>(O) =0. 
cos2 0 

(37) 

Thus cf> (0) are generalized hyperspheroidal harmonics (see 
Ref. 1 ).It is known that one must expand cf>(O) into a series 
of Jacobi polynomials to obtain the TTRR's for the expan
sion coefficients and the nonlinear equation (continued frac
tion is equal to zero) for the eigenvalues h (see Ref. 1). One 
can check the equivalence of this continued fraction to that 
given by either of the TTRR's (31). Further, from Eqs. (30) 
and (32) we see that the eigenfunctionj(ul>u2) was expand-
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ed into a series of eigenfunctions of two commuting opera
tors: 

_U--,,_+",---U~2 _ J + b 
- 3 X 2, 

2 
2 1 fl2 - 1 2 

-u,u2 =J, +-+~+ (J2- bx3) . 
4 x~ 

(38) 

Under the automorphism of the e(3) algebra 

Jr .. J3-bx2' J2-+J2+bx3, J,-+J;, xi-+x;, 

the operators (38) transform into the following ones: 

U, +u2 -J' 
2 - 3' 

1 2, 
-u u =1'2+_+ fl -4 +1'2.(39) 

'2 '4 ,2 2 
X3 

Their spectrum coincides with that of the operators (38) 
and the eigenfunctions are a product of the Jacobi polynomi
als and the exponentials. 

Thereby the algebra A = so (2, 1) Ell so (2, 1 ) of separated 
equations is exhibited for the generalized hyperspheroidal 
harmonics. In Ref. 6 it was called the dynamical algebra. We 
note that our algebraic method differs from the "dynamical 
algebra (group) scheme" in Ref. 8. 

III. REPRESENTATION OF QISM II ALGEBRA AND 
GENERALIZED POL YSPHEROIDAL PERIODIC 
FUNCTIONS 

First of all we give the definition of the QISM II algebra 
originally introduced by Sklyanin.9 This algebra describes a 
new class of boundary conditions for quantum systems inte
grable by means ofQISM. Two algebras U ± (u) are analogs 
of the algebra T( u) [( 2 ) ] : 

, 2 

R(u-v) U_ (u)R(u+v-ix) U_ (v) 

2 , 

= U _ (v)R(u + v - ix) U _ (u)R(u - v), (40) 

B _ u·cos q - i'sin q'p + 4(u _~) 

- 2 2 1/
2 _1 V-I 

1 t, 2 12-

R ( - u + v) U + (u) R ( - u - v - ix) U + (v) 

2 t, , t, 

=U+ (v)R(-u-v-ix)U+ (u)R(-u+v), 

(41) 

where t, and t2 are the matrix transpositions in the first and 
second spaces, respectively. The algebras U _ and U + are 
isomorphic: there exists an obvious isomorphism 
X:U_-+U+, X{U_(u)} = U'_ (-u) (see Ref. 9). The 
matrix R(u) is a solution of the quantum Yang-Baxter 
equation, too. As before we deal here with the R matrix of 
the XXX type R (u) = u + ixP [ ( 4 )] . 

The quantities 7"( u) = tr U + (u) U _ (u) defined in the 
direct product U + X U _ form a commutative family [ 7"( u, ), 
7"(u2)] = 0, for any U"Uz (Theorem 1 in Ref. 9). Hence 
7"( u) is the generating function of the integrals of motion. 

Let us consider the quantum system with one degree of 
freedom given by the Hamiltonian 

- r 2 sin2 q - 2s cos q, (42) 

where fl, v, r,sER, and p,q are the canonical variables 
[p,q] = - i. This model may be regarded as an integrable 
dynamical system on the e(2) algebra given by the genera
tors p, cos (qI2), and sin (qI2). The variables p and q and the 
Hamiltonian H are the Hermitian operators in some Hilbert 
space. 

The L operator for the system has the form 

(43) 
) ( 

fl2 - v 

D u -p - r 4 4 
4 sin2(qI2) 4 cosZ(qI2) 

One can directly verify that L ( u) satisfies the fundamental 
equation (40) oftheQISMIIalgebra U_(u) with x = - i. 

As a representation of the algebra U + (u) we take that of 
the algebra U + (u) in C', i.e., the c-number matrix. It has the 
form 

u+!) S . (44) 

It is easy to check that K (u) satisfies Eq. (41) with x = - i. 
The trace 7"(u) = tr(K(u) L(u)) is the generating function 
of the integrals of motion 

1171 

7"(u) = (u +~) [U Z 
- H + S(fl2 - v)/2(u2 - 1>]. 

(45) 
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Let us list the commutators that follow from (40): 

[A,A ] = [ - ixl(u + v) ](BC - ~q), 

[D,D] = [-ix/(u+v)](CB-q~), (46a) 

[B,B] = 0, [C,C] = 0; 

[A,B] = [ - ixl(u - v) ]CAB - ~~) 

- [ixl(u + v - ix) ]CAB + BD) 

+ [xzl(u - v)(u + v - ix)] 

X (AB + BD - ~~ - ~l!), 

Vadim B. Kuznetsov 

(46b) 
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[B,A ] = [ - ixl(u - v) ](BA - ~~) 

+ [ixl(u+v-ix)](~~ +~~), (47b) 

[A,C] = [- ixl(u - v)](CA - q~) 

+ [ixl(u + v - ix)]( q~ + ~q) 
+ [x2/(u - V)(U + v - ix)] 

x (CA + DC- q~ - ~q), (47c) 

[C,A] = [ - ixl(u - v) ](AC - ~q) 

- [ixl(u + v - ix) ](CA + DC), (47d) 

[B,D] = [ - ixl(u - v) ](DB - ~~) 

- [ixl(u + v - ix) ](AB + BD), (47e) 

[D,B] = [ - ixl(u - v) ](BD - ~~) 

+ [ixl(u + v - ix) ](~~ + ~~) 
+ [x2/(u - v) (u + v - ix)] 

X (AB + BD -~~ - ~~), (47f) 

[C,D] = [-ixl(u-v)](CD-q~) 

+ [ixl(u + v - ix)]( q~ + ~q), (47g) 

[D,C] = [ - jxl(u - v) ](DC - ~q) 

- [ixl(u + v - ix) ](CA + DC) 

+ [x2/(u - v)(u + v - ix)] 

X(CA +DC- q~ -~q>; 

[A,D] = -ix (CB-q~) (1 +~), 
u-v u+v 

[D,A] = -ix (BC-~q) (1 +~), 
u-v u+v 

- ix 
[B,C] =-- (DA -DA) 

u - v --

(47h) 

X(I-~) -~ (AA -DD), (48) 
u+v u+v --

- jx 
[C,B] =-- (AD-AD) 

u - v --

X(I-~) -~ (DD-AA). 
u+v u+v --

From now on in Sec. III x = - i. 
Our aim as formerly is to construct the algebra A of the 

separated equation (we now have one degree of freedom) in 
order to find the eigenstates of r( u) [( 45) ]. 

Let us transform the L operator ( 43) into the I operator 
according to the equality 

r(u) = tr K(u)L(u) = tr(S·J + ir(u + n 'u3)I(u), 
(49) 

where 

- -1 (A B) (1 L(u) = V LV= C D (u), V= ir 

This I (u) satisfies Eqs. (46 )-( 48) and describes the same 
dynamical system. Now we have the equation r(u) 
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= tr K(u)I(u) (49) with the diagonaimatrix K(u) (and it 
is important in the future). 

The QISM II algebra (40) has the following property: 
let U _ (u) be some representation of the QISM II algebra 
U _ in the space w _, and let T _ (u) be that of the QISM I 
algebra Tin Jr _. Then the U _ (u) defined by 

U_(u) = T_(u)U_(u)u2Tt_ (- u)u2 (51) 

is a representation of the QISM II algebra U _ in w_ ® Jr _ 
(Proposition 2 of Ref. 9). This property was used in Eq. 
(50) with T _ (u) == V. 

From Eqs. (48) one can derive the quantum determi
nant d(u) of I(u) [equal to that of L(u)] generating the 
center of the QISM II algebra (40) that has the form 

d(u) = (D_ - (l/2u)(D_ + A_ »A+ - B_C+ 

= (A- - (l/2u)(D_ + A_ »D+ - C_B+ 

=A+(D_ - (l/2u)(A_ +D_»-B+C_ 

=D+(A_ - (l/2u)(A_ +D_»- C+B_ 

= (u - (f.L2 - v)/4u)2 - V, (52) 

where we use fOllowing notation: D+ stands for D(u + n, 
B_ for B(u - !), and so on. 

Consider the operator roots of 
B(u) = !(A - D - irB - iC Ir): 

B(±ul)=O, 

f.L2 - I V _ I 

ui=(p-r sin q)2+ 4 + 4 
4 sin2 (q/2) 4 cos2 (q/2) 

(53) 

The Hermitian operator ui is positive definite. We choose u I 
to be positive definite, too. 

Let us introduce two more operators A ±. Put D(u) 
~ _ v A 

= 2u XD(u) - A(u) and D(u) = D(u)/(2u + 1). Then 

A - =A(u~ul)' A + =h(u~ul)' (54) 

where the left substitution of u I into A (u) and D( u) is cho
sen. The rewriting of the I operator in terms of u l , A ± is 
single-valued: 

2 ~2 U2
1 

_ u2 
- I/. _y-
D(u) = --.:.,..---

4(u - n ui -! 
(55) 

+ u - ul + 1 A - + u + ul + 1 A +, 

2u I 2u I 

B(u) = (l/2ir)(u2 - ui), 

where the formula for C(u) follows from any of the equali
ties (52). To derive the interpolation (55) we used the iden
tity 

D(u) = -A( - u). (56) 

Operators ul.A ± possess the following properties: 
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uT = UI, (A. ±)* = (lIul)A. 'F UI ; 

[A. ± U ] = + A. ±. '1 _ , 

A. -A. + =d(u l -!> 

= [UI _! - (p,2 _ "z)/4(u l _!>]2 -"z, 

(57) 

(58) 

A. +A. - =d(u l +!) (59) 

= [u l +! - (p,2 _ "z)/4(u l +!>]2 -"z; 

where d(u) is the quantum determinant (52). To prove the 
commutation relation (58) between A. - and UI we rewrite 
(47b) as 

(i) [A(u),B(v)] 

= [ - lI(u - v) ](B(v)A(u) - B(u)A(v» 

- [lI(u+v-I)](A(u)B(v) +B(u)D(v», 

and substitute u:::} u I' Using the definition (54) and the fact 
that,.,!>yvirtueofinterpolation (55) for B(v), [B(v),ud = 0 
and B(u:::}u l ) = 0, one arrives at 

(ii) A. -S(UI) =s(ul-I)A.-, 

which holds for any even function s( u I)' But, since u I is 
positive definite, (ii) is valid for any function S(UI) includ
ing S(UI) = ul. As for the commutator of A. + and UI one 
must consider (47a), (47f), and (47b) to obtain 

+ (2v - 1)B(u)A(v) ] , 
2v(u + v) 

instead of (i), and so on. The rest of the relations (57)-(59) 
can be proved in a quite analogous way using the fundamen
tal equations (46)-(48) and the interpolation (55). 

Let us replace A. ± by X ±: 

X - = (u l - !)A. -

= (u l -!> (UI'COS q + ip'sin q - ir'sin2 q) 

+ (p,2 _ "z)/4, 

X + = (u l +!)A. + (60) 

= (u l + !)(ul'cos q - ip-sin q + ir·sin2 q) 

+ (p,2 _ "z)/4. 

Operators ul,X ± obey Eqs. (57) and (58) and 

X +X - = a+(u l + !)a_(ul + !), 
X -X + = a+(u l - !)a_(ul - !), 
a± (u) = u2 ± vu - (p,2 - "z)/4, 

a+ (u)a_ (u) = d(u) u2
• 

Let us define two more operators 1 ±, 

1 ± = a -1I2(U + l)X ± 
+ 1-2 ' 

which also obey Eqs. (57) and (58) and 
A A A A 

A. +A. - =a_(ul +D, A. -A. + = a_(ul-D. 
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(61) 

(62) 

(63) 

Now we have three Hermitian operators 

:P) = U I - v/2, 

il} = (lI2ru;) (1 + + 1- )ru;, 

i 2
) = (i12ru;) (1 + -1-)ru; 

(64) 

satisfying the standard commutation relations of the Lie al
gebraA = so(2,I): 

[ z(al,z(Pl] = - iE a Z(6l aPr r6 , a = diag( - 1, - 1,1). 
(65) 

The Casimir operator is 

C = arPZ<:(lZ(Pl = !(p,2 - 1) = j(j + 1). (66) 

ConsiderthediscreteD + series «U I ) > 0) ofirreducibleun
itary representations ofso(2,1). The "spin" is equal to 

j = -! - p,/2, (67) 

where j < 0; hence p, > - 1. Then choosing a representation 
in which the compact generator i 3

) = U I - v/2 is diagonal, 
the "spin" value j (67) defines the discrete spectrum of the 
operator i 3

) (and u1 ): 

(UI) = v/2 - j + n = (p, + v + 1)/2 + n, n = 0,1,2 .... 
(68) 

One can see that to fulfill (u 1 ) >0 we must set v;>O. The 
eigenfunction space of the system can be realized as the space 
!L' 2 of square-summable functions f( U I) on the spectrum of 

It is easy to check that the operators 1 ±, acting on ei
genfunctions ¢J ofu l , 

as 

obey all the relations (57), (58), and (63). Further, we con
sider the spectral problem for the generating function T( u) 
[ (45) and (49) ] 

T(U) = tr K(u)£(u) 

(5 + ire U + !> 0 ) (~c- B) 
= tr 0 5 - ire U + !) D (u), 

(70) 

T( U )f(u.) = t(U )f(u I)' 

wherefE!L' 2 is the eigenfunction of T( u) and t( u) is equal to 
T( u) [( 45)] with the Hamiltonian H replaced by corre
sponding eigenvalue h. 

The function f( U I) is factorized as 

f(u l ) = ru;¢J(u l ) (71) 

and ¢J (u.) satisfies the following TTRR's: 

[(u~ - !)(u~ - h) + S(p,2 - "z)/2]¢J(u.) 

= (lIu.)(ui - !)(irul + S - irl2) 

Xd 1/2(U. - !>¢J(u. - 1) + (llu. )(ui -!> 
X ( - iru. + S - irl2)d ./2(U I + !)¢J(UI + 1). 

(72) 
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The TTRR's (72) are derived using Eqs. (70), (54), 
( 60) , ( 62 ), and ( 69) . We remind the reader that 
U I = n + (JL + v + 1)/2, n = 0,1,2, ... , [(68)]. The norm 
of </J ( U I) has the form 

~ ul l</J(u l )1 2 < 00. (73) 

In the special case JL = v the results of this section were 
already announced. \0 Complete numerical calculations of 
the eigenstates will be published elsewhere. 

Equation (42) implies that in the q representation our 
spectral problem amounts to 

Hj(q) = __ + r- 4 + 4 ( 
d 2 1/2_1 V_I 

dq2 4 sin2(qI2) 4 cos2(qI2) 

- r sin2 q - 2s'cos q )f(q) = h·j(q). (74) 

If we set 

j(q) = (sin(qI2» 1'+ 1I2{cos(qI2W+ II2~(V), q = 2v, 
(75) 

then ~ ( v) satisfies 

[ 
d 2 2 JL - v + (JL + v + 1 ) cos 2v d + 8k 2 -+ - ~ cos V 
dv2 sin 2v dv 

+ 4r sin2 2v ]~(v) = - 4h~(v). (76) 

Thus the generalized polyspheroidal functions considered 
are the bounded and 1T-periodic solutions of Eq. (76). For 
r = 0 we get an equation for PPF's in Ref. 1. We note that 
our generalization (r# 0) corresponds to the solution in the 

1174 J. Math. Phys., Vol. 31, No.5, May 1990 

coordinate systems of N-dimensional (N~4) ellipsoids and 
hyperboloids of revolution of the N-dimensional oscillator 
turned upside-down: 

(aN + k 2 + Y'lxI 2
) W= o. 

IN. F. Truskova, Yad. Fiz. 36, 790 (1982). 
2For physical applications, see, for example, J. Meixner and F. W. Schatke, 
Mathieusche Funktionen und Spharoidjunktionen (Springer, Berlin, 
1954); C. Flammer, Spheroidal Wave Functions (Stanford U .P., Stanford, 
CA, 1957); see, also, I. Y. Komarov, L. I. Ponomarev, and S. Yu. Slav
janov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 
1976) (in Russian). 

3A. Erdelyi, High Transcendental Functions (McGraw-Hili, New York, 
1953-1955), Yols. I-III. 

4L. D. Faddeev, Les Houches Lectures, edited by J. B. Zuber and R. Stora 
(North-Holland, Amsterdam, 1984), pp. 719-756; P. P. Kulish and E. K. 
Sklyanin, Integrable Quantum Field Theories, Lecture Notes in Physics, 
Yol. 151, edited by J. Hietarinta and C. Montonen (Springer, Berlin, 
1982), pp. 61-119. 

5E. K. Sklyanin, J. SOY. Math. 31, 3417 (1985); Non-linear Equations in 
Classical and Quantum Field Theory, Lecture Notes in Physics, Yol. 226, 
edited by H. Sanchez (Springer, Berlin, 1985), pp. 196-233; I. Y. Ko
marov and Y. B. Kuznetsov, Zap. Nauch. Semin. LOMI 164,134 (1987). 

6y. B. Kuznetsov and A. Y. Tsiganov, J. Phys. A 22, L73 (l989). 
'V. Bargmann, Ann. Math. 48, 568 (l947); L. C. Biedenharn, in Non
Compact Groups in Particle Physics, edited by Y. Chow (Benjamin, New 
York, 1966), p. 23. 

8A. O. Barnt, A. Inomata, and R. Wilson, J. Math. Phys. 28, 605 (l987); 
A. O. Barnt, A. Inomata and R. Wilson, J. Phys. A 20,4075 (1987); M. 
Kibler and P. Winternitz, ibid. 20, 4097 (1987); C. Quesne, ibid. 21, 4487 
(l988). 

9E. K. Sklyanin, J. Phys. A 21,2375 (l988). 
lOY. B. Kuznetsov and A. Y. Tsiganov, Zap. Nauch. Semin. LOMI 172, 88 

(l989). 

Vadim B. Kuznetsov 1174 



                                                                                                                                    

Ground-state energy of H=p2+ 2X2+ 2~2AX3+AX4 for A< < < 1 
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A self-consistent perturbation theory is developed to compute the ground-state energy for the 

Hamiltonian H = p 2 + 2X2 + 2~U X 3 + AX4 in the weak coupling regime A. < < < 1. 
Energy corrections up to third order are given. Reasonably good agreement is obtained with 
previous computations. 

I. INTRODUCTION 

Perturbation theory is believed to be a useful tool for 
investigating different physical problems for which an exact 
solution of the Schrooinger equation has not yet been found. 
There have been many studies on the nature of the perturba
tion theory with the hope of understanding both its limita
tions l and of finding methods to best utilize the perturbative 
results we do have. In particular, the single-well oscillator in 
the context of perturbation theory I has drawn considerable 
attention over a wide range of investigations. 1,2 It is surpris
ing that the two-well oscillator3 in the context of perturba
tion theory has not received the attention it deserves. Hence 
the aim of the present paper is to calculate the ground-state 
energy of the two-well oscillator using perturbation theory. 

II. THEORY 

The Hamiltonian considered is of the form 

H= T+ CB(q) +HI(q), (1) 

whereHo = T + CB(q) is the unperturbed part of the Ham
iltonian and HI is the perturbed part. Now the Hamiltonian 
in Eq. (1) is rewritten2 as 

H = H c, + H 2(q), 

where 

H c, = T + CB(q) + F(q) 

and 

H 2(q) = HI (q) - F(q). 

Further F(q) is considered4 as a function of B(q) 
HI(q): 

F(q) = a «OIHIIO)c/(OIB 10)c,)B(q), 

where the value of a is determined by the condition 

(2) 

(3) 

(4) 

and 

(5) 

L [(OIHllp>c, - (OIFlp>c,] =0. (6) 
p,,<o 

Hence the ground-state energy of H c, is Ec, and is a function 
of C I . The value of C I is determined by the condition 

CI = C + a( (OIHIIO)c/(OIB 10)c,). (7) 

As Ho is a function of C, the above definition of C I can be 
used to calculateEc , in terms ofC. Further H 2 (q) is divided 
into two parts as 

a) Address for correspondence: Biswanath Rath, c/o Satyapir Kar, at 
Sriram Nagar, Bhubaneswar-75 1002 (Orissa), India. 

(8) 

whereH2D (q) is the diagonal part andH2N (q) is the nondia
gonal part of H2 (q). Now the diagonal part H2D (q) is added 
to H c, to construct the new unperturbed Hamiltonian 
H(CI ) as 

(9) 

Hence the term H2N contains the only contribution of 
the nondiagonal part and is considered as the new perturbed 
part. The formal perturbation theory is applied to H 2N using 
H(CI ) as the unperturbed part. 

The above development is applied to compute the 
ground-state energy of the oscillator characterized by the 
Hamiltonian3 

H = p2 + 2X2 + 2,j1XX3 + A.X4. (10) 

The expression for H w is 

Hw = p2 + 2X2 + aA.( (0IX410)w/(0IX210)w)X2 
(11 ) 

and for H 2 (X) is 

H 2(X) = A.X4 - A.a( (0IX410) w/(0IX 210) w)X 2 

+ 2,j1XX 3, (12) 

The value of a is found to be 2 and the parameter W 
satisfies the cubic equation 

W3-2W-3A.=0. (13) 

Using the coordinate transformation 

X = (a + at)/~2W, (14) 

p = - i[ (a - at)/W Iv'lL (15) 

and the commutation relation 

[a,at ] = 1, (16) 

where at stands for the creation operator and a stands for the 
annihilation operator, the expressions for H2N and H( W) 
are given below: 

H2N = 2,j1X [a + at/~2Wn 
+ (A./4W2) [a4 + (at )4 + 4ata3 + 4(at )3a ] (17) 

and 

H( W) = (2ata + l)(~ + ~) 

+ _,1._ [6(at)2a2 + 12ata + 3]. 
4W2 

(18) 
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TABLE I. Ground state energy oftheH = p2 + 2X2 + 2,JUX 3 + AX4 oscillator. 

0.0001 
0.001 

• See Ref. 3. 

1.414251 
1.414588 

o 
o 

E(2) 
o 

- 0.000 13 
- 0.00137 

In Eq. (17), [ ] N stands for normal order. The explicit 
expressions for energy corrections for the ground state are 

E6°) = (8W + 9A)/4W2, (19) 

(20) 

E (2)

° -
9A 6A ----------

2W4 W( 12W + 27A) 2W2(16W + 42A) , 
(21) 

(22) 

For weak coupling A < < < 1, one can use Eqs. (19)
(22) for ground-state energy computation. However, for 
strong coupling one has to take more orders. For weak cou
pling A < < < 1, the value of W used for energy calculation is 
positive, as it yields the correct limiting condition A -+ 0 and 
is given5 by 

W = (V 1/2 cos (aol3 ), (23) 

where 

a o = cos-I(3A/~32/27). (24) 

In Table I the ground-state energy is computed by 
A < < < 1 and compared with the previous result. It is seen 
that for weak coupling A < < < 1, present computation 
yields reasonably good agreement with previous computa
tion.3 For strong coupling the solutions of W can be found 
from the literature.5 

Last, we want to test this approximation for an exactly 
solvable oscillator. The Hamiltonian considered here is giv
en by 

H = P2/2 + AX4. (25) 

In this case only final expressions are given below. The 
expressions for H( W) and H2N are 

H( W) = (2ata + 1)( W /4) 

+ (A /4W2) [6(at )2a2 + 12ata + 3] , (26) 

H2N = (A /4W2) [a4 + (at )4 + 4(at )3a + 4ata3
] • 

(27) 

The value of W is (6A) 1/3, and a is found to be 2. The 
ground-state energy corrections up to third order are 

1176 

E6°) =0.68142A 1/
3

, (28) 

E61)=0, 

E62 ) = - 0.010 81A 1/3, 
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(29) 

(30) 

0.000 000 002 
0.00000026 

1.4141136 
1.413 216 

Previous' 

1.413 211 

E63
) =0. (31) 

The exact ground-state energy for this oscillator (up to 
five decimals) is Eo = 0.667 75A 1/3. The present result up to 
third order is 0.670 60A 1/3. However, theauthorfeelsifmore 
and more orders are included then the exact result will be 
obtained. Further, the perturbation series in this context is 
also convergent. To show this we express the ground-state 
energy as the sum of different orders given by 

Eo = E6°) +E61
) +E62

) + ... +E6k
) + ... , (32) 

where E 6 k) is the K th-order correction to the ground state. 
Using the argument of Halliday and SuranyF we find each 
term of the perturbation series has an extra factor 
(K IH2N lr)/E6°) - E ~o), wherer= K ± 2,K ± 4, andE ~o) 
is the zeroth-order energy of the rth level of the unperturbed 
Hamiltonian H( W). For K -+ 00 this ratio is either j or ~. 
Furthermore, considering the less convergent situation 
r = K ± 2, we have the series 

f(N) [1- ~ + (j)2 + ... ] + finite terms, 

wheref(N) is a finite quantity and N is finite but large. The 
sum of the infinite terms in the bracket is~. Thus the series is 
a convergent one for any value of the coupling constant. The 
main advantage of this method is that the energy level 
expression for the oscillator can be calculated analytically. 
For weak coupling constants A < < < 1, one needs to calcu
late a few order perturbation corrections. In the present pa
per numerical results are calculated using a CASIO-fx-82 
scientific calculator. 
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Let Vbe a potential whose negative part V_decays like elxl-2 at infinity. If e is not too large, 
then the Schrodinger operator H v = - tl. + Von Rn

, n;;.3, has only a finite number of bound 
states although the associated classical phase space volume is infinite. Optimal conditions are 
derived for the absence of bound states and a family of bounds on the total number of bound 
states for the operator H v oftheform No( V).;;; er.n S R" (V + e/lxI2) ~ Ix - xol2r - n d n x. The 
basic tool used to obtain results is a family of sharp Sobolev inequalities for the operator 
A(e) = - tl. - e/lxI2. 

I. INTRODUCTION. MAIN RESULTS 

A basic problem in the study ofSchrodinger operators is 
to obtain conditions on the potential Yin order to guarantee 
that this potential has at most Nbound states. Let No( V) be 
the number of bound states of the Schrodinger operator 
H v = - tl. + Von Rn 

• It is well known that under suitable 
conditions on V the number of bound states is asymptotically 
determined by the classical phase space volume associated 
with V in the sense 

(1) 

Here V_denotes the negative part of Vand B n is the volume 
of the n-dimensional unit ball. For a proof of ( 1 ), we refer to 
Ref. 1. 

Formula (1) suggests that we look for a bound of the 
form 

(2) 

provided the integral on the right-hand side exists, i.e., V _ E 

L nl2. Here we should remark that in view of the inequality 
No( V) .;;;No( - V _) it is always sufficient to obtain a bound 
in terms of the negative part of the potentiaF 

Estimates of the type (2) have been found by Lieb,3 
CwickeV and Rosenbljum,5 and an optimal condition that 
guarantees No (V) = 0 has been derived by Glaser et al.6 The 
latter paper also contains a large family of nonexistence con
ditions involving different powers of the potentials under the 
integral, which lead, e.g., to the bound ofCourant-Hilbert7 

or Bargmann.s Such bounds on No( V) have been obtained 
later by Glaser, Grosse, and Martin9 and more recently by 
Blanchard, Stubbe, and Rezende,1O improving a method 
proposed by Li and Yau. 11 

The validity of the asymptotic formula (1) as well as the 
inequality (2) indicate that the finiteness (resp. infinite
ness) of No ( V) is determined by the decay rate of the poten
tial at infinity. In fact, we have No( V) < 00 if Vex);;' - e/ 
Ixl2+ e, while No( V) is infinite if V(x).;;; - c/ Ixl 2 - e for 
some positive numbers e and E. 12 The borderline case is given 
by the condition 

lim V_(x)lxI 2=e. 
Ixl- 00 

(3) 

In this case, inequality (2) is inconclusive since the right
hand side is infinite. However, if n;;.3 and e satisfies the con
dition 

(4) 

then No( V) is finite, as we shall also see from the results of 
this paper, provided V satisfies certain conditions to be speci
fied later. The number of bound states of H v is infinite if the 
reversed inequality holds. The aim of the present paper is to 
present very simple conditions on potentials V having the 
critical decay given in (3) such that No ( V) in finite, and to 
give good estimates on No( V) in terms of an integral norm. 
The basic tool for the derivation of our results is a family of 
sharp Sobolev inequalties for the operator 

A(e)= -tl.-c/lxI2 on R n
, O.;;;e<((n-2)/2)2. (5) 

Theorem 1: Let n;;'3. For each non-negative 
e < «n - 2)/2)2, there exists a constant Kn.2n/(n _ 2) (e) such 
that, for any f E H 1 (Rn 

), the following inequality holds: 

Ilfll~n/(n - 2) .;;;K!.2n/(n _ 2) (e)(IIVfll~ - ell (lIlxl )fIID· (6) 

The optimal constant Kn.2n/(n _ 2) (e) is given by 

Kn.2n/(n _ 2) (e) = [1Tn (n - 2)] - 112(r(n )/r(n/2) ) lin 

X (1 - 4c/(n - 2)2) - (n - 1)l2n . (7) 

The first result on H v gives an optimal condition for the 
absence of bound states as in the work of Glaser et al.6 

Theorem 2: Let V be a potential satisfying the condi
tions (3) and (4). If V satisfies the inequality 

K:.2n(n-2) (e) in (V(X) + 1:1 2 ) n~2 d n x< 1, (8) 

then No( V) = O. 
Our second result on H v is the following inequality on 

the number of its bound states. 
Theorem 3: Let V be a potential satisfying the condi

tions (3) and (4), then we have 

No( V) .;;;e(n - 2)/2 K ~.2n/(n _ 2) (e) 

L( e)nl2 
X Vex) + --2 d n x, 

ftn Ixl-
(9) 
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with Kn.2nl(n _ 2) (C) the constant obtained in Theorem 1. 
In Sec. II the proofs of these theorems will be presented. 

Since we believe that the techniques should be more or less 
well known we shall only sketch the main lines of the proofs. 
There is a useful generalization of the Sobolev-type inequali
ty (6) which will imply generalizations of Theorems 2 and 3. 
In order to avoid confusion we shall state these results sepa
rately in Sec. III. Finally, in Sec. IV, we shall discuss our 
results. 

II. PROOFS OF THEOREMS 1-3 

Proof of Theorem 1: First of all, we observe that the 
operator A (c) satisfies the elementary inequality 

((,A(c)jh=IIVfll~ - cll(1/lxl)fll~ 

(10) 

which follows from the "local uncertainty principle lemma" 
(see, e.g., Ref. 13). Therefore we may apply the technique of 
Lieb, who gave a simple rearrangement inequality proof of 
(6) in the case c = 0. 14 We have to prove the existence of a 
maximizing function of the functional 

(11) 

and we define K n•2n/(n _ 2) (c) by 

K~.2nl(n-2) (c) = sup{Sc(f)lfeH I (Rn), f=l=O}. (12) 

As proved in Ref. 14 we may restrict ourselves to functions 
that are spherically symmetric and decreasing in Ix!- The 
coordinate change 

}{[(n_2)/2]u)=e[(n-2)/2Ju f(e U
), ueR, (13) 

will give us 

Sc (f) = (nBn) - 2In «n - 2)/2) - 2(n - 1)ln 

X 11F11~nl(n-2) 
IIF'II~ + (1 - 4c/(n - 2)2)IIFII~ , 

(14) 

where the norms for F are defined by integrals over the real 
axis. The functional of F on the right-hand side of ( 14) can 
be easily maximized. In particular, rescaling F by 
Fu (x) = F(xlu) , with u = Uc = (1 - 4c/(n - 2)2)1/2, we 
arrive at the same functional for F as in Ref. 14, which is 
independent of c: 

Sc (f) = (nBn) - 21n (n - 2/2) - 2(n - 1)ln (1 _ 4cl(n _ 2)2) - (n - 1)ln 

X 11F1I~nl(n-2J(IIF'II~ + IIFII~)· 

Using Theorem 4.2 of Ref. 14 we get 

K~.2nl(n _ 2) (c) 

= K~.2nl(n _ 2) (0) (1 - 4c/(n - 2)2) - (n -1)ln, (15) 

where K n•2n/(n _ 2) (0) is the constant obtained in Ref. 14 for 
the case c = O. As a maximizing function for Sc (f) we may 
choose 
f( Ixl) = Ixl- [en - 2)/2](1- (1- 4cl(n - 2)')"') 

X (1 + Ix1 2(1 - 4c/(n - 2)')''') - (n - 2)/2 

= Ixl- [en - 2)/2J(1 - uc ) (1 + Ix12Uc ) - (n - 2)/2. (16) 

Remark 2.1: Note that if c < 0 in (6) we cannot apply 
the rearrangement technique and we can show that there is 
no maximizer for Sc (f). However, Sc (f) is still bounded and 
the sharp constant is given by Kn.2nl(n _ 2) (0). On the other 
hand, if we restrict our attention to spherically symmetric 
functions/, then we can easily prove the existence of a maxi
mizer given by (16). Note that the maximizingfis not de
creasing in Ixl and f(O) = O. Again the sharp constant is 
given by formula (15) [resp. formula (7) ] . 

Proof of Theorems 2 and 3: The basic idea is to relate the 
number of bound states N o( V) to the eigenvalues ofthe fol
lowing boundary value problem on a bounded domain D in 
Rn

: 

A(c)f(x) = Aq(x)f(x) on DCRn, 

(17) 

flaD =0, 
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(14') 

where q is a positive function such that q e L n/2 (Rn 
) and 

A (c) is the operator defined in (5). 
The eigenvalue problem ( 17) has an infinite sequence of 

eigenvalues 

0<A 1 <A2.;;;A3 .;;; .. ·.;;;A k ..... 00. (18) 

By a standard reduction argument of Birman and 
Schwinger (see, e.g., Refs. 2 and 11) it can be shown that the 
number of eigenvalues Ak that are less than 1 is equal to 
No(V)· 

To prove Theorem 2 we choose q(x) = (V(x) + cl 
Ixl2L and apply the Sobolev-type inequality of Theorem 1 
to the first normalized eigenfunction It of (17). More pre
cisely, we have 

(
( )(n-2)ln(( )2In .;;; JD f \2nl(n-2) dnx UDqn/2 dnx 

I ( ( c ) n/2 )2In =A1K~.2nl(n_2) (C)\JD V(x) + Ixl 2 _ dnx , 

(19) 

which implies the nonexistence condition stated in Theorem 
2. 

Theorem 3 will be proved by the method of Blanchard, 
Stubbe, and Rezende. 1O The idea is to study the heat kernel 
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Ho(x,y, t) = ie-..t;J;(X)/;(Y) (20a) 
j=1 

and the "weighted" heat kernel 

H_,(x,y, t) = i (Uj)-le-A.;J;(x)/;(y) (20b) 
;= I 

associated to the operator A (c) in L 2(D, q dn x), where 
if; ).eN is the set of normalized eigenfunctions of ( 17). Start
ing from 

h_,(t)= i (U j )-le -2A.;1 
;=1 

= 11 H_,(x,y, t)Ho(x,y, t) 

Xq(x)q(y)d nx d ny, (21) 

we arrive, after some simple steps involving HOlder's in
equality and the Sobolev-type inequaltiy of Theorem I, at 

I 

the following differential inequality for h _ 1 (t) : 

X qn12(x)d nx _ -I . 

(1 )
2/n( dh (t»)(n - 2)ln 

D dt 
(22) 

Indeed, we write 

h_,(t) = 11 H_,(x,y, t)[Ho(x,y, t)q(y)(n+2)/4]2In 

X [Ho(x, y, t)2q(y)] (n - 2)/2n d ny q(x)d nx 

and apply HOlder's inequality with exponents 2nl(n - 2), 
n12, and 2nl(n - 2) for the y integration and then with 
exponents 2, n, and 2nl(n - 2) for the x integration to ob
tain 

[ r (r ) ](n-2)12n 
X JD q(X)UD Ho(x,y, t)2q (y)d"y d"x . 

From (21), it is easy to see that the last term equals 
( - dh_1ldt) (n-2)/2". As in Ref. 11, we can estimate the 
second term of the above expression by (S Dq(X)"/2 dx)lIn 
using the fact that it is decreasing in t, hence bounded by its 
value at t = 0, which can be evaluated by using the complete
ness of the eigenfunctions. To estimate the first term we ap
ply the Sobolev inequality of Theorem 1 and the identity 

~h_,(t) = r q(x) r IVyH_1(x,y, t)1 2 

2 JD JD 

_ c 1 H - 1 ~;i y, t) 12 d ny d nx , 

which gives the bound 

K n,2nl(n _ 2) (c) ·<!h_ 1 (t»I/2. 

Combining these estimates we obtain inequality (22). Inte
grating and optimizing with respect to t yields 

A. n/21 qn12 d nx'k K - n (c)e(2 - n)/2 
k ,? n,2nl(n-2) , 

D 
(23) 

which implies Theorem 3 by the Birman-Schwinger princi
ple since 

No( V) <;.No( - (V + c/lxI 2
) _ - cllxI 2). 

III. GENERALIZATIONS OF THE MAIN RESULTS 

Generalizations of Theorems 2 and 3 are consequences 
of the following generalized Sobolev-type inequality for the 
operator A ( c ) . 
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Theorem I': Let n:>3 and (2 - n)/2<;.b<;. 1. Define 

2n p ( 4c )112 
P=2b+n-2' Y=p-2' uc = 1- (n-2)2 . 

(a) IfO<;.c «(n - 2)/2)2 and O<;.b<;. 1, then there exists 
a constant K n,p (c) such that, for any f E H' (Rn

), the fol
lowing inequality holds: 

(b) If either (2 - n)/2<;.b < 0 and c < [(n - 2)/2]2 or 
c < 0, then there exists a constant K n,p (c) such that 

holds for any spherically symmetric functionfE H I(Rn). 

In any case the optimal constant Kn,p (c) is given by 

K (c) = K (0) u- 1I4-1/2p 
n.p n.p c 

X(Y-I)(1'-')121'( r(2y) )1121' 

y r(y+ 1)r(y) 

XU~1I2)(1I21'-I) , (24) 

whereliJn _ 1 = 21T"12 Ir(n12) is the area of the unit sphere in 
Rn. If (2 - n)/2 < b < 1, in each case (a) and (b) there is a 
"maximizing" function of the form 
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f(lxl) = Ixl-(n-2)/2)(1-Uc) (I + Ix l(n-2)/Y)Uc)I-Y. 

(25) 

Now, the generalizations of Theorems 2 and 3 can be 
stated as follows. 

Theorem 2': (a) Let Xo E Rn and r>n/2. Let V be a 
potential satisfying the decay conditions (3) and (4). If 

K~~(c) ((V(X) +~)Y Ix-xoI2y-ndnx<I, 
JR n Ixl-

(26a) 

then H v has no bound state. 
(b) Let l<r<n/2 and Vbe a spherically symmetric 

potential satisfying the decay conditions (3) and (4). If 

K 2y(c) {(V(X)+_c_)Y IxI2y-ndnx<1 (26b) 
n,p JR n Ixl2 _ ' 

then No( V) = O. 
Theorem 3': (a) Let r and V satisfy the conditions of 

Theorem 2' (a). Then 

No( V)<K~~ (c)ey- 1 

X ( (V(X) +~)Y Ix-xoI2y-ndnx. (27a) 
JRn Ixl-

(b) Let r and V satisfy the conditions of Theorem 2' (b). 
Then the number of spherically symmetric bound states 
N ~ ( V) satisfies the estimate 

N~(V)<K~~(c)eY-l LlV(X) + 1;12)~ IxI
2y

-
n

d
n
x. 

(27b) 

IV. DISCUSSION 

First of all we want to show that for any given p the 
nonexistence condition of Theorem 2' (resp. Theorem 2) is 
optimal in the following sense: The constant K ~.p (c) cannot 
be replaced by a smaller number. Indeed, let us choose Vas 

Vex) = _clxl-2_lxl- 2+(n-2)/(Y-l»)Uc 

xU + Ixl(n-2)/(Y-l»)Uc)-2, (28) 

If l<r<oo (i.e., 00>p>2). In the case r=n/2 or, 
equivalently, p = 2n/ (n - 2), this reads as 

It can be easily verified that the optimizing function for the 
Sobolev inequality given by (25) is a solution of the Schro
dinger equation for H v with eigenvalue zero. Furthermore 
the chain of inequalities in (19) (resp. in its generalized 
form) reduces to equalities for this choice offl and Vwhich 
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proves our claim. For the values p = 2 and p = 00 this fol
lows by a simple limiting argument. 

From (28) we see that the optimal potential always has 
in inverse square singularity at the orgin. The reduced poten
tial q(x) = (V(x) + cllxl 2L is singular at the origin with a 
power weaker than the inverse square potential since 
0< O'c < I, if 0 < c < (en - 2)/2)2. Now q(x) is regular at the 
origin if c = O. At infinity q(x) behaves like Ixl- 2(1 + u c). 

The bound on No( V) presented in Theorem 3 (resp. 
Theorem 3') is not optimal and the factor e(n-2)/2 (resp. 
eY - 1) should not be present. However, in the important case 
n = 3 it provides us with very good results. The case r = 1 
also yields an optimal bound on No( V), which is a general
ization of Bargmann's bound.8

•
10

•
12 

Theorems 2 and 3 have some nice consequences. Results 
in this direction can also be found, e.g., in Ref. 12. Let 
VEL ~2 (Rn 

), n>3, and 

V ~ I 1-2 if Ixl>R for some R, 
(x)",-cx 'O<c<(en-2)/2)2. (29) 

Then No( V) < 00. In particular, if (29) holds for all x, then 
No( V) = O. On the other hand, if c> «n - 2)/2)2, then 
No( V) is generally not bounded as shown in Ref. 15. 

Finally, it should be stressed that the results of this pa
per also apply to potentials whose negative part behaves like 
Ixl- 2 at the origin. 
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Mathematical techniques are used to invert the the partial wave Born approximation. Two 
expressions are obtained for the scattering potential. Additionally simple expressions are given 
for various moments of this scattering potential. These results are illustrated by some analytic 
examples. Finally a few numerical calculations are performed using both "Born 
approximation" and "experimental" phase shifts in the relevant expressions. 

I. FORMAL EXPRESSIONS FOR V,(r) AND ITS 
MOMENTS 

To solve the inverse problem in quantum mechanical 
scattering theory one must use the Gel'fand-Levitan Mar
chenko equation. 1 Alternatively it is possible to invert one of 
the simplest approximations in quantum mechanical scat
tering theory, the partial wave Born approximation,2 which 
relates a particular integral ofthe scattering potential V, (r) 
to the phase shift 0, (k) that this potential produces, namely, 

(1) 

[Various authors use sin(o,(k» or tan(o,(k))Z instead of 
o,(k).] 

This is known to be a fairly good approximation for 
channels where the potential is "weak" in some sense, i.e., 
the phase shifts produced are small. 

Here E is the energy of the mass m scattered particle, 

k = ~2mE ;<fz2, and V, (r) is the scattering potential in the 
angular momentum'l channel. The function j,(kr) is the 
usual spherical Bessel function. 3 

In the literature4 a set offunctionsg, (kr) was obtained 
such that 

ra> r'2 Jo j7(kr)g,(kr')dk =-;z{o(r-r') +o(r+r') 

- ( - 1)'20(r')}. (2) 

[Reference 4 overlooks the 0 ( r + r') and 0 (r') terms in 

expression (2). Though the former term does not affect sub
sequent results, the latter does.] The first three g, functions 
and the correspondingj/s are listed in Table I for the con
venience of the reader. 

Premultiplying Eq. (1) by g, (kr') and then integrating 
over k one obtains with the help ofEq. (2) that 

ra> (_ ~ O,(k»)g, (kr')dk 
Jo 2m k 

= ,'vier') -:- 2( - 1)'/0(r') La> V,(r)dr 

or 

Vier') =~ ra> (_~ o,(k»)g,(kr')dk 
rJo 2m k 

+ 2( - 1)'0(r') La> V,(r)dr. (3) 

The second term on the rhs of Eq. (3) appears to make 
this inversion approach impractical since if one wishes to 
evaluate the potential from the phase shifts in this approxi
mation the "unknown" potential also appears on the rhs of 
this expression. 

This difficulty does not arise however if one wishes to 
obtain "moments" of the potential. Thus 

La> ,nV,(r')dr' 

L
a> ,n_'LCO( fz2 O,(k») = r ---- g,(kr')dkdr', 

o 0 2m k 
(4) 

TABLE I. Spherical Bessel functionsj,(p), the g, (p) functions, and f[g,(p)/p2]dp, for / = 0, I, and 2. 

j,(p) 

g,(p) 

1181 

o 

sin(p) 

p 

Sp2 
--cos{2p) 

17 

-.!sin(2p) 
17 
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sin(p) cos(p) --;;---p-

! {(p2 _ 2)cos(2p) 

+ C -2p )sin(2p)} 

: {(I - ;2)sin(2p) 

+ ~ COS{2p)} 

0022-2488/90/051181-08$03.00 

2 

- !{V-IS+ ~~)COS(2P) 
( 

33 IS) . } + -6P+P--7 sm(2p) 

4 {( IS 9) . -- 1--+- sm(2p) 
17 p2 p' 

+(; - ~nCOS(2p)} 
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where n > 0, since the integral 1'0 r'"t5(r')dr' vanishes. 

A second approach to inverting Eq. (1) involves using a 
formula that we have derived, and can be easily verified for 
1 = 0, 1,2, and 3, namely, 

C~2Y ~ C~2y(/+~iI<P»2=sin(2p), (5) 

where 

did 
dp2=2; dp 

A derivation of Eq. (5) for general 1 is given in Appen
dixB. 

Using this expression and Eq. (1) one obtains 

(~)I ~(~)/(k2/+2{ _~ t5 l (k)}) 
dk 2 dk dk 2 2m k 

= f'" sin (2kr) VI(r)r l+ 1 dr, (6) 

which is just the Fourier sine transform5 of 
( 1/2) VI ( r) rl + 1. 

Multiplying both sides of Eq. (6) by (4/1r)sin(2kr') 
and integrating over k one then obtains 

, 4 r"" ( d )1 d ( d )1 
VI (r ) = 1T'r'2I+ I Jo dk 2 dk ak 2 

. X(k 2/ + 2
{ -2~ t5/~k)})sin(2kr')dk, (7) 

since 

~ r"" sin(2kr)sin(2kr')dk = t5(r - r') + t5(r + r'). 
1T' Jo 
Equation (7) appears a more useful inversion expres

sion than Eq. (3) because there is no unknown term on the 
rhs of Eq. (7). Unlike Eq. (3) however, this equation re
quires knowledge of derivatives of the phase shifts. 

Thus 

Xsin(2kr)dk, (8b) 

and so on for larger I. 
Expressions (3) and (7) are in fact related as is shown 

in Appendix A. A new expression for gl (p) that results from 
examining this relationship between Eq. (3) and Eq. (7) is 
also given in this appendix. 

Examing Eq. (1) for large k, in which limit this approxi
mation is most appropriate, one obtains using the expression 

lim jl(p) -+sin(p -11T'/2)/p that as k-+ 00 

p-"" 

{ If t5l (k)} 1 Sa"" . 2 ---- -+- sm(kr-I1T'/2)VI (r)dr 
2m k k 2 

0 

1 1"" = --2 (1 + ( - 1)/+ 1 cos(2kr» VI (r)dr. 
2k 0 
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Thus 

. 2{ .,,2 151 (k) } 1 Sa"" hm k ---- =- VI (r)dr, 
k-"" 2m k 2 0 

(9) 

since the integral SO'cos(2kr) VI (r)dr goes to zero as k tends 
to infinity due to the rapid oscillations of cos(2kr) in this 
limit. 

Thus the troublesome terms on the rhs ofEq. (3) can be 
replaced by known quantities: 

VI(r') 

1 Sa"" ( .,,2 t5 l (k»), 1 = -:2 - - -- gl (kr )dk + 4( - 1) t5(r') 
r 0 2m k 

1. k'2{ .,,2 t5 l (k')} X 1m -----. 
k'_"" 2m k' 

The functions gl (kr) have the property 

Sa"" g~(~) dk = 4( - 1 )/+ 1t5(r), 

a result which can easily be verified for 1 = 0, 1, and 2 and 
which is discussed in Appendix C. Using this expression one 
can also write Eq. (3) in the form 

VI (r') =~ r"" (_~ t5l (k) __ 1_ 
/ Jo 2m k k 2 

. '2{ If t5 l (k')}) X hm k ---- gl(kr')dk. (10) 
k'_"" 2m k' 

One thus has two useful expressions, Eq. (7) or Eq. 
(10) for inverting the partial wave Born approximation. 

Equation (4) involves double integrals for the evalua
tion of moments of the potential VI (r). An analogous double 
integral expression may be obtained starting from Eq. (7), 
namely, 

So"" ':"VI(r')dr' 

= ~ r"" r"" sin(2kr') dr,((~)1 
1T' Jo Jo /'+ I -" dk 2 

x~(~)/(k2/+2{ _~ t5 l (k)}))dk. (11) 
dk dk 2 2m k 

Simpler expressions for some moments of the scattering 
potential can also be obtained as follows. From the Born 
approximation (1) one has obtained above an explicit 
expression for the integral of the potential over r since from 
Eq. (9) 

(12) 

If, on the other hand, one wishes to evaluate certain 
higher moments of VI' for example the volume integral of VI' 

So"" rVI(r)dr, etc., one may have recourse to Eq. (6). 

In the limit k-+O, sin(2kr) -+2kr and one has 

Sa
"" 1 ( d )1 d ( d )1 r l + 2VI(r)dr=lim- --2 - --2 

o k-O 2k dk dk dk 

(13 ) 
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More generally, for n = 0,1,2, ... , 

(14) 

Expressions for arbitrary moments follow from Eq. 
( 11). Thus, for instance, substituting n = 2/ in Eq. (11) 
yields: 

r"" '21
V (r)dr = 2 r"" ((~)I ~ (~)I Jo r I Jo dk 2 dk dk 2 

X(k2l+2{ _! D/~k)}))dk. 
(15) 

II. ANALYTICAL EXAMPLES 

Some analytical examples that illustrate Eqs. (8a), 
(8b), (12), (13), (14), and (15) follow. 

A. Example 1 

Given 

Vo(r) = Vo, r<a, 

= 0, r>a. 

FromEq. (1) 

_ ~ Do (k) _ V; {_a _ _ Sin(2ka)} 
2m k - 0 2k 2 4k 3 ' 

k 2( _ ~ Do (k) )::::: Vo(!!'" _ Sin(2ka») 
2m k 2 4k ' 

~ k 2( _ ~ Do (k) ) 
dk 2m k 

_.£Q. (sin(2ka) _ 2a cos(2ka) ). 
- 4 k 2 k 

Substituting this expression into Eq. (8a) and integrat
ing over k, 

Vo(r):::::..!...!.£Q. r"" (Sin(2ka) _ 2a cos(2ka) ) 
r 1T 4 Jo k 2 k 

X sin(2kr)dk 

=.£Q. { r"" sin(2ka)sin(2kr) dk 
m Jo k 2 

_ a L"" sin(2k(r - a»; sin(2k(r + a» dk } 

= (VoIm){(1T/2)2a -1Ta) = 0, r>a 

= ( V oIm){ (1T/2)2r) = Vo, r < a. 

On the other hand, from Eq. (12) 
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Vo(r)dr= hm 2k ----i"" . 2( fi2 Do (k) ) 

o k_"" 2m k 

::::: lim 2k 2V; (_a _ _ Sin(2ka») = V; a 
k-"" 0 2k2 4k3 0 , 

while from Eq. (13) 

r"" r Vo(r)dr = lim _1_ ~ k 2( _ ~ Do (k) ) 
Jo k-O 2k dk 2m k 

::::: lim _1_ .£Q. (Sin (2ka ) 
k-O 2k 4 k 2 

_ 2a CO~(2ka») 

= lim.£Q. (2ka _ 8k 3a3 
k-O 8k k 2 6k 2 

2a a
3 

) -T+ 4k2 T+ ... 

Voa3 

=-3-' 

Finally from Eq. (14) with n = 1 

L"" r4 Vo(r)dr 

= lim __ 1 (..!..~)2 ~k2{ _~ Do(k)} 
k-O 2k 2 dk dk 2m k 

:::::lim _ ~ (~)2 (sin(2ka) 
k_O 32k dk k 2 

_ 2a CO~(2ka») 

- Im-- a---1' Vo {Sin(2ka) (6 2 3) 
k-O 16k 2 k k 2 

- 2a COS(2ka)( 2a2 - :2)} 
= lim ( VoII6k2){ - 8k 2a5 _ ~k2a5 

k-O 
+ 8k 2a5 + 4k 2a5 + ... } 

= Voa
515. 

B. Example 2 

Given Vo(r) = Voe-ar'. 
From Eq. (1) 

_ ~ Do(k):::::~ E(1 _ e- k2Ia), 
2m k 4k2 -V a 

~k2(_~Do(k»):::::.£Q. E kek2la. 
dk 2m k 2a -V a 
Substituting this expression in Eq. (8a): 

Vo(r):::::.! r"" .£Q. ~(1T/a)e- k'ia sin(2kr) dk 
1TrJo 2a 

= Voe-ar'. 

On the other hand, from Eq. (12) 
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Vo(r)dr= lim 2k2 ___ 0 __ L
oo { .,,2 {j (k) } 

o k~oo 2m k 

:::: lim 2k2( Vo/4k2)A1Tla) (1 - e~ k'la) 
k~ 00 

= (VoI2)~1Tla, 

while from Eq. (13) 

L

oo . 1 d 2( .,,2 Oo(k)) 
,zVo(r)dr=hm--k ----

o k~O 2k dk 2m k 

::::lm-- - e 1· 1 Vo ~k ~k'ia 
k~O 2k 2a a 

= (VoI4a)~1Tla. 

Finally from Eq. (14) with n = 1 

Loo r4Vo(r)dr 

_lim __ l_(~~)2 ~k2{_~ (jo(k)} 
k~O 2k 2 dk dk 2m k 

::::lm-- -- e 1· Vo ~(d )2k ~ k'ia 
k-O 16ka a dk 

-lm- - ---e -1' Vo ~{3 2k2} ~ k'ia 
k~O 8a2 a a 

= (3VoI8a2)~1Tla. 

C. Example 3 

Given VI (r) = VI,ze ~ ar. 

From Eq. (1) 

_~ Odk)::::~ E_l_{1 +~ 
2m k 4 \j a k4 2a 

_e~k'la(1 + 3k
2 
+~)}, 

2a a 2 

d d d k4( .,,2 01 (k) ) 
dk 2 dk dk 2 2m k 

::::~ E e~ k'la( 15k _ 1Ok
3 + 2k

s 
). 

4 \j a 2a3 a 4 a 5 

Substituting into Eq. (8b) 

VI(r)::::--±- roo ~ Ee~k'la( 15k _ 1Ok
3 + 2k

5
) 

1T~ Jo 4 \j a 2a3 a 4 a 5 

Xsin(2kr)dk 

= VI,ze~ar. 

On the other hand, from Eq. (12) 

roo VI (r)dr = lim 2k2{ _~ Ol(k)} 
Jo k~oo 2m k 

1· VI ~ 1 {I k
2 

:::: Im- --2 +-
k~oo 2 a k 2a 

_ e~k'la(1 +~+~)} 
2a a 2 
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while from Eq. (15) 

Loo ,z VI (r)dr 

::::2 roo ~ Ee~k'la( 15k _ 10k
3 + 2k

5
)dk 

Jo 4 \ja 2a3 a 4 a 5 

= (3VJ8a2)~1Tla, 

and from Eq. (13) 

Loo r4VI(r)dr 

-lim_l ~'~~(k4{_~ Ol(k)}) 
- k~O 2k dk 2 dk dk 2 2m k 

::::lim~ Ee~k'la( 15k _ 1Ok
3 + 2k

5
) 

k~O 8k \j a 2a3 a 4 as 

= (15V/16a3)~1Tla, 

The expressions (8a), (8b), (12), (13), (14), and (15) 
all give exact results in the above three examples because the 
Born approximation phase shifts and their analytic deriva
tives were used for each potential, and the integrals were 
evaluated with k varying from 0 to 00 while the limits were 
evaluated in a mathematically exact fashion from these ana
lytic phase shifts. In practice, however, in an actual scatter
ing problem, one extracts from the empirical cross section 
experimental rather than Born approximation phase shifts, 
which at most extend up to a certain maximum energy (or 
k) beyond which point the nonrelativistic formalism (hence 
also the Born approximation) breaks down. For proton
proton scattering this is about 350 MeV. The integrals (8a), 
(8b), and (15) must thus be truncated at some finite k. An 
additional error is invariably introduced when one takes de
rivatives of the experimental phase shifts. 

The most interesting quantities to obtain are of course 
the potentials themselves since one can then evaluate any 
moment of the potential one is interested in. To do this one 
has to evaluate the integrals (8a) and (8b) despite the above 
caveats. Further discussion of these integrals is given in Sec. 
III. On the other hand, to evaluate Eq. (12) in a practical 
case requires that one estimate what limit k 0 f (k) tends to as 
k goes to infinity by looking at what happens to k Of (k) for 
large (but nonrelativistic) k 'So One expects that one can esti
mate this limit rather well because the Born approximation 
improves at high energies. We illustrate this in Fig. 1 where 
we plot the "experimental" and Born k oo(k) for a nucleon 
of mass :::: 1 amu scattered off two square well potentials of 
range 2 fm and depth 5 and 40 MeV, respectively (the"ex
perimental" phase shifts are calculated by matching wave 
functions, obtained from the Schrodinger equation, and 
their derivatives at the edge of the square well potential). 
One sees from this figure that already at k = 4 fm both the 
Born and the "experimental" phase shifts are converging to 
the same limit ko (k) :::: 0.24 fm - I for the V = - 5 Me V po
tential and to ko(k):::: 1.9 fm- I for the V = - 40 MeV po
tential. These correspond to values - 10.1 and - 79. 9 MeV 
fm for fO' Vo(r)dr, which are very close to the values ofthe 
corresponding integrals, namely - 10.0 and - 80.0 MeV 
fm, respectively. At the k approaches zero limit, which is 
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FIG. J. k8o(k) calculated, as a function of k, from the Born approximation 
and the "experimental" phase shifts for a particle of mass 1 amu scattered 
from two different square well potentials of range 2 fm and depths 5 and 40 
MeV, respectively. 

needed in Eqs. (13) and ( 14), however, one does not expect 
that the Born approximation will be very good. Hence one 
expects different results using the experimental and the Born 
approximation expressions. That this is in fact the case is 
illustrated in Fig. 2 where for the above two potentials we 
plot (1!2k)(dldk)(k 2

{ - (1f/2m)(oo(k)lk))). Here 
even for the weak V = - 5 MeV potential the "experimen
tal" value is ;:::; 50% greater in magnitude than the Born val
ue for this quantity. Thus of the above set of expressions for 
reconstructing the potential the least reliable appear to be 
Eqs. (13) and (14). 

III. SOME NUMERICAL RESULTS 

In this section we show the results of some numerical 
calculations of VI (r) using Eq. (7) or equivalently Eq. (10). 
In particular, we consider scattering of a nucleon from a 
square well potential of depth Vand range a. The first ques
tion that arises in this context is up to what k = kmax one 
must integrate these expressions. Analytically, if Born ap
proximation phase shifts, Eq. (1), are inserted in Eqs. (7) or 

60 
'['per i ental', =-40W. 

;;; 40 

=- 20 :; 

------
~ .-- Born, V= 5MeV ~ 

E -20 
'Experi ~enlo I' V=-5W.~ 

-40 -
-60 --;; 

~ 
-80 

- -100 - - -
-120 

Born, V= 40W.V 
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FIG. 2. The term after the limit in Eq. (13) [- (I/2k)(/i2/2m) (d/ 
dk)(k8,,(k»] is calculated as a function of k by using the Born approxima
tion and the "experimental" phase shifts for a particle of mass 1 amu scat
tered from two different square well potentials of range 2 fm and depths 5 
and 40 MeV, respectively. 
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(10), the potential used in Eq. (1) to obtain these phase 
shifts will be recovered, provided the integration is per
formed over all k. Thus if the Born approximation phase 
shifts are used in Eqs. (7) or (10), the deviation from the 
square well shape of the resulting potential will reflect on the 
goodness of our cal~ulations as a function of the cutoff kmax • 

Figures 3 and 4 show the resulting potential for I = 0 
when these integrals are carried out in steps of 0.001 fm- I 

and k runs from 0.0001 fm- I to kmax = 2 and 4 fm-I, re
spectively. Comparison ofthese two figures shows that per
forming the integrals up to kmax = 4 fm - 1 gives quite good 
results while integrating up to k max = 2 fm - 1 gives results 
which are reasonably good. Therefore in all our calculations 
the integrals for VI (r) are evaluated up to k max = 4 fm -I. 
For a nucleon, k = 4fm- 1 corresponds to 333 MeV in kinet
ic energy which is about a third of the rest energy of the 
nucleon (931 MeV). This justifies our using nonrelativistic 
expressions, as for example the Born approximation itself 
and in obtaining exact phase shifts for the square well poten
tial. 

If, instead of Born approximation phase shifts, exact or 
so to speak "experimental" phase shifts, calculated by 
matching the exact wave function and its derivative at the 
edge of the square well potential, i.e., at r = a, are used, one 
does not expect to obtain the exact square shape either ana
lytically or numerically from Eqs. (7) or (10). Rather the 
deviation from the "experimental" square shape, for a par
ticular I tells us how good the Born approximation is for a 
particular I as a function of the depth and range of the poten
tial, bearing in mind that some error is also introduced due to 
the fact that the integrals over k are truncated. 

The "experimental" phase shifts produced by a nucleon 
scattered from three square well potentials of the same 
width, a = 2 fm, and different depths, namely Vo = - 5 
MeV, - 10 MeV, and - 40 MeV, are shown in Figs. 5, 6, 
and 7, respectively. 

The results of evaluating VI (r) using Eq. (10) for these 
three sets of phase shifts are shown in Figs. 8, 9, and 10. As 
expected, it can be seen from these three figures that the 
Born approximation is better for shallower potentials and 
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Though the integrands in expressions (7) and (to) are 
different, we have verified in detail for the case 1= 0 that 
they generate essentially the same potential VCr) when we 
integrate out to kmax = 4 fm - I. The above techniques may 
easily be extended to two-body scattering by using the corre
sponding phase shifts, reduced masses, and relative energies. 

I 
/ APPENDIX A 

/ 
/1=0 

-70 Integrating Eq. (7) successively by parts one obtains 

1/ -80 

-90 
.00 .50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 

V (r') = ( - 1)'+ 1 ("" { _ ~ 6,(k) }{k2l+2(~_1 )1 
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FlO. 10. Potentials calculated from Eq. (10) using "experimental" / = 0, I, 
and 2 phase shifts calculated for a nucleon scattered off a square well poten
tial of depth 40 MeV and width 2 fm. The integrals are performed from k 
equals 0.0 I to 4 in steps of 0.00 1 fm - '. 

x- -- -sm(2kr') dk a (a I )14. } 
ak ak 2k 1T 

+ surface terms. (AI) 

Comparing (A 1) to Eq. (3) one obtains 

higher angular momenta (smaller phase shifts). Thus even if 
a given potential produces I = 0 phase shifts, which make 
the Born approximation extremely inaccurate for this chan
nel, one gets increasingly more accurate results for the po
tential as one goes to higher 1 channels. Also if the potential is 
a function of I (and possibly additionally ofj) , inverting the 
Born approximation may give a reasonable result for the 
potential in higher 1 channels even if it is not applicable say 
for 1 = o. 

4 2' + 2( d 1)1 d (d 1)" 2p g,(p) = --p -- - -- sm( ), 
1T dp 2p dp dp 2p 

(A2) 

while the surface terms in (AI) equal 

2( - I )'6(r') i"" VI(r)dr. 

The expression (A2) provides an alternative way to ob
tain gl (p) to those given in Ref. 4. 

From (A2) it is clear that (for large r) the leading term 
of (A2) is (8( - 1)'+ 1/1T)p2 cos(2p). 

APPENDIXB 

From Ref. 6 (k! is missing in this expression as given by Ref. 6) 

. =~J2 =~ 00 (_I)k(p/2)21+1+2kr(21+2k+2) 
n(p) 2p 1+ 1/2 (p) 2p k~O r(21+k+2)r(/+k+~)2k! . 

(BI) 

Using the duplication formula 7 

'2 _ 22 ' "" ( - I)k 22kp21 + 2k(l + k)!2 

h(P) - k~O (2/+k+ 1)!(2/+2k+ 1)!k!' 
(B2) 

"" (_ l)k22kp4/+zk+2(/+ k)I2 
2/+2'2( ) - 221 I . 

P 11 P - k = 0 (21 + k + I)! (21 + 2k + I}!k! ' 

d 2'+2'2 -22/ "" (_1)k22kp4/+2k+2-2(2/+k+ 1)(/+k)!2 

2pdpP lI(p)- k~O (21+k+l)!(21+2k+l)!k! ' 

21+2'2 _ 221 • 
( 

d 
)

' 00 (_I)k22kp2l+2k+2(/+ k)12 

2pdp P h(P) - k~O U+k+ 1)!(2/+2k+ l)!k!' 
(B3) 

d( d )/ 2/ +2 •2( )-221 + 1 ~ (_l) k 22kp 2/+2k+I(l+k)! 
---p liP - £.. ' 
dp 2p dp k= 0 (21 + 2k + 1)!k! 

(B4) 

d d ( d )1 21 + 2 '2 ( ) _ 221 + I _ 1 ~ (- 1) k 22)J21 + 2k + I - 2 (l + k)! (21 + 2k + I) 
---- -- p. 11 P - £.. ' 
2p dp dp 2p dp k = 0 (21 + 2k + l)!k! 

2/+2:2( ) _ 2/+ 1 ~ • 
( 

d 
)

' d ( d )' 00 (_I)k22kp2k+l(/+k}I 

2pdp dp 2pdp P JI P - k~O (21+2k)(21+2k-2)"'(2k+2)(2k+ I)!k! 

_ 2/+ 1 "" (- I) k22kp 2k+ 1(/ + k)! 

- k~O (/ + k)!2/(2k + 1)! ' 
(B5) 

(~_)/~(_d_)~21+2jT(P) = i (_l)k(2p)2k+ 1 = sin(2p). 
2pdp dp 2pdp k=O (2k+ I)! 

(B6) 
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APPENDIXC 

The equation 

(00 gl (kr) dr = 4( _ 1)1+ II5(k) 
Jo k2,:z. 

(CI) 

can be easily verified for 1 = 0, I, and 2 using expression 
(A2). 

Thus substituting Eq. (A2) into Eq. (CI) one obtains 

- - r - - - - - sm(2 r) r 41
00 

k2L21(a I )Ia (a 1)/. k d 
1r 0 ar 2r ar ar 2r 
=4( _1)1+II5(k), (CI') 

or 

,:z.1 -- - -- sin(2kr)dr=l5(k). ( - 1)1 loo (a 1)1 a (a 1)1 
1r22Ik 21 + 1 0 ar r ar ar r 

Fori = 0 the Ihs ofEq. (C2) reduces to 

1 lOO a . (2k)d I I' sin(2kr) - -sm r r=- 1m , 
1rk 0 ar 1r2r-00 k 

a standard 15 function representation.8 

Fori = I the Ihs ofEq. (C2) becomes 

--=-l. (00 ,:z. ~{1.- ~(~ sin(2kr) )}dr 
41rk 3 Jo ar r ar ar r 

(C2) 

= --=-l.{r~(~ Sin(2kr») _ 2 ~ sin(2kr) } 1
00 

41rk 3 ar ar r ar r 0 

= --=-l.{(-±" _ 4k 2)sin(2kr) _ 8k cos (2kr) } I 00 
41rk 3 ,:z. r 0 

= 1.- lim sin (2kr) 
1r 2r- 00 k 
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Generally, the leading term of gl (kr) 
= [8( - 1)1+ 1/1r] k2,:z. cos (2kr) , when substituted into 
Eq. (C I), yields the delta function while other terms cancel 
among themselves. Thus 

8( 1)1+lloo - cos(2kr)dr=4( _1)1+II5(k), 
1r . 0 

while 

The indefinite integrals corresponding to Eq. (CI) for 
1=0, I, and 2 are given in Table I. 
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By f~rm~lating a path integral in the SU(2) fiber bundle space, a nonrelativistic spinor particle 
movtng tn external electromagnetic fields is studied. This formulation is a direct extension of 
Schulman's [Ph~s. Rev. 176, 1588 (1968)] continuous treatment for spin; it unifies all spin 
~tates t~ a sphencal top model. This theory enjoys a definite classical theory with spin-orbital 
tnteractl?nS and the corresponding semiclassical approximation for the path integral. This 
method IS also applicable to a particle moving in a more general Yang-Mills field. 

I. INTRODUCTION 

As is well known, the amplitUde for the arrival of a 
spinor particle moving in external electromagnetic fields is 
given by exp(iS), with S the classical action for a scalar 
particle; the orientation of the spin rotates at each point in its 
path at an angular velocity equal to the field strength at that 
point. I However, this solution remains incomplete unless th~ 
fields are constant in space because it is expressed as an infi
nite folding of the hypercomplex numbers. These are most 
easily shown by formulating the path integral solution for 
the Pauli equation in the form of the product integral and 
discussing its semiclassical approximation.2

,3 

On the other hand, spin was originally introduced in 
relation to the motion of a rigid rotator; however, it soon 
became clear that a rigid rotator must propagate all spins, 
unlike a spinor, whose spin value always remains fixed, i.e., 
j =!. When Bopp and Haag4 showed the possibility of de
scribing a spin by using the representation of the SU(2) 
group, a rigid rotator (a spherical top) model was again 
revived as a carrier of spin. Schulman5 studied a path inte
gral in the SU (2) [or SO (3)] group space as a continuous 
model for spin motion and obtained an exact propagator for 
the free motion. This interesting study suggested that the 
propagator of a spinor particle may be treated as a wave 
packet in the total space of the SU(2) fiber bundle whose 
fiber is the SU(2) group space and whose base space is the 
usual physical space or space-time. In this case the final re
sult may be obtained by projecting it to the subspace of the 
fixed spin value j = !. However, without interactions, this 
projection may reduce the result for spin rotation only to an 
identity operation.5 

This paper is aimed at studying a complete treatment of 
an interacting spinor in this multidimensional fiber bundle 
formulation. DeWitt6 first formulated this bundle space as 
an arena of dynamics; since then it has been widely studied in 
the Kaluza-Klein theory7 for gauge interactions. An impor
tant property of the Kaluza-Klein theory is the unification 
ofallj states of the corresponding Yang-Mills theory. It is a 
result of this unification that the former has its specific clas
sical theory with gauge interactions, 8 unlike the latter, 
whose path integral will take the form of the product inte
gral. 

In formulating a path integral in the bundle space, the 
boundary condition of paths in such a compact space as the 

SU(2) is a key problem to be solved; it has not yet been 
solved in its full generality of compact manifolds. As to the 
SU(2) fiber space, Schulman5 already solved it for the free 
motion by reducing it to the periodicity around the one-di
mensional maximal torus. The full periodicity about all the 
three Euler angles is to be considered for our interacting 
case, which can be done by referring to the result that Prok
horov9 derived for n-dimensional spherical coordinates in a 
flat space. Another problem to be solved is to formulate the 
path integral in the physical space by taking the projected 
effect of the motion in the fibers into consideration. This 
problem can be solved by using the convenient path integral 
formulation originated by DeWitt-Morette!O: Its conven
ience is due to the fact that it enables us to use formulas 
studied in stochastic integrals such as the Cameron-Martin 
formula. Application of the Cameron-Martin formula to 
our problem enables us to formulate a specific classical theo
ry with spin-orbital interactions, as well as the usual electro
magnetic interactions for a charged scalar particle. 

The construction of this paper is as follows: In Sec. II we 
derive our multidimensional formulation from the usual 
Pauli one in such a way as to make their relationship clear. In 
Sec. III the path integral in the SU(2) fiber space is formu
lated by referring to the Prokhorov method applied to our 
problem, as given in Appendix A. We project the result to 
j = ! subspace in Sec. IV and apply the Cameron-Martin 
formula given in Appendix B to obtain the final result. Con
clusions are given in Sec. V. 

II. DERIVATION OF THE MULTIDIMENSIONAL 
FORMULATION 

We begin with the usual Pauli equation for a nonrelativ
istic charged spinor particle moving in an external electro
magnetic field. The Hamiltonian is then given as 

1 ( e)2 efz jf'=-2 h --Ak +eV+--(cTk'Hd 
m c 2mc 

(2.1) 

and the corresponding SchrOdinger equation is 

ifz aI/J = _ !f..(ak + ie Ak)2 I/J 
at 2m ftc 

eft 
+eVI/J+-(uk'HdI/J, (2.2) 

2mc 
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where Uk is the Pauli matrix andHk = (rotAh istheexter
nal magentic field. 

In order to obtain a solution ofEq. (2.2) via formally 
applied path integration, we use a product integral2 of the 
type 

f ~ (x)exp{i. f[m( dXk )2 + ~Ak dXk - eV 
Ii 2 dt e dt 

-~Uk(t)·Hk(X»]dt}. (2.3) 
2me 

The sum (2.3) over all paths Xk (t) of the hypercomplex 
amplitude cannot easily be evaluated for an arbitrary mag
netic field (except the spatially constant one) because of the 
time-ordered operation of Uk (t) . 

Therefore, we reduce the Pauli formalism (2.2) to the 
continuous treatment for spin by introducing the unitary 
irreducible two-dimensional representation D I/2 (g) of the 
group SU (2) in the C 2 spinor space. 

First, we define the generator of the right translation of 
SU(2) as 

va ( ) _ aR(h,g)a _ a(gh)a I 
«(3) g - ah (3 - ah (3 h = e • 

(2.4 ) 

Then Vk = V~ (a la~) satisfies 

Vk (g)D I/2 (g) = DI/2(g)iuk/2, (2.5 ) 

where a labels the group coordinates and k runs over (x, y, 
z), which is prearranged to coincide with the label ([3) of the 
group algebra at h = e. The prooe ofEq. (2.5) is roughly as 
follows: Consider the right translation of geSU(2) by a 

group element /)k
Qk near the identity h = e. Then by the 

definition of Vk above, V~ (g)O k = ~O kQk and defining 
.Q1/2(g) = (Plglq) with (iuk/2) = (qlQk Ir), we obtain 
Vk (g)DI/2 (g) = (PlgQk Ir). 

If we apply DI/2 to the lhs of Eq. (2.2) and define the 
probability amplitUde 'I' (g,x) for the initial state as 

'I'(g,x) = D I/2 (g)t/J(x,t), (2.6) 

Eq. (2.2) reduces to 

. all' 1i2 
( ie)2 ilie k A lfz- = - - ak + -Ak 'I' + eV'I' - -H Vk'l', 

at 2m lie me 
(2.7) 

where Vk is proportional to the angular momentum operator 
Pk written with the group coordinate g, i.e., 

A 

Pk = - iliVk· (2.8) 

The concrete representation of Vk can be obtained II di
rectly from definition (2.4) by using the Euler angles 
(q;,0,t/J) : 

A a sint/Ja . a v = cos t/J - + --- - cot 0 sm t/J-
x ao sin 0 aq; at/J ' 

A • a cost/J a a v = -smt/J-+----cotOcos t/J-
Y ao sin 0 aq; at/J ' 

(2.9) 

Since we are analyzing Eq. (2.7) with path integration, 
we introduce the kinetic energy term in the SU(2) group 
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space with the Lagrange multiplier method as 

iii all' = _ ~(ak + ie Ak)2'1' + eV'I' 
at 2m lie 

2fi2 ilie k A 

--(a3 +A)'I'--H Vk'l', (2.10) 
I me 

where I is the multiplier and takes the value of a quarter of 
the moment of inertia corresponding to a3 • Then a special 
solution of Eq. (2.10) that satisfies the constraint 

(a3 + A) 'I' = 0 (2.11 ) 

solves Eq. (2.7). 
As is well known, a3 in Eq. (2.11) is given with the 

Euler angles as 

a
2 

a 1 (a
2 

a
2 

a3 = a0 2 + cot 0 ao + sin2 0 aq;2 + a~ 

- 2 cos 0---a
2 

) 

aq;at/J 
and 

A=j(j+l), 

(2.12) 

(2.13) 

wherejis one of the values of (O,~,q, .. ), i.e., for j =!, as in 
the case of (2.6), A = i. 

If we solve Eq. (2.10) in the form of the propagator, we 
will obtain a solution which involves not only thej = ! repre
sentation, but also all j-value representations. Then the con
straint (2.11 ) with A = i means only projecting it to the sub
space of j = ~, i.e., Fourier transforming with D T12 (g) to 
the angular momentum representation corresponding 
to j =~. More strictly, this Fourier coefficient times 
D I/2 (g) satisfies both Eqs. (2.10) and (2.11) and the former 
only solves Eq. (2.2), as is easily shown by tracing the above 
reduction backward. 

For later convenience, here we introduce the group co
ordinates ({} I' {} 2' {} 3) defined as 

(2.14) 

and rewrite the equations thus far formulated as follows. 
For 'I' given by (2.6), we introduce a termexp(i2lUt II) 

and set 

'I'(g,x,t) = DI/2(g)e12MtlIt/J(x,t). (2.15) 

Then Eq. (2.10) becomes 

with 
(au +3)'1'=0. (2.17) 
The Laplacian au written with {} is given as 

a2 a au = -- + 2 cot 2{}1--
a{}~ a{}1 

1 a2 1 a2 

+---+--- (2.18) 
cos2 

{}I a{}~ sin2 
{}I a{}~ 

A 

and Vk is given with {}j as 

V -Vi~=J..,.i~ (2.19) 
k - k a{}. 2 15k a{}' 

I I 

with 
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sin(11:z + 113 )tan 111 

cos(112 + 113)tan 111 

1 

sin(112 + 113 )cot 111] 
-cos(112 +113 )cot11l • 

1 
(2.20) 

III. PATH INTEGRAL IN THE SU(2) GROUP SPACE 

The equation of motion (2.16) is the SchrOdinger type 
formulated in the total space of the SU (2) fiber bundle. Ifwe 
solve (2.16) with the initial condition (2.15) and project the 
solution tothe subspace of j = !, we obtain the amplitude of 
a Pauli spinor that moves in an external electromagnetic 
field; it is also observed as the Pauli spinor of the same type. 
Therefore, we follow this procedure as our basic formalism 
for our problem in spite of the fact that it is not quite equiva
lent to the Pauli formalism unless we apply the projection 
[i.e., use the constraint (2.17) J to all of the unobserved in
termediate states. 

To obtain the solution ofEq. (2.16) via path integra
tion, we must first obtain the classical Lagrangian corre
sponding to it, which can easily be done by rewriting (2.16) 
with the Hermitian momenta conjugate to 11; (for notational 
simplicity we sometimes use the subscript, where, to be ex
act, one must use the superscript, as in 11 i), i.e., 

A '.1:. a '.1:. 2-<1 A '.1:. a Pl= -ITl---ITlCot VI' p:z= -171--, 
a111 at12 

A '.1:. a P3 = -171--. 
at13 

ForEq. (2.16) we obtain 

iJI"P A 
Hi-=JYIII, 

at 
where the Hamiltonian ~ is given as 

~=_l_(pk _~Ak)2 +ev+.l[(pi _ fz2) 
2m c 2I 4 

(p~ -fz2/4) (p~ -1f/4) 3 1-2] + + --n 
cos:z 111 sin2 111 4 

+-2
e Hk[g'~;]t 
me 

with 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

From the classical Hamiltonian that corresponds to 
(3.3), we can easily obtain the Lagrangian as 

L=Lo(x,t) +L1(x,11,t), (3.5) 

where 

m(dxk)2 e dXk Lo=- -- +-Ak ---eV, 
2 dt e dt 

(3.6) 

I 
where gil is the transverse of gk ; and 

[
1 0 0] 

fI -1 2 gij = (g!) = 0 cos 111 0 . 
o 0 sin2 111 

(3.8) 

The formal path integral solution for Eq. (2.16) may 
then be written as 

f f .@[Xk(t)]f2)[11;(t)]exp{~f Ldt} 

= f .@(Xk)[exp{~ f Lodt}ff2)(11) 

(3.9) 

Therefore, we are the first to study the path integral in the 
group space 

f f2)(11)exp{ ~ f L 1(X,11,t)dt}, (3.10) 

in which x is to be regar~ed as 3: parameter. 
In order to formulate a path integral in a compact mani

fold as (3.10), the periodicity property of the boundary con
dition is an essential constituent; we study it here for the 
SU(2) group space. We are able to solve this problem in 
almost the same way as Prokhorov9 did for the spherical 
coordinates in fiat space. The detailed formulation of this 
problem is given in Appendix A. The main results are as 
follows. 

We first discuss the periodicity of the kinetic energy part 
of the problem by beginning with Schulman's infinitesimal 
propagator for a free topS and defining the geodesic distance 
r using our variables: 

cos r = cos 111 cos 11; cos(112 - 11 ~) 

+ sin 11, sin 11; COS(113 - 11 3}. (3.11) 

Then the corresponding action and the propagator itself 
have the same symmetry (or periodicity) as r, which can be 
understood as the invariance under the following four sub
stitutions: 

111,112,11r -+111 + 211'k, 112 + 211'1, 113 + 211'm, 

11)-+ - 111 + 11', with 112-+112 + 11', 

111 -+-11), with 113-+113+11', 

11,-+111 + 11', with 112-+112 + 11', 113-+113 + 11', (3.12) 

where k, I, and m are integers. 
Following Prokhorov,9 we can directly write the pro

longation function QSU(2) for the full periodicity of 11 by 
using the invariance under the substitutions (3.12) as 

+Q(111 + 11i)Q(112-11i)Q(113-11; +11') +Q(11)-11; + 11')Q(112 -11; +1T)Q(113-11; +11'), 
(3.13) 
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where 
00 

Q(t'lj-t'l;)= I 8(t'lj -t'l;+21Tk). (3.14) 
k= - 00 

Although we are not studying a free top, but instead a top 
with its potentials proportional to Vk I (t'I), we can fortunate
ly usx QSU(2) as given above with no modifications because 
the Vk I ( t'I) also do not change under the substitutions 
(3.12); this can be shown by a straightforward calculation. 

Then the final results are written in the form of the phase 
space path integral as 

'I'(t'I) = f: 00 U(t'I,t'I',t)..Jg'dt'l' 

X ( QSU(2) (t'I',t'I ")'I'o(t'I")dt'l ", (3.15) 
JSU(2) 

where '1'0 is the initial value defined only on the finite region 
of the compact SU(2) space and 

U(t'I,t'I',t) =g-1/4g,-1/4 II Pi f t d 3t'1 i d 3 

1"=0 (21rli) 3 

xexp{~ f [Pit'li-Heff(t'I,P)]dt}. 

(3.16) 

The effective Hamiltonian Heff is given as 

H = ~{( 2 _ fi2) (p~ _1i2/4) 
eff 2I PI 4 + COS2 t'll 

+ (p; _1i2/4) -1.fi2} 
sin2 

t'll 4 

e k i --H (X)gk(t'I)Pi +ll.Heff' 
2mc 

(3.17) 

where ll.Heff is the effective potential originating from the 
operator ordering. As we can easily see from the Hamilto
nian operator (3.3), ll.Heff becomes zero if we take the Her
mitian ordering given by (3.4) because there is no ordering 
problem in the kinetic part of our dymanics. (However, if we 
use the standard orderings, as Prokhorov9 did, ll.Heff be
comes more complicated, i.e., 

ll.Heff = (ieliI2mc)cot 2t'11 

X [Hx cos( t'l2 + t'l3) - Hy sine t'l2 + t'l3)].) 

Therefore, we proceed from (3.16) to an equivalent, but 
more convenient formulation for analyzing our problem, 
i.e., the phase space path integral with the Gaussian integra
tor without a limiting procedure,1O since it corresponds to 
the Hermitian ordering (3.3) if (3.17) is used as the effective 
classical Hamiltonian in this formulation. In Appendix B, 
there is a brief summary of this path integral, along with its 
relation to the corresponding Lagrangian formulation 12: We 
apply it here to our problem and obtain the WKB approxi
mationforformula (3.16) with (3.17) as 

Uo( t'I,t'I ';t) = w( J,p)exp[iS( J,p) Iii] 

= wL(J)exp[iSL(J)IIi], 

where 
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(3.18) 

w(J,p) = wL(J) 

= (21TiliII)-3/2 

Xg- 1/4 [ det MaP (t,t')] 1/2g'-1/4 (3.19) 

and J is taken along the external paths from t'I' = t'I( t ') to 
t'I = t'I( t). The superscript L indicates that quantities are ob
tained via the Lagrangian formulation. The VanVleck-Mor
ette determinant det MaP is defined as 

2-L 
det MaP = 1-3 det a S (3.20) 

at'la at'l'P 

and the classical actionS L = SL(J) is obtained by integrat
ing (3.7) along the extremal paths. 

IV. PROJECTION TO THE SUBSPACE OF 1=1 AND 
THE RESULTING WKB SOLUTION 

In order to obtain the final result we have to eliminate 
the group coordinates by projecting to the subspace of j = ! 
and to approximate the path integral (3.9) further with re
spect to the space variable Xk' This projection of Fourier 
transforming with D T/2 ( t'I) to an angular momentum repre
sentation may be regarded as a dual procedure of (3.15) 
since the initial state '1'0 ( t'I") is equal to DI/2 (t'I); therefore 
we treat them at the same time. 

Before dealing with solution (3.18), we discuss this 
problem in a rather simple case, i.e., the infinitesimal WKB 
propagator given by 

Uo(E) = (21TiliE)-3/2exp [iSL(J)/Ii], (4.1) 

where 

SL = (l12E)gij [ll.t'li + (eI2mc)HkikE] 

(4.2) 

with 

ll.t'I = t'I- t'I'. 

Then we may integrate (3.15) in the form 
00 

'I'(t'I) = f f f Uo(E)Dt/2 (t'I')..Jg' dt'l; dt'l~ dt'li (4.3) 

since the prolongation operation S su (2) dt'l" Qsu (2) (t'I', t'I " ) 
in (3.15) only prolongs '1'0 = DI/2(t'I") from the compact 
SU(2) space to the infiniteR 3. The evaluation of the integral 
(4.3) gives 

'I'(t'I) = Dt/2 (t'I;x)' (4.4) 

where 

t'I;~ =t'li+ (eI2mc')H k(x)ik(t'I)E, 

which is given by the condition 

aSa~~) I U'=U~x = 0, 

making the classical action S L ( t'I ;x ) also zero. 
Then projecting 'I' ( t'I) by D T/2 ( t'I) we obtain 

UO(X,E) I =f DT/2(t'I)D\/2(t'I;x) 
j= 112 SU(2) 
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ExpandingDI/2 ({} ~x) around {}byusing (4.5) we obtain the 
result 

UO(X,E) I = 1 +5 ..[gd 3{}Di'12({}) 
j= 1/2 SU(2) 

ef k' aD .<1 x--H g'k- 1/2(U) 
2mc a{}; 

= 1 + ~HkUkE = exp[~HkUkE]' 
2mc 2mc 

( 4.7) 
which leads us back to the Pauli-type theory. In order to 
confirm that our formulation is equivalent to the usual 
Pauli-type formulation as far as infinitesimal propagation is 
concerned, we need only show that the higher-order correc
tion to the WKB solution (4.7) vanishes identically. In dis
ucssing the higher-order correction, we may put HZx ) =0 
because the potential term only appears in the WKB solution 
since we use Hermitian ordering. Then the exact infinitesi
mal propagator can be written as 

U() (21T'ifiE) - 3/2 {i J r 2 ifzE} 
E = -J- exp -,; 2E + I ' 

where r is the infinitesimal geodesic distance between {} and 
{}' (Appendix A). 

Then we obtain the following expression in place of 
(4.3): 

'" 
"'({}) = 555 U(E)DI/2({}').Ji' d 3

{}'. 

This can easily be integrated by introducing the normal co
ordinates and yields 

'" ({}) = eniE11 [DI/2( {}) + (ifiEl2I)6. ifDI/2( {}) 

- (ifzEI6J)R aDI/2({))] 

= eniE11DI/2 ({})[ 1 + ifzd2I] 

= ei3Ii
£l

2IDI/2({})' 

where RG = 6 is the scalar curvature of the group space. 
Here we take the initial phase factor e'21U1 1/ = ei3IiI121 in 
(2.15) into consideration because it cannot be neglected in 
the higher-order discussion. Then (4.7) becomes 

UO(X,E) I =5 DT12({})DI/2({})..[gd 3
{} 

j = 112 SU(2) 

X e - ;31i(1 - 1')12/ei3IiEI2I = 1, 

which guarantees the vanishing of the higher-order correc
tion for (4.7). 

Now we return to solution (3.18) with (3.19). For 
"'({}) we obtain, from (3.15), 

'" 
"'({}) = 555 wL({})exp[ iSL~:&) ]DI/2({}').Ji' d 3

{}', 

(4.8) 

where the classical action is given by 

SL(J) =!.f.'g;.( d:&; + _e_Hkik)(d:&j + _e_Hlgjl) . 
2 I' Y dt 2mc dt 2mc 

(4.9) 
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By using the identity 

J3[detMatd det . . = ~ , [ 
a2sL ]-1 ( )112 

a{) II a{}'J g' 
(4.10) 

we obtain, via the stationary phase evaluation of (4.8), 

[
iSL(J,)] 

"'({}) = IDI/2({};X)exp fz ex , (4.11) 

where l: means the sum over all extremal points {} ;x of {}'. 
Then projecting with D T12 ( {}) we obtain 

Uo(x,t) I = f ..[g d 3
{} ID T12 ({}) 

j=1I2 SU(2) ";x 

X exp{ ~ S L( {},{};x ) }DJ/2 ({) ;x ) 

'" 
= fff..[gd 3{}DT12({}) 

X exp{ ~ S L( {},{};x ) }DJ/2( {};x) 

(4.12) 

because the distribution of the extremal points {};x for a 
fixed {}reflects the periodicity oftheSU(2) space, i.e., (4.6) 
also satisfies the invariance under the substitutions (3.12). 

Therefore, the result that is obtained via the stationary 
phase approximation applied to (4.12) is written as 

X (2rrfzi)3/2gl12Dt12 ({}ex) 

xexp{ ~ SL( {}ex'{};x) }DI12( {} ;x) 

= C7fzy/2I gfl/4(det MaP) -1/2g1/4 

{ 
iSL({}ex,{};x)} 

XDT12({}ex)exp fz D I12 ({};x),(4.13) 

where l: means the sum over the relative winding numbers 
between {}ex and {} ;x, which can be expressed almost in the 
same manner as the case of Qsu (2), with {} ex (or {} ;x) in 
( 4.13 ) being replaced by the corresponding substituted peri
odic ones in (3.12). It is worth mentioning here that {} ;x and 
{}ex are determined by the conditions that the initial and the 
final classical spin angular momenta vanish, i.e., 

, as L I as L I pz =-- =0, Pj=-- =0. 
a{}' if ;x a{} if ex 

(4.14) 

Now we insert (4.13) into formula (3.9) and path inte
grate it with respect to the space trajectories X k (t). Then as 
we briefly show in Appendix B, (3.9) can be expressed in the 
following form ofthe Feynman-Kac formula: 
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= exp( iSO~k») f Uo(x,t) Ij = 1/2 dw~ + ho, 

(4.15) 

where So (x k ) is the classical action for a scalar particle; w~ is 
the corresponding integrator whose integrand Uo(x,t) is giv
en by (4.13); and ho means the higher-order corrections. 
Rewriting the integrand (4.13) as 

( 4.16) 

and expandingS;x (x,3(X»=SL( "?ex,"?;x) around theclas
sica1 trajectories x, we obtain, for (4.15), 

K(x,x') = L wL(x)exp { ~ [So(x) + S;x (x)] } 

X f d% exp{ ~ f Vk v/I\x/xk dt} + ho, 

( 4.17) 

where I\ = dS;Jdt is given by 

- f - [d3 i e k .] [ d3J e /. ] L\ =-gij("?) --+--H ik __ + __ HgJ/, 
2 dt 2mc dt 2mc 

(4.18) 

with -:u i (and both of its end points) depending on x via the 
Euler equations about..? derived from L \ [and (4.14) ] . 

Then the integral (4.17) can be evaluated by using the 
Cameron-Martin formula as 

(
21Tifz) - 3/2 

KWKB (x,x') = ~ wL(x) -;;;- (det Mk/ (X»\/2 
,'} 

xexp{~ [So(x) +S;x(X)}, (4.19) 

where the VanVleck-Morette determinant Mk/(x) corre
sponds to the classical actionSo(x) + S;x (x) and the classi
cal trajectories x satisfy the equations of motion: 

d
2
x k e[ dx ] -m --- - E + -XH k + V kL\ = 0, 

dt 2 c dt 
( 4.20) 

where (E,H) is the external electromagnetic field. 

V. CONCLUSION 

The SU(2) fiber bundle treatment for a spinor particle 
with a half-spin studied in this paper is equivalent to the 
usual Pauli theory as far as the initial and final states are 
concerned, but it constructs a wave packet involving all spins 
for the nonobserved intermediate states. As a result, the 
treatment becomes an equivalent alternative to the Pauli the
ory in the case of infinitesimal propagation, as proved in Sec. 
IV. This equivalence is guaranteed by the method we applied 
to derive the one from the other and which may be applicable 
to a similar derivation 7 of a more general gauge theory of the 
Kaluza-Klein type from the corresponding Yang-Mills 
type. Our formulation has enabled us to formulate not only a 
definite path integral, but also a definite classical theory with 
spin--orbital interactions (and thus the corresponding semi
classical approximation to the path integral) for a spinor 
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particle. These features will also be common to the formula
tion of the path integral in the Kaluza-Klein space for a 
particle interacting with external gauge fields, in which one 
introduces a new dimensional constant such as ~f /m in our 
theory.8 This extension of our path integral to a more general 
Kaluza-Klein space, as well as its relativistic formulation, 
will be studied in another work. 
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APPENDIX A 

In this Appendix, we formulate the phase space path 
integral in the compact SU(2) manifold and at the same 
time obtain the prolongation function9 QSU(2)' which re
flects the periodicity of this group space and makes it possi
ble to prolong the domain of integration from the finite re
gion of the compact SU(2) to the infinite R 3. We begin with 
the exact propagator for a free top studied by Schulman,5 
i.e., 

U(E) = L (_f_)3/2 ~ exp [ ifzRG E + i.lf'~], 
n 21TifzE sin r 121 2fzE 

(AI) 

where E is the infinitesimal time lapse and 
r (r n = r + 41Tn, where n are integers) is defined as 

cos r = cos..?\ cos..?; COS(..?2 -..?;) 

+ sin..?\ sin..?; COS(..?3 -..? 3)' (A2) 

with..?i given with the Euler angles (q;,O,1/J) as 

..?\ = 0 /2, ..?2 = (1/J + ..?)/2, ..?3 = (1/J - ..?)/2. (A3) 

Then the metric of the SU (2) mainfold is given by using the 
parameters 

ds2 = (d0 2 + dq;2 + d1f!2 + 2 cos Odq; d1/J)/4 

=d..?t +ws2"?\d"?~ +sin2"?\d"?~. (A4) 

For any contributing small r n' we can approximate the 
factors in (AI) as 

exp [ (if /2fzE) r~] = exp [ (if 12fzE) ](2 - 2 cos r 

+ (l/12)r!) + O(e), 

rn/sin r = I + ir~ + O(e) = eifr
E/2J + O(e), 

exp[ (if 124fz€)r!] = I + (if /24fz€)r! + O(c) 

= exp[ (if 12fzE)r~] + O(c). 
(AS) 

The scalar curvature of the group space given by the metric 
(A4) is 

RG = 4X (3/2) = 6. (A6) 

Then we may rewrite (AI) in the form 

U(E) = (_f_)3/2exp(3ifzE + if(2 - 2 cos n ). 
21TifzE 8f 2fz€ 

(A7) 

This formula for the infinitesimal propagator is appro
priate for applying the Prokhorov9 results (with the neces-
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sary modifications for our problem) because it retains the 
periodicity of r (r n) within the required approximation 
and makes it possible to write the phase factor of (A7) with 
our parameters, i.e., 

2-2cosr=2-2cost?1 cost?; COS(t?I-t?;) 

-2 sint?1sint?; cos(t?3-t?i). (A8) 

The exponential that involves the cosine as in (A 7) was 
expanded by Prokhorov after Langguth and Inomata 13 in a 
series of Bessel functions J m as 

exp[ - iz cos(t? - t?')] 

~ [ 3ff] = L Jm(z)cos im(tJ-tJ') +- . 
- 00 2 

Prokhorov used the asymptotic formula for J m in the limit of 
E .... O, i.e., Z-+ 00: 

Jm (z) = ~2hTZ cos[z - (m + Pff + (m2 
- l)/2z] 

+ O(Z-3/2). 

Then by using the Poisson summation formula 

i /(mfz)eim({J-{J") 
-co 

'" 
= f f dp ~tJ' f (p )eU1fr)P(lJ- {J'lQ( t?' - t?"), 

with 

exp[i(z2' - z~)) = exp[ - (!) cos({} i + t? 2' + ff)] 

co 

Q(t?'-t?")= L D(t?'-t?"+21Tm), (A9) 

Prokhorov obtained the following important expression: 

exp[ - iz cos ( tJ - tJ ")] 

~1Ti f"'fdPdtJ, (i (_<1 _Q,») = - --exp -P v-v 
Z 21Tfz fz 

- 00 

{ [ 
. i p2 - fz2 14 ] Q( _<1 , _<1 " ) 

X exp - IZ - "i 2m v - v 

[
. i p2 - fz214 iff] 

+ exp lZ + "i 2m - 2" 

XQ(t?' - t?" + 17')} + O(Z-3/2). (AlO) 

The application of formula (AW) to our propagator 
(A7) is straightforward for the variables t?2 and t?3 with zi 
= I cos {} I cos {} i'lfzE and z;: = I sin {} 1 sin {} 1'lfzE. 

In this caSe we obtain four terms, each of which involves 
the factor exp[ ± j(zi' +z~>]. For example, the factor 
exp [f(z; - z3) ] appears in company with the factor 

1 [iPi- fz214 i17' iPi- fz2141 --exp +-------J z; z~ fz 2mi' 2 fz 2m~ 

xQ(t?; -{}2'+1T)Q(t?~ -t?3). (All) 

As to the variable t?1' we apply (AlO) to the factors 
exp [ ± i(z2' + z;)] and obtain, e.g., 

~21TifzEfOCfdP,d{}; (i (_Q _<1,») { [ iI iEPi- fz214 ]Q(_QI+_Q,,+) = -- exp -PI v I - V I exp - - - - V I V I 17' 
I (21rli) fz fiE fz 2I 

-00 

+ ex l- + IE I - + l1T Q( t? I + t? ") . [ 
·1 . p2 fz2 14 .] } 

PfzE fz 21 2 I I 

Since exp( - if IfzE) cancels the corresponding factor in 
(A7) and, making the integration variables with respect to 
t? ~ uniform in notation to t? ~ and t? 3' Q( t?; + t? i' + 1T) 
changes zIt as 

z2' ( t? i') = Z2 ( - t?; - 17') = - Z2 ( - t? i ) = - Z2 ( t? ; ), 

Z~=Z3(-t?; -1T)= -z3(-t?i)=Z3(t?;), (A13) 

00 

and 

exp(i17'/2)/Jz2'z~ = lIJZ2Z3 = (g.g,)-1/4, 

with 

g = det gij = cos2 t?, sin2 t?, 

the term that involves (All) becomes 

fff dpl dt?; dp2 dt? 2 dp3 dt?; (i3fzE) ( i I I ) 

3 1/4 exp -- exp - [Pl(111 - {}d + P2({}2 - t?2) + P3(t?3 - 11;)] 
(21Tfz) (g.g') 81 fz 

(AI2) 

xexp { - ~ [(Pi - fz2) + (pi - fz214) + ~p~ - ~/4) ]}Q( t?; + t? i' + 1T)Q(t? 2 - t?; + 1T)Q(t?; - {} n. 
21fz 4 cos t?1 cos{}; sm t?1 sm t?; 

(A14) 

Of course, (AI2) also involves a term proportional to exp[iI lfiE], which gives a factor exp(i2I lfiE) in (A7); however, this 
term vanishes if we introduce a small absorbing factor in I as I( 1 + 15), with 15> 0, as did Langguth and Inomata. 13 
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Therefore, all that is needed to obtain the required expression for the infinitesimal propagator (A 7) is only to collect 
terms such as (At4) for all exp [ ± i(z~ +z)], which yields just (At4); only the prolongation function is replaced by 

QSU(2) = Q(t?; - t?;')Q(t?i - t?nQ(t?; - t?3) + Q(t?; + t?i' + 11")Q(t?i - t?-~ + 11")Q(t?; - t?3) 

+ Q( t?; + t? i') Q( t? i - t? n Q( t?; - t? ) + 11") + Q( t?; - t? i' + 11") Q( t? i - t? ~ + 11") Q( t? 3 - t? ) + 11"), 
(AtS) 

which coincides with the propagation function obtained via 
the symmetry discussion given in Sec. II. 

Then substituting (At4) with QSU(2) into the formula 
for 1{1, i.e., 

1{I(t?,E) = r U(E)1{I(t?",t=0)!i" dt?" 
JSU(2) 

(At6) 

we obtain 

xexp( ~ [Piat?i - EHeW] )'I'o(t?'), 

(AI7) 

with 

'1'0= r QSU(2) (t?',t?")1{Io(t?")dt?", 
JSU(2) 

(AtS) 

where Hew is the classical Hamiltonian with effective poten
tials. 

From (AtS) we know that QSU(2) is the kernel of an 
operator that allows us to define the function 1{Io outside the 
region 0 < t?1<11"/2, 0<t?2' t?3 < 211"; Prokhorov9 named it a 
prolongation function, i.e., QSU(2) is the kernel of the identi
ty operator, with the integration over the compact region 
which constitutes the direct extension of the delta function 
~D ( t?' - t?" + 211"n) on the maximal torus. 

Since there are no ordering problems as long as we treat 
only a free top, i.e., only the kinetic part of our potential 
problem in the SU (2) group space, the effective Hamilto
nian in (At7) can be written in any ordering, e.g., we can set 

1 [( 2 fz2) (p~ - fz2/4) 
Hetr(t?,p) = 2I PI -""4 + cos2 t?1 

(p~ - fz2/4) 3] 
+ . 2.<1 - -4 11" , 

sm 'VI 

(At9) 

which corresponds to the standard ordering of the operator 
in the quantum Hamiltonian in the SU (2) manifold 

(A20) 

written with the Hermitian momenta 

Pi = - ifzg- I/4 J i gl/4. (A2l) 

Using (AI9) in (A17), we can show by straightforward 
evaluation of integration that 1{1 in (A 17) satisfies the Schro
dinger equation 
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(A22) 

Of course, another effective Hamiltonian Hew (t?,p,at?) 
corresponding to any ordering will produce the same result 
(A22). 

Then the path integral becomes9 

00 

1{I(t?,t) = f f Ii' dt?' U(t?,t?';t)'I'o(t?'), (A23) 

with 

APPENDIXB 

Here we briefly summarize the phase space path integral 
integral without the limiting procedure with the Gaussian 
integrator, which was developed in Ref. to. 

In this formulation, the propagator for the transition 
A ..... B is given by the formula 

K(B,A) = exp [ ~ S(q,p) ] 

X i exp [ ~ ~ ]dW(Z), (Bl) 

where the following notation has been used. 
The action has been expanded around the classical path 

(q,p) from A(q(ta ),t = ta) to B(q(tb ),t = tb): 

S(q,p) = S(q,p) + ~S" (q,p)ZZ + ~(q,p;Z), (B2) 

with 

s = (x·y)EZ, (B3) 

where Z is the space of vector fields z = (x, y) along (q,p) 
such that x(ta) = X(tb) = o. (Of course, other boundary 
conditions are also possible, but we restrict ourselves here 
only to this condition, which is of necessity in the present 
work.) 

The Gaussian integrator W on Z is defined by 

= i[Ga"l(r,s) 

G~ (r,s) 

GZ (r,s)] 

Ga"l (r,s) , 
(B4) 

with the corresponding boundary conditions on G, i.e., 
G a"l(ta's) = Ga"l(r,tb ) = G~ (r,tb ) = G ~ (ta's) = 0 and 
no restrictions on others. 
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The covariance G a" is given as the elementary kernel of 
the Jacobi equation. The Jacobi equation (the second vari
ation of the action) for a system with a potential koHi(q)i 
in curved phase space is given as 

[ 
- (lIm)R ~p(;gPrprP8 - koH :a(;Pi 

o~V, - koH:(;of 

x[;:]=o 
and G a" satisfies 

- m2V;Ga"(r,s) - rgPrR ~P(; Pr P8 G (;"(r,s) 

+ koH:p(; gPapiG(;"(r,s) , 

- mkoH :(;ofV, G (;"(r,s) = mit''' Os (r) , 

with the boundary condition given above. 

and 

Other G's are determined with Ga" as 

G~ (r,s) = mga(; VrG(;(r,s), 

G~ (r,s) = mg,,(; VsGa(;(r,s), 

1 

(BS) 

(B6) 

Ga,,(r,s) = m2ga(;g,,8VrVsG(;8(r,s) -mga" 0s(r). (B7) 

From (B6) we see that G a" may be written with the 
Jacobi fields as 

Ga"(r,s) = (}(s - t) J(t,ta )M(ta,tb) J(tb'S) 

- (}(t-s) J(t,tb)MCtb,ta) J(ta's) , (BS) 

where () is the step function and J and M are given with 
J = detJaP as 

and 

JaPCt,ta) = _ JPa(ta,t) = m( :qa ) 
'PPa 

1 (apPb ) 1 ( a2s ) 
MaP Cta,tb ) =;; aq~ = m aq~ ar/t . 

(B9) 

When we discuss only the WKB approximation solu
tion, we obtain, from (B 1 ) , 
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The solution (BIO) can also be obtained for the same 
system developed in Ref. 12: 

Ko = exp[ ~ SL(q)] L dwL = w(X) e(i/fr)SL, (BIl) 

where the superscript L indicates that the quantities are ob
tained in the Lagrangian formulation. 

Since we can obtain 

S(q,p) = SL(q) , (B12) 

we find, for the normalization w(Z) and wL(X), 

w(Z) = w(X) = (21Tifzlm) - nl2gb- 114 

X (det Map Ctb,ta »1/2ga- 1/4 (B13) 

by inversing the covariance (BS), where n is the dimension 
of the configuration space and g is the determinant of its 
metric tensor. 

If we are to construct the path measure dw for a free 
motion in the curved phase space and regard the potential 
koHi(q)Pi as the integrand of the Feynman-Kac formula, 
(B 10) becomes 

Ko = exp[ ~ SF (q,p) ] L, exp(! ko f HPi dt) dWF . 

(BI4) 

We must use the Cameron-Martin formula 10 for evaluating 
(BI4), which leads us back to (BIO) with (B6). 
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A general study is made of conformal vector fields on a four-dimensional Lorentz manifold 
with particular emphasis being laid on the structure of the zeros (critical points) of 
such vector fields. The implications for general relativity are investigated and a discussion of 
conformal vector fields in generalized plane wave space-times is given. An attempt is 
made to clarify the well-known theorem of Bilyalov and Defrise-Carter. 

I. INTRODUCTION 

There has been much recent interest in the study of 
conformal symmetries in general relativity. However, very 
few general theorems seem to be known about them. It is 
true that a good deal of information regarding conformal 
symmetries in space-time is stored in the theorems of 
Bilyalov1 and Defrise-Carter2 (for the case of a positive 
definite metric, see Refs. 3,4). These theorems, although 
extremely useful, employ several implicit and crucial as
sumptions. Although these assumptions are presumably 
part of the spirit of the theorem it is felt that some discus
sion and clarification is needed. The essential aim of these 
theorems is to construct a certain function (a conformal 
factor-see Sec. II). This function, unfortunately, may be
have badly near the zeros of conformal vector fields and, in 
any case, is only locally defined. In the next section the 
theorem is stated and some discussion and examples are 
given to demonstrate the problems involved. This provides 
a useful motivation for the main part of the paper (Sec. 
III) which is to give a discussion of conformal symmetries 
in general relativity, with special emphasis laid on their 
fixed point structure, and to point out the similarities and 
differences in this fixed point structure between (proper) 
conformal, homothetic, and isometric symmetries. The 
(generalized) plane wave space-times play an important 
role in the theorem in Ref. 2 and Sec. IV contains a dis
cussion of their conformal symmetries. 

Let M be a space-time manifold with metric g of Lor
entz signature. A (not identically zero) global vector field 
S on M is called a conformal vector field if in each chart of 
M the following relation holds: 

Sa'b=¢>gab + Fab (~.2"g=2¢>g). , s (1) 

Here, Fab( = - F ba) is the conformal bivector, t/J is a 
real-valued function on M, .!L' denotes the Lie derivative, 
and a semicolon denotes the covariant derivative arising 
from g in the usual way. The manifold M and all structures 
on M will be supposed smooth. If one uses a comma to 
denote a partial derivative one then finds (see, e.g., Ref. 
5-but note some difference in conventions) 

(2) 

(3) 

where Rabed are the curvature tensor components, 
Rab - R~cbJ the Rlcci tensor components R-Ra~b, and 
Lab - Rab - ~gab' The vector field S is called homothetic if 
¢> = const*O on M and Killing if t/J=O on M. Otherwise it 
is called proper conformal. The condition (3) is equivalent 
to a statement about the Lie derivative of the Ricci tensor 
which, with the usual abuse of notation, is 

.!L'Rab= - 2t/J;ab - (¢>;cdifd)gab' (4) 
s 

For reference later in the paper the idea of a general
ized plane wave is required. A space-time M is called a 
generalized pp wave if it is nonflat (in the sense that the 
curvature tensor does not vanish on a nonempty open sub
set of M) and if it admits a global, covariantly constant, 
nowhere zero, null bivector V.6 Given the former nonflat 
condition the latter condition is equivalent to M admitting 
a global, covariantly constant, nowhere zero, null vector 
field I and, either, M having a Weyl tensor C of Petrov type 
Nor 0 at each pEM, or, M having a Ricci tensor that is 
either zero or of Segre type {(211)} with zero eigenvalue 
at each pEM. The null vector field necessarily spans the 
repeated principal null direction of V and of C at points 
where C*O and the unique null eigendirection of the Ricci 
tensor at points where the Ricci tensor is nonzero, the 
latter taking the form Rab = p1a1b in any chart, where p is a 
real-valued function. Using * to denote t~e duality.opera
tor, the complex, self-pual Weyt ten~or C=C + iC takes 
t~e compoqent form Cabcd = f3 Vab Vcd in any chart where 
V _ V + i V and f3 is a complex-valued function. A gener

alized pp-wave is called a generalized plane wave if, using 
standard v, u, x,y coordinates of the former, 6 the function f3 
depends only on u. The Bianchi identity then shows that p 
depends only on u. The usual energy conditions then imply 
that p is a non-negative function on M and that such plane 
waves may be realized as null Einstein-Maxwell fields. 
However the energy conditions will not be enforced in 
what is to follow. In the vacuum case the standard defini
tions given in Ref. 6 are recovered. (The definition given 
here of a generalized pp wave is stricter than the definition 
of a non vacuum pp wave given in Ref. 7 but the definition 
of the generalized plane wave is essentially the same.) 
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II. CONFORMAL SYMMETRIES 

The general idea in Refs. I and 2 is, starting with the 
existence of a group (or local group) of conformal sym
metries on a space-time (M,g) represented by a finite
dimensional Lie algebra of conformal vector fields on M, 
to investigate the possibility of replacing the metric g by a 
metric g' =e2Ug conformally related to g, where u is a real
valued function on M, so that the above conformal sym
metries with respect to g become either homothetic sym
metries or isometries with respect to g' (i.e., the above Lie 
algebra of conformal vector fields with respect to g be
comes a Lie algebra of homothetic or Killing vector fields 
with respect to g'). The combination of the results in Refs. 
I and 2 essentially says that if M is not conformally flat 
then under certain assumptions (described in the next 
paragraph) the transition from conformal to homothetic 
symmetries (in the sense described above) can always be 
made and if, further, M is not conformaUy related to a 
generalized plane wave, the transition from conformal 
symmetries to isometries can always be made. 

Although these results are useful in describing the ge
neric local behavior of Lie algebras of conformal vector 
fields they have limitations when applied more generally. 
These limitations arise because of the implicit assumptions 
made in Refs. 1 and 2 and were, doubtless, well understood 
from the beginning. The remainder of this section will be 
used to discuss and clarify these assumptions and to ex
hibit a space-time with a type of singular behavior in its 
conformal group of transformations and to which the re
sults in Ref. 2 must be applied with care. 

In Ref. I it is implicitly assumed that the orbits of the 
conformal transformations (or local transformations) are 
everywhere of the same dimension and nature (timelike, 
spacelike or null) and this, of course, need not be the case. 
In Ref. 2 a certain type of real-valued function on M is 
employed called a proper conformal scalar (see also Ref. 
4). Now one may write M as the disjoint union M = UU V, 
where U is the open subset of M at each point of which 
some proper conformal scalar is nonzero and V is the sub
set of M consisting of all those points at which all proper 
conformal scalars vanish. In Ref. 2 it is implicitly assumed 
that either U = tP or V = tP which again need not be the 
case. In fact, even more is assumed in Ref. 2 and this will 
be returned to later. 

To see what can go wrong consider the following met
ric defined on the manifold R4 with coordinates labeled (v, 
u,x,y): 

(5) 

This metric was first given in Ref. 8 and discussed in more 
detail in Ref. 9. It is everywhere of Petrov type III and 
admits exactly two independent Killing vector fields 
7JI=olov and 7J2=oloy, the former null and the latter 
spacelike and covariantly constant, together with the ho
mothetic vector field S with components in the above glo
bal chart given by s=(3v, - u,x,y). The global vector 
fields 711, 712' and S can be shown to span the total Lie 
algebra of conformal vector fields on M, there being no 
proper conformal ones. The Lie algebra bracket relations 
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are [7Jl'S] = 3711; [7J2'S] 712> and [711,712] = O. The vector 
fields, being complete, give rise to a three-dimensional Lie 
group of homothetic (bijective) diffeomorphisms M -M. 
The homothetic vector field S has a unique zero at the 
origin of the above coordinates. The orbits of the above 
group can now be described. The null hypersurface u = 0 
through the origin breaks up into a two-dimensional null 
orbit u=x=O and two three-dimensional null orbits u=O, 
x> 0 and u = 0, x < O. All other orbits are three
dimensional and timelike. The origin is, of course, not dis
tinguished by its being a zero of a homothetic vector field 
since an appropriate combination of 711,712' and S will yield 
a homothetic vector field that vanishes at any given point 
of the two-dimensional null orbit u=x = O. Denoting the 
metric in Eq. (5) by g, it is easily seen that no conformally 
related metric iUg could admit all the above conformal 
vector fields as Killing vector fields on M because, consid
ering S, the function u would be required to satisfy the 
relation .!/ f!T + c=u,aS + c = 0, where c is the homo
thetic constant arising from S and g. Since c=#l there can 
be no solution of this equation in any neighborhood of the 
origin. [More generally, if M admits a proper conformal or 
homothetic vector field S with a zero at p such that the 
corresponding function tP in Eq. (1) satisfies tP(p)=I=O
and this is always true if s is homothetic-then it is im
possible to find a metric in any neighborhood W of p con
formally related in W to the original metric on M with 
respect to which S is a Killing vector on W.] 

The problem with the metric in Eq. ( 5 ) lies in the 
two-dimensional null orbit u=x = O. Strictly speaking, 
this metric does not contradict the result as stated in Ref. 
I but it is clear that it cannot be handled by the proof given 
there because of the assumption (mentioned above) made 
about the orbits. Concerning the result in Ref. 2 it can be 
shown that there is no proper conformal scalar in the 
space-time represented by the metric (5) which is nonzero 
at any point of the orbit u=x = 0 but that this is not true 
for the complement of this orbit. Hence, in an earlier no
tation, neither U nor V is empty for the space-time of Eq. 
(5). However the conclusions of Ref. 2 hold in some neigh
borhood of any point not in this orbit. [It should be re
marked here that the energy-momentum tensor con
structed from the metric (5) has Segre type {31} or its 
degeneracy at each peM and SO fails the usual classical 
energy conditions everywhere.9 However, metrics with 
properties similar to (5) can be constructed which do sat
isfy the energy conditions.] 

It was remarked earlier that the assumption in Ref. 2 
was stronger than the assumption M = U or M = V. This is 
because even if M = U, a proper conformal scalar which is 
nonzero at pEM may lead to an appropriate function u only 
over some neighborhood of p. Of course if a global, no
where zero proper conformal scalar exists then the results 
in Ref. 2 show that a global solution u to the above prob
lem exists. However, if no such global proper conformal 
scalar exists, only local solutions for u may be available. 
For example, let M' be Minkowski space with the usual 
global coordinates x,y,z,t and metric 71 and let S be the 
standard homothetic vector field on M' with components 
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(x,y,z, t). Clearly no function a exists on any neighborhood 
of the origin 0 (the unique zero of s) such that S is a 
Killing vector field with respect to e2ul1 (by the remark in 
the previous paragraph) but one can ask if such a global 
function a exists on M'" {O}. The answer is yes, a choice 
of a being a= - ~ 10g(x2+y2+~+t2). [Although 
Minkowski space is excluded in Ref. 1 and 2, this example 
still usefully makes the point.] Consider now the metric g 
in Eq. (5) on the manifold M (:::::R4) and let N denote the 
two-dimensional submanifold given by u=x=O at each 
point of which some global homothetic vector field on M 
vanishes. Although one can construct a function a on some 
neighborhood of any pEM\N such that the vector fields 111' 
112, and S are Killing vector fields of the metric e2u g on this 
neighborhood (e.g., a = ux + log I u I works at all points 
where u=#=O) there is no global function a on M\N with 
this property. To see this note that if such a function a 
existed, the fact that 111 and 112 are Killing vector fields 
with respect to both g and iUg implies that a = a(u,x). 
The conversion of S into a Killing vector field with respect 
to e2ug then implies that xa.x-ua.u + 1=0 and so it is 
sufficient to show that there is no global function a on 
R2" {(O,O)} satisfying this partial differential equation. 
This can be established using the following argument due 
to John Pulham. Suppose such a a exists on R2" {(O,O)} 
and let k be the vector field on R2,,{(O,O)} whose compo
nents are (x, -u). The integral curves of k from some 
initial point (xo,uo) are given by t-+ (xo/,uoe - t) and along 
each such curve ux is constant. Suppose xo, Uo> 0 so the 
integral curve from (xo,uo) intersects the diagonal set of 
R2" {(O,O)} in the point (~xouo, ~xouo) with parameter 
value t = log ~uoIxo. But along each such integral curve, 
the partial differential equation for a implies daldt = - I 
so that a(t) = - t+ a(O). Hence a satisfies, for x,u>O, 

a( Fu, Fu) = - log ~u/x + a(x,u). 

The two IJperations of firstly fixing U > 0 and letting x -+ 0 
and secondly fixing x > 0 and letting U -+ 0 together with the 
assumed well-behaved nature of a at the points (x,O) and 
(O,u) (u,x > 0) then lead to a contradiction by considering 
the behavior of a(v,v) (v>O) as v-+O. 

The following is an example where such local functions 
a can be joined together smoothly to give a global smooth 
function with the required properties. Suppose a space
time (M,g) admits a Lie algebra d of conformal vector 
fields such that each pEM admits an open, connected co
ordinate neighborhood U together with a real-valued func
tion a on U such that the restriction to U of each member 
of d is Killing with respect to the metric e2ug on U. Sup
pose further that the members of d evaluated at any pEM 
span the tangent space T pM to M at P and finally that M is 
simply connected. Then there exists a global real-valued 
function a on M such that each member of d is Killing 
with respect to the metric e28g on M. To see this one uses 
a technical device employed in a different context in Ref. 
10 and so only a sketch proof is given here. First, it is clear 
that each of the local functions a is determined up to an 
arbitrary additive constant on the appropriate open set U 
since for each sEd satisfying Eq. (1) one has a\aS 
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+ tP = 0 = ~,aS + tP on U for any such functions a l and 
~. Let U a be a labeling of all open, connected coordinate 
neighborhoods admitting such local solutions a with aES 
for some labeling set S and for a fixed a let ~({3ER) 
represent Ua together with a choice of function a on Ua 
(represented by (3). A set if is then constructed from the 
disjoint union of all such U~ by identifying two points 
aE~ and a'EU~, if 'lTa(a) = 'ITa' (a') (where 'ITa: ~-+ Ua is 
the obvious projection map) and if the functions a associ
ated with Ua and Ua , and labeled by {3 and (3' agree at 
'lTa(a). It then follows (cf. Ref. 10) that a natural Haus
dorff four-dimensional manifold structure arises on if de
termined by that of M, that the (obviously defined) pro
jection 'IT: if -+ M is locally a diffeomorphism and that 
(M,g) and (if,'IT*g) are locally isometric. Also the Lie 
algebra d naturally carries over to a Lie algebra ~ on if 
and by its construction if admits a global function 'if such 
that the members of ~ are Killing vector fields on if with 
respect to the metric e2ii ( 'IT*g). The final step in the argu
ment is made by choosing a particular Ua in the original 
collection of open, connected coordinate neighborhoods in 
M and a particular choice of a on Ua thus defining a cer
tain ~. This ~ uniquely determines a connected subset 
[j ~ of if. Let if be the component of if containing ~. 
Then M is a Hausdorff, connected, open four-dimensional 
submanifold of if and 'IT(M) = M. It follows that M is a 
covering space of M and since M is simply connected M 
and M are diffeomorphic and hence (M,g) and (M,g) are 
isometric, where g is the restriction of 'IT*g to M. The re
striction a of the function 'if to M when projected down to 
M yields the desired function a and the proof is complete. 

Clearly the above proof made no use of the four
dimensionality of M or the signature of g and so holds 
quite generally. 

The discussion of this section shows that for a more
detailed study of the theorems in Refs. I and 2 further 
information is required concerning the zeros of conformal 
vector fields on space-time. A global vector field on M gives 
rise to a local group of local diffeomorphisms of M and a 
zero P of such a vector field is a fixed point of those local 
diffeomorphisms which act on p. Now there are certain 
geometrical features regarding such zeros that are indepen
dent of the metric (or at least of its conformal class) and 
hence remain unchanged under a conformal rescaling of 
the metric. Since these features can differ significantly in 
the cases when the vector field is proper conformal, homo
thetic, or Killing they provide restrictions on those cases 
where one of these types of vector field can be converted 
into another by means of a conformal change in the metric. 
They will be discussed in some detail in the next section. 

The statement of the theorem in Ref. 2 shows that a 
special role is played by the generalized plane waves. A 
discussion of conformal symmetries in these space-times 
will be given in Sec. IV. 

III. FIXED POINT STRUCTURE 

The study of affine (and, in particular, isometric and 
homothetic) transformations of a space-time M is simpli
fied to a certain extent because of a type of linearity that 
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such transformations enjoy. This linearity can be observed 
in several different ways. Let 5 be a (not identically zero) 
global affine vector field on M. First, 5 is uniquely deter
mined on M (since M is connected) by the specification of 
5 and its first covariant derivative at any point of M. Sec
ond, the natural lift (Ref. 11, Vol. 1) of 5 to the frame 
bundle L(M) of M yields a vector field on L(M) that is 
nowhere zero. Third, the one-parameter local group of lo
cal affine diffeomorphisms of M arising in the usual way 
from 5, because of their geodesic (and affine parameter) 
preserving property, commute in a natural way with the 
exponential map (Ref. 11, Vol. 1). This fact is particularly 
useful in the geometrical interpretation of such 
transformations9,12 and in the study of their fixed points.9 

Proper conformal vector fields are, however, more compli
cated. In particular, one must specify 5 and its first and 
second covariant derivatives [or, equivalently,s, F, t/J, and 
t/J.a in the notation of Eqs. (1) and (2)] at a point of M to 
uniquely determine 5 on M.5,IO The following points can 
now be made with regard to the zeros of Killing, homo
thetic, and proper conformal vector fields first raised in 
Sec. I (the zeros of the more general types of affine vector 
fields being discussed elsewhere). 

A. Local linearization 

Using a technique well known from the theory of lin
ear differential equations l3-15 one can study the behavior of 
the integral curves of "linear" vector fields in the vicinity 
of a zero p of such a vector field 5. One requires knowledge 
of the algebraic structure of the matrix sa.b evaluated at p 
and the procedure is applicable to affine vector fields be
cause of the third consequence of linearity mentioned at 
the beginning of this section. This results from the fact that 
the local diffeomorphisms arising from 5 and which act on 
some neighborhood of p are mirrored in the tangent space 
T pM by the exponential map and controlled there by a set 
of linear maps derived from the matrix A sa.b(P). More 
precisely, if t/J is the exponential diffeomorphism from some 
open neighborhood if of OeT pM to some open neighbor
hood U of p and X t represents the one parameter local 
group of local diffeomorphisms arising from the affine vec
tor field 5 (for appropriate t) then (Ref. 11, Vol. 1) 

(6) 

holds wherever it makes sense. In the resulting exponential 
coordinate system in U the integral curves of 5 satisfy the 
linear differential equation (dldt) (x) = Ax, where A 
= sa.b(P) evaluated in this coordinate system. This follows 
by considering the corresponding integral curves that arise 
in T pM under the map t/J. A consequence of this result is 
that in this coordinate system the components sa of 5 are 
linear functions of the coordinates. 

If 5 is not an affine vector field there is a more general 
theorem (the Sternberg linearization theorem-see, e.g., 
Ref. 16) which says that if 5 is any smooth vector field on 
any smooth n-dimensional manifold such that 5(p) = 0 
(pEM) and such that the eigenvalues itl> ... ,itneC of the 
matrix sa.b(P) counted properly (i.e., with their algebraic 
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multiplicities as roots of the associated characteristic equa
tion) have the property that 

(7) 

whenever the mj are non-negative integers satisfying 
2 ,ml + . . . + mn then there exists a coordinate system 
about P in which the components sa are linear functions of 
the coordinates. Thus, in such a coordinate system, the 
integral curves of 5 satisfy a linear differential equation 
similar to that given in the previous paragraph. 

Now suppose that 5 is a conformal vector field on a 
space-time M with a zero at p. The algebraic structure 
(Segre type) of the matrix A = sa.b (p) is the same as that 
of the matrix FZ(p) [Eq. (1)] but with eigenvalues aug
mented by t/J(p). Thus it is important to know the possible 
algebraic structures of the bivector Fat p, i.e., to study the 
eigenvector-eigenvalue problem pa~b = itk!' at p for keT pM 
(or its complexification) and iteiC. One can easily show 
that if F=I=O at p, the allowed Segre types for F at p are 
{(ll)zZ), {11(1)}, {(31)}, or {1lzZ} where, in every 
case, the repeated eigenvalues (enclosed in round brack
ets) are zero and that these types correspond, respectively, 
to the cases where F is spacelike, timelike, null or nonsim
pIe at p. The corresponding eigenvectors and eigenvalues 
are easily computed in each case and it should be noted 
that only null (real or complex) eigenvectors may have a 
corresponding nonzero eigenvalue. The various possibili
ties for the algebraic structure of the matrix A = sa.b (p) in 
terms of the algebraic type for Fat p and the value of t/J(p) 
is listed in a way convenient for later use in Table I. It will 
be assumed that t/J(p) ,0 which can always be arranged by 
changing the sign of 5 if necessary and it is convenient to 
distinguish between the cases where t/J(p) <0 and where 
t/J(p) = o. It then follows that the condition (7) is always 
satisfied only for the cases AI, Bl, and CI in this table and 
so in these cases the corresponding conformal vector field 
can be linearized in the above sense in some coordinate 
neighborhood of p. The condition Eq. (7) is also satisfied 
for types Dl and D3 provided the ratio t/J(p){:J- I is irra
tional but it is never satisfied for types A2, B2, C2, D2, D4, 
or E. Later, an example of a conformal vector field will be 
given which has a zero at p but which cannot be linearized 
in any coordinate neighborhood of p. 

B. Zero sets and the Weyl and Ricci tensors 

Let 5 be a global vector field on M with a zero at p and 
suppose one can construct a coordinate neighborhood U of 
p in which the components sa are linear functions of the 
coordinates. It follows that the set of all zeros (the zero 
set) of 5 in U can be given the structure of a regular sub
manifold (a submanifold N of M is regular if its natural 
manifold topology coincides with the topology it inherits 
from the manifold topology of M) of U and hence of M of 
dimension 4 - rank A [where A = S,b = S,b(P) and in the 
sense that if rank A = 4 the zero p is topologically isolated 
according to the inverse function theorem]. These remarks 
apply to conformal vector fields on M which are lineariz
able on some coordinate neighborhood of p. Even without 
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TABLE I. In this table F is the conformal bivector at the zero, p, of s A = S",b(P) ,and a and fJ are nonzero real numbers except in the timelike cases 
of D and E when a = 0, In cases AI,BI,CI,and DI all the eigenvalues of A have a negative real part, In case D2 three eigenvalues of A have negative 
real part and one has zero real part whilst in D3 [where it is assumed ~(p) < 0] and D4 three eigenvalues of A have negative real part and one has positive 
real part. The eigenvalUes in the case D2 are 2~(p), 0, ~(p) ± ia and in the case D4 are 3~(p), - ~(p), ~(p) ± ia. 

Nature of F Eigenvalues of A 

Zero All equal to ~(p) 
Zero All equal to zero 
Null All equal to ~(p) 
Null All equal to zero 
Spacelike ~(p),~(p),~(p) ± ia 
Spacelike O,O,±ia 

F timelike (a = 0) 
~(p) ± fJ,~(p) ± ia 

or nonsimple 

F timelike (a = 0) 
±fJ,±ia 

or nonsimple 

the linearizability condition if A has type AI, Bl, Cl, Dl, 
D3, or D4 then A = SO,b(P) is nonsingular and the inverse 
function theorem guarantees that the zero p is isolated. 

If 5 is a global affine vector field (and, in particular, if 
5 is homothetic or Killing) on M with a zero at p the 
exponential map reveals the existence of a coordinate do
main U in which 5 is linearizable. In this case, however, 
one has the extra consequence that if p is not isolated the 
submanifold of zeros of 5 in U is totally geodesic (Ref. 11, 
Vol. 2). 

Now let 5 be a conformal vector field on M with a zero 
at p. Of interest later is the subset of points of M which lie 
on an integral curve of 5 (other than the trivial curve at p) 
which gets arbitrarily close to p in the sense that they lie on 
some nontrivial integral curve c: I --M of 5 for some open 
interval I of lR such that there exists to with either toElR or 
to = ± 00 and crt) --p as t -- to-

It is often important to have information regarding 
certain algebraic features of a space-time at a zero p of a 
conformal vector field 5 on M. In this respect it is useful to 
note that, since 5(P) = 0, the condition :£' s~ bed = 0 and 
Eq. (1) give the following algebraic relation at p: 

Cbe'e - C'ec?b - C'be?c - ~bcrd=2rp(p)C'bcd' 
(8) 

Equation (8) can be used to compute the Petrov type(s) at 
p if rp (p) and the algebraic type of the bivector F at pare 
known. Another result arises by considering the local dif
feomorphisms Xt arising from 5 and which act on some 
open neighborhood of p. These local diffeomorphisms have 
p as a fixed point and the associated linear maps 
Xt*:T ~ -- T ~ are homothetic if rp(p)*O and isometric if 
rp(p) = 0 in an obvious way. They also provide useful in
formation on the Weyl tensor at p as will be seen in the 
next section. Next, a contraction of Eq. (1) with S05b 

shows that along any integral curve of 5 with natural pa
rameter t, S05a behaves like A exp(2J rp dt) for some con
stant A. It follows that 5 is of the same type (timelike, 
spacelike, or null) at each point of c. Also, a consideration 
of the eigenbivector-eigenvalue problem for the Weyl ten-
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Type 
Restrictions label 

~(p) <0 Al 
~(p) =0 A2 
~(p) <0 Bl 
~(p) = 0 B2 
~(p) <0 CI 
~(p) =0 C2 

{ 
IfJl < - ~(p) Dl 
IfJl = - ~(p) D2 

2~(p)*lfJl > -~(p) D3 
IfJl = - 2~(p) D4 

~(p) =0 E 

sor shows that the Petrov type is the same at each point of 
c and that if r is any Weyl eigenvalue (Petrov scalar) 
which is nonzero at some point of c, r behaves like 
B exp( - 2J rp dt) along c for some constant B (as a con
sequence of the relation 4 r = - 2rpr). It follows that 
rS05a is constant along c. The pleasant behavior of the 
Weyl tensor described above arises because of the confor
mal nature of the symmetry. However, as Eq. (4) suggests, 
there is no analogous behavior for the Ricci tensor (unless 
5 is special conformal, i.e., rpa:b = 0 on M-see, e.g., Ref. 
17). In the case that 5 is homothetic (including Killing), 
Eq. (4) yields 4 Rab = 0 and an equation analogous to 
Eq. (8) arises for the Ricci tensor at the zero p of 5 

(9) 

and which is useful for computing the algebraic (Segre) 
type of the Ricci tensorl8 at p when the algebraic type of F 
at p is known. In this case the Ricci eigenvalues and Segre 
type behave in an analogous way to that described above 
for Petrov scalars and Petrov type along integral curves of 
5.9 

C. Fixed point theorems 

In this section the results relating to the conditions at, 
and in the neighborhood of, a zero p of a conformal vector 
field on M will be given. Some are well known but they are 
all collected together for easy reference. Throughout, 
A=SO,b(P)· 

Theorem 1: Let 5 be a Killing vector field on M with a 
zero at p. Then A is of type B2, C2, or E and the following 
hold. 

(i) If A is of type B2 (respectively, C2) the Petrov type 
at p is Nor 0 (respectively, D or 0) and the Ricci tensor 
has Segre type {( 21) I}, {( 3l)} or 0 [respectively, 
{I, 1 (II)}, {zZ{ II)}, {2( II)}, or 0] or some degeneracy of 
these types at p. There exists an open neighborhood U of p 
such that the zero set of 5 in U is a two-dimensional, totally 
geodesic, regular null (respectively timelike) submanifold 
of U. No integral curve of 5 gets arbitrarily close to p. 
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(ii) If A is of type E the Petrov type at p is D or 0 and 
the Ricci tensor has Segre type {(1, 1) 11} (if A is simple 
timelike) and {(1, 1 )( 11)} (if A is nonsimple) or some 
degeneracy of these types. If A is simple timelike there 
exists an open neighborhood U of p such that the zero set 
of 5 in U is a two-dimensional, totally geodesic spacelike 
regular submanifold of U whereas if A is nonsimple the 
zero p is (topologically) isolated. Finally there exists an 
open neighborhood U of p such that exactly four distinct 
maximal integral curves of 5 in U get arbitrarily close to p 
and each of these curves is a null geodesic. 

Proof: The results describing Petrov types are well 
known.6 Those describing Segre types are also known7,19,20 

and can be derived directly from Eq. (9) by noting that 
this equation implies that the blade of F (if F is simple) 
and the dual pair of blades of F (if F is nonsimple) are 
eigenspaces of the Ricci tensor. The results describing the 
zero sets of 5 follow by using the exponential map and Eq. 
(6)9 and noting that fixed points of the Xt correspond to 
fixed points of Xt. under the exponential map t/J and hence 
to eigenvectors of F at p with zero eigenvalue. Their totally 
geodesic nature follows from Sec. III B and the fact that, 
when two-dimensional, they are of the same nature (time
like, spacelike or null) at each of their points follows from 
their having that nature at p and the fact that they are 
autoparallel submanifolds [since they are totally geodesic 
and the connection on M is symmetric (Ref. 11, Vol. 2)]. 
The remainder of the proof follows from considerations of 
the exponential mapping, the algebraic forms for Fat p and 
the fact that the linearizability of 5 in normal coordinates 
implies that SO,b = Aa

b = Pb(p) in this coordinate system 
from which one may derive the integral curves of 5. Note 
that S05a is constant along an integral curve of 5, from 
Killing's equation, and so any integral curve of 5 which 
gets arbitrarily close to p must be null. These occur only 
when A is type E and the integral curves of 5 that get 
arbitrarily close to p arise in an obvious way from the two 
independent null eigendirections of F at p and are thus null 
geodesics. 

Theorem 2: Let 5 be a homothetic vector field on M 
with a zero at p. Then A is of type AI, Rl, Cl, or DI-D4 
and the following hold. 

(i) If A has type A 1, Rl, Cl, or Dl then p is an isolated 
zero of 5 and there exists a neighborhood U of p such that 
any point of U lies on an integral curve of 5 which gets 
arbitrarily close to p (that is, p is an asymptotically stable 
zero of 5.13 M is flat in a neighborhood of p. 

(ii) If A is of type D3 or D4, p is an isolated 
(hyperbolic I3

) zero of 5 and there exists an open neighbor
hood U of p a three-dimensional null submanifold N of U 
containing p and a null geodesic fJ in U such that 
NnfJ = {P} and such that any point in NUfJ lies on an 
integral curve of 5 that gets arbitrarily close to p. If A is of 
type D3, or of type D4 with F nonsimple at p the Weyl and 
Ricci (and hence Riemann tensor) are zero at p. If A is of 
type D4 with F timelike at p the Weyl tensor is of Petrov 
type III or 0 and the Ricci tensor is of type {( 31 )} with 
zero eigenvalue or zero at p. 

(iii) If A is of type D2 there exists an open neighbor-
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hood U of p such that the zero set of 5 in U is a null 
geodesic in U through p. For each p' in this zero set there 
exists a three-dimensional null submanifold N' in U whose 
intersection with the zero set of 5 in U is precisely {P'} and 
such that each point of N' lies on an integral curve of 5 that 
lies in N' and gets arbitrarily close to p'. The Petrov type at 
p is Nor 0 (and is necessarily 0 if F is nonsimple at p) and 
the Ricci tensor at p has type { (211 ) } with zero eigenvalue 
or o. If the Riemann tensor does not vanish in a neighbor
hood of p then some neighborhood of p is isometric to a 
(generalized) plane wave space-time. 

Proof: Parts of the proof can be found in Refs. 9, 21 
and 8). The first part of (i) follows because all the eigen
values of A have negative real part (see Table I). The final 
statement in (i) can be established by using the result 2' s 
Ra 

bed = 0 and the local diffeomorphisms X t arising from 5 to 
investigate the components Ra 

bed of the curvature tensor in 
a normal coordinate neighborhood V of p arising from the 
exponential map t/J (see, e.g., a similar method used for 
computing the Ricci tensor components in Sec. III of Ref. 
9 and cf. 8,21). This argument, variations of which will be 
used elsewhere in this paper, starts by assuming without 
loss of generality that the above coordinate neighborhood 
V coincides with the neighborhood U in the statement of 
part (i) of the theorem. One then chooses a basis of T ~ 
adapted in an obvious way to the algebraic type of A to 
establish coordinates in V under t/J. The linear differential 
equations satisfied by the integral curves of 5 then enable 
the corresponding map Xt to be calculated and so Xt. can be 
calculated for the curvature tensor and the corresponding 
Lie derivative set equal to zero. The consequence is that 
any curvature component in this coordinate system would, 
if nonzero at some qEV become arbitrarily large along the 
integral curve of 5 through q toward p. The result then 
follows. For part (ii) the algebraic form of A in cases D3 
and D4 (Table I) allows the choice of a real null tetrad 
{/,n,r,s} at p (whose only nonvanishing inner products are 
fIna = I'r a = ~Sa = 1) such that I, r, and s are eigenvectors of 
A whose eigenvalues have negative real part and n is an 
eigenvector of A whose eigenvalue has positive real part. 
Using the ordered basis n,l,r,s of T ~ to construct normal 
coordinates u,v,x,y in some open neighborhood U of pone 
concludes that those points in U satisfying u = 0 and those 
satisfying x=y=v=O constitute, respectively, a three
dimensional and a one-dimensional submanifold of U such 
that any point in either of them lies on an integral curve of 
5 which gets arbitrarily close to p. That the latter of these 
submanifolds is part of a null geodesic in M is clear. That 
the former is null follows by first using the method above 
for computing the curvature components to show the met
ric tensor components in the above normal coordinates 
satisfy g22 = g23 = g24 = 0 and hence gIl = 0 on u = 0 and 
then noting that u,au,~b=O on u = o. Thus the existence 
of the submanifolds Nand fJ in the statement of the theo
rem is guaranteed. Concerning the remarks about Petrov 
and Segre types in Theorem 2 it follows from the homo
thetic nature of the action of the maps Xt. on T ~ that all 
the eigenvalues of the Weyl and Ricci tensors are zero at p 
(Ref. 9) and hence that the Petrov type at p is III, N, or 0 
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and the Segre type of the Ricci tensor at p is {( 211 )}, 
{( 3l)} (both with eigenvalue zero) or O. The exact alge
braic nature of A supplies further distinctions between 
these remaining possibilities either by the method given in 
Ref. 9 (in Ref. 9, p. 678, line 20 there is a misprint; the 
factor "2" should be "4") or by substituting the appropri
ate canonical forms for the above Petrov and Segre types 
and for the bivector Fat p (from Table I) into Eqs. (8) or 
(9). This latter calculation can be simplified by noting that 
if the Weyl tensor C is nonzero at p (and hence in some 
open neighborhood W of p) and if k is a Debever-Penrose 
vector field for C in W, the equation !t' l~J bed = 0 implies 
that !t'sk a: k in Wand so k is a null eigenvector of F at p 
from (1). The same conclusion is reached if the Ricci ten
sor is nonzero at p and if k is its (unique up to scaling 
because of the above restriction on the Segre types) null 
eigenvector field. One then substitutes into (8) or (9) con
venient canonical forms for F and for the appropriate types 
of C'bcd (see e.g., Ref. 7) or Rab (Ref. 7 and 18). The 
remainder of the calculation is straightforward and reveals 
also that if the Weyl and Ricci tensors are both nonzero at 
p then the repeated principal null direction of the former 
and the null eigendirection of the latter agree at p. The 
proof of those parts of (iii) not covered by the above dis
cussion (and excluding the last sentence) follow since if A 
is of type D2 it has three eigenvalues with negative real part 
whilst the other is zero. Given that the curvature tensor 
does not vanish in a neighborhood of p this is the only case 
when the zero p is not isolated and leads to the conclusion 
regarding (generalized) plane waves.2\,9 

Further, remarks in Sec. III B show that the Ricci 
eigenvalues and Petrov scalars vanish along any non-null 
integral curve of S which gets arbitrarily close to p and so 
the Petrov and Segre types described in the above results 
are the only ones possible on the null submanifold Nand 
N'. The components of S in the normal coordinates used in 
the above proof can be easily calculated.9 An example 
when A is of type D4 with F timelike at p is the metric Eq. 
(5). Examples of these types can be constructed in 
Minkowski space by taking appropriate linear combina
tions of the homothetic vector field with components 
s,a = (x,y,z,t) in the usual global coordinates with Killing 
vector fields which vanish at the origin and noting that 5' 
has zero homothetic bivector. 

In the case when S is a proper conformal vector field 
on M such that s(p) = 0 the situation is more complicated. 
Since any Killing or homothetic vector field on M with 
zero at p can be converted into a proper conformal vector 
field with a zero at p by an appropriate conformal rescaling 
of the metric g on M all the features described in the above 
theorems are possible for S except (possibly) those which 
describe nonconformally invariant concepts (in this case, 
statements about the Ricci and Riemann tensors and the 
totally geodesic property). Rather than formally state a 
theorem analogous to 1 and 2 for proper conformal vector 
fields which would be somewhat verbose and repetitive 
(and, at present, incomplete), a brief discussion of features 
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similar to those described in the previous theorems will be 
given. 

Suppose S is a proper conformal vector field satisfying 
s(p) = O. If rp(p)~ [and so rp(p) <0 by an earlier con
vention] then by results earlier in this section and in Sec. 
III B one see that all Petrov scalars vanish (i.e., the Petrov 
type is III, N, or 0) at p and along all non-null integral 
curves of S which get arbitrarily close to p. The relation 
between the Petrov type at p and the type of the corre
sponding matrix A is just as in the homothetic case (The
orem 2). If, on the other hand, rp(p) = 0 and the associ
ated conformal bivector F is nonzero at p the 
corresponding isometric action on T ~ shows that the 
Petrov type at p is either D,N, or 0 just as for Killing vector 
fields. The relation between the Petrov type and the type of 
A is as in Theorem 1. If rp and F both vanish at p (i.e., A is 
of type A2) then it can be shown22 that the Weyl tensor 
vanishes at p. An example of this latter type will be given 
later. 

If S is a proper conformal vector field such that 
s(p) = 0 and A is nonsingular at p (i.e., A is of type AI, 
Bl, Cl, Dl, D3, or D4), then the zero p is isolated (Sec. 
III B). If the matrix A is of type AI, Rl, or Cl, then the 
eigenvalue condition (7) holds and so by the linearization 
theorem there exists a coordinate neighborhood U of p in 
which the components sa are linear functions of the coor
dinates. Thus Sa,b is a constant matrix on U equal to A 
when both are evaluated in these coordinates. For the cases 
AI, Rl, and Cl all the eigenvalues of A have negative real 
part and the theory of linear differential equations then 
shows that p is an asymptotically stable zero of S so that 
there exists a neighborhood V of p such that every point of 
V lies on an integral curve of S which approaches p arbi
trarily closely as t -+ 00. In the case D 1, although the con
dition Eq. (7) fails, the same conclusions can be drawn 
from a theorem in nonlinear differential equations Ref. 13 
chap. 9). In the other cases Eq. (7) also fails and so S may 
not be linearizable in a neighborhood of p. However, if any 
of these latter cases (excluding type A2) obtain but s is 
linearizable in some neighborhood U of p then the structure 
of the integral curves of S near p are similar to those ob
tained above in the Killing (for rp (p) = 0) and homothetic 
(for rp(p )=1=0) cases. For example, if rp(p )=1=0 (i.e., 
rp (p) < 0) and A has type D2 with F timelike one chooses 
an open coordinate neighborhood U of p in which S is 
linearizable and rp < 0 and null vectors I and n at p such 
that lana = 1 and, at p, Fab = 2rp(p)l[anbj' One may then 
make a linear transformation of the coordinates in U so 
that, at p, la = (1,0,0,0), na = (0,1,0,0) and A~ 
= rp(p)diag(0,2,1,l). In U, the integral curves of S satisfy 
dxa/dt=Aa0b and if one labels the coordinates 
(u,v,x,y) this leads to u=c\, v = C2 exp[2rp(p)t], x 
= C3 exp[rp(p)t], Y = C4 exp[rp(p)t] for constant c\--c4' The 
components of S are sa = (0,2v,x,y) and thus there is a 
one-dimensional submanifold in U consisting of zeros of S 
given by v=x=y=O which can be shown to be null be
cause rp < 0 in U. The above expression for the integral
curves of S can be used to calculate the behavior of them
etric components in U. One uses them to calculate X tog and 
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then uses the fact that Xt*g = exp( - 2f 4> dt)g. In order 
to avoid divergences as a zero of S is approached (i.e., as 
t ..... (0) one must take g22=g23=g24=0 in U (and so 
gll = 0 in U). It follows that each of the three-dimensional 
submanifolds u = const in U is null and is such that any 
point on, say, the submanifold u = Uo lies on an integral 
curve of S which lies in this submanifold and gets arbi
trarily close to the zero of S with coordinates (uo,O,O,O). 
The Petrov type is N or 0 in some neighborhood of p. 
Similar arguments hold if F is nonsimple only now the 
Weyl tensor necessarily vanishes at p. Still in the lineariz
able case if A is of type D3 or D4 similar arguments show 
that one obtains a null three-dimensional and a null one
dimensional submanifold in U (which intersect in the iso
lated zero p) such that any point on either of these sub
manifolds lies on an integral curve of S in that submanifold 
which gets arbitrarily close to p. The Petrov type at p is 0 
in the D3 case and 0 or III in the D4 case. However, if S is 
linearizable and 4>(p) = 0, only where A is of type E can 
there exist integral curves of S which get arbitrarily close to 
p and one may choose U such that these curves are four in 
number and null. If F is also simple the zero set of S is a 
two-dimensional spacelike submanifold of U for some open 
neighborhood U of p whereas if F is nonsimple, p is an 
isolated zero of S. For types B2 and C2 there is an open 
neighborhood U of p such that the zero set of S in U is a 
two-dimensional submanifold of U and U may be chosen 
such that this submanifold is timelike for type C2. 

If S is a proper conformal vector field with S(p) = 0 
and A is of type A 1, Bl, CI, or DI with 4>(p)(3 - 1 irrational 
in the DI case then S is necessarily linearizable and p is an 
isolated, asymptotically stable zero of S. In this case, sim
ilar methods to those used in the previous paragraph but 
applied to the Weyl tensor CObcd together with the condi
tion !f sCObed = 0 show that the Weyl tensor vanishe~ in 
some neighborhood of p [cf. the last part of Theorem 2 (1) ]. 

If, however, S cannot be linearized in some coordinate 
neighborhood of p the situation seems more complicated. 
For example, consider Minkowski space with the usual 
global coordinates x,y,z, t and construct the vector field S 
given by 

(10) 

where Tf is the Minkowski metric tensor, k = (1,0,0,0) 
and x a = (x,y,z,t). Then S satisfies Eq. (1) with 
4> = - (1/2) (Tfa~axb) and Fab= k[aXb)' The set of zeros of 
S are those points whose coordinates xa satisfy 
Tfa~axb=Tfa~akb=o (a "null cone" in three-dimensional 
Minkowski space). Thus S has a zero at the origin (of type 
A2) but the set of zeros cannot be given the structure of a 
regular submanifold of M in any neighborhood of the ori
gin. Hence S cannot be linearized in any neighborhood of 
the origin. (Note that if the origin is removed from 
Minkowski space, the two remaining components of the set 
of zeros of S can now be given regular submanifold struc
tures in M but neither is totally geodesic.) 
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IV. CONFORMAL SYMMETRIES IN GENERALIZED pp 
AND PLANE WAVES 

In this section, a general geometrical discussion is 
given of conformal symmetries in generalized pp and plane 
waves as defined in Sec. I. Some of these results are im
plicitly contained in Ref. 23 as a result of direct calcula
tion. 

Let M be a space-time whose Weyl tensor is nowhere 
zero and which admits a global nowhere zero, covariantly 
constant null vector field I. [The results of this section still 
hold (with a few obvious modifications) if the Weyl tensor 
is nonzero over an open dense subset of M.] If peM assume 
that coordinates are chosen in some neighborhood U of p 
such that u is one of them and that la = u,a in U. The Ricci 
identity then gives RabedF=O and it is easily shown using 
the Bel criteria that the Weyl tensor is algebraically special 
with 1 a repeated principal null direction at each peM. 
Now suppose that S is a proper conformal vector field on 
M satisfying Eqs. (1)-( 3). The equation !f sCO bed = 0 
implies that !f sl 0:: I and so it follows from (1) that 

(11 ) 

for some function v on M. Define also the function X on M 
by X = sala' By taking the covariant derivative of Eq. (11) 
and using Eq. (2) one finds 

- 4>,ic + (4),Jb)gac=v,Ja, (12) 

which from elementary rank considerations shows that 
4>,Jb = 0 and then that 4> = 4>(u) and v = v(u) in U (in fact 
(12) shows that 4> + v is constant). A contraction of (1) 
with F then reveals that X = X(u) and X' = 4> - v 
= 24> + e(eElR) where' denotes d/du. One also sees that 
if X=O (so that, locally, S lies in the hypersurfaces 
u = const) then FSa;b = 0 and substituting from Eq. (1), 
covariantly differentiating the result and using Eq. (2) 
shows that 4>'=0 (and v'=O). Hence for such space-times, 
conformal vector fields which locally lie in the hypersur
faces u = const are homothetic or Killing. 

Now suppose as well that M is a vacuum space-time 
and hence, a (vacuum) pp wave space-time.6 1t is a conse
quence of Brinkmann's theorem (a corollary of which says 
that if n is a positive function on M and g and ng are 
vacuum metrics on M then either n is constant or g and ng 
are pp wave metrics) that the only vacuum space-times 
admitting proper conformal vector fields are the pp waves. 
This latter result can also be deduced from (3) since, then, 
either 4> is constant or 4>,a is a (necessarily null) covariantly 
constant vector field on M. If a vacuum pp wave admits a 
proper conformal vector field then the above discussion 
and Eq. (3) show that 4> is a linear function of u. It follows 
that a vacuum pp wave space-time M can admit at most 
one independent proper conformal vector field in the sense 
that if SI and S2 are distinct proper conformal vector fields 
on M then some linear combination as! + bs2 (a,b,ElR) of 
them is homothetic or Killing. Also for vacuum space
times v is a linear and x a quadratic function of u. 

Returning to the general case described in the second 
paragraph of this section suppose now that S is a Killing 
vector field on M with Killing bivector F. Then Eq. (11) 
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shows that I is an eigenvector of F and, since now 4> = 0 
and also 4> + v constant, v is constant and X is a linear 
function of u. If also X=SOla=O,then v = O. These results 
are helpful in the geometrical interpretation of the local 
diffeomorphisms 4>t arising from 5 using parallely propa
gated tetrads along the integral curves of 5 since they re
strict the algebraic type of F {which is necessarily the same 
along each integral curve of 5).9,12 

Now let M above be a vacuum plane wave. Then M 
admits exactly five independent global Killing vector fields 
which lie in the u = const null hypersurfaces and at most 
one other independent global Killing vector field not con
fined to these hypersurfaces (i.e., its associated function X 
is not identically zero). That there is at most one of the 
latter type follows from isotropy considerations and the 
fact that the Petrov type is N. The general form of the 
metric for M is well known6,7 as is the fact that M admits 
a homothetic vector field lying in the above null hypersur
faces whose zeros constitute a null geodesic in M 2

,9 (see 
Sec. III). Thus the Lie algebra of conformal vector fields is 
at least six-dimensional and possibly seven-dimensional, 
the extra conformal vector field being either Killing (the 
homogeneous case) or proper conformal. In neither case 
can the extra conformal vector field lie in the hypersurfaces 
u = const as follows from remarks above. (The only way a 
homothetic vector field can exist that does not lie in these 
hypersurfaces is by taking appropriate linear combinations 
in the homogeneous case.) That the maximum dimension 
of this algebra is seven can easily be established. In fact 
from the above remarks and those regarding independent 
proper conformal vector fields earlier it suffices only to 
show that M cannot admit a Killing vector field 51 and a 
proper conformal vector field 52 neither of which lie in the 
u = const hypersurfaces. If such a situation exists one sim
ply changes g to the conformally related metric g'=iUg 
with a = -log(u+d) (dER) on some appropriate open 
submanifold of M. The metric g' is easily shown to be a 
vacuum plane wave metric and the constant d may be 
chosen so that 51 and 52 are (independent) proper confor
mal vector fields with respect to g' in contradiction to an 
above result. Three other brief remarks can be added here. 
First, for each pEM there exists a homothetic vector field 
whose zeros constitute a null geodesic through p, a geo
metrical discussion of which was given in Sec. III. It is a 
consequence of the nowhere vanishing of the Weyl tensor 
that these types of homothetic vector fields are the only 
ones possessed by M which have a zero. Second, consider
ations of isotropy and Petrov type show that a Killing 
vector on M not lying in the u = const hypersurfaces has 
no zeros. Finally, the work above shows that a vacuum 
plane wave, apart from the six-dimensional Lie algebra of 
homothetic and Killing vector fields which are everywhere 
orthogonal to I may (but need not) have either an extra 
Killing or proper conformal vector field (but not both) 
which is not everywhere orthogonal to I. In fact these two 
possibilities are conformally related in the following sense. 
A conformal change of metric g ...... g' =e2ug, 
a = -log(u+d) (dER) will preserve the vacuum and 
plane wave conditions on some open submanifold of M and 
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any such extra Killing vector field is now a proper confor
mal vector field with respect to g'. Conversely, given an 
extra proper conformal vector field 5 on M the associated 
quadratic function x factorises over R (Ref. 23) and so one 
has 4> = au+b, x=a{u - cl)(u - C2) (a,b,cbc2ER). It fol
lows that one can choose d in the above conformal trans
formation such that either 5 is Killing or else homothetic 
(and either possibility leads to the existence of an extra 
Killing vector field in the above sense) with respect to g'. 

Finally let M above be a generalized plane wave whose 
Weyl tensor is nowhere zero. The Ricci tensor takes the 
general coordinate form Rab = p( U )la/b' Under a conformal 
change of metric g ...... g' = e2ug, a = a(u), the metric g' is a 
vacuum (and hence a vacuum plane wave) metric if and 
only if 2a" - 2a,2 = p(u). This is readily converted into 
two first order differential equations and a solution a( u ), 
at least for some open interval of values of u about any 
initial value Uo of u, is assured by Picard's theorem. Hence 
any such generalized plane wave is locally conformally re
lated to a vacuum plane wave. Also, as pointed out above, 
any vacuum plane wave can be locally conformally res
caled g ...... g' = e2ug so that its Lie algebra of conformal vec
tor fields contains only homothetic or Killing vector fields 
with respect to g'. It follows that if g is a generalized plane 
wave metric on M whose Weyl tensor is nowhere zero, the 
associated Lie algebra of conformal vector fields has di
mension at most seven and for each pEM there is a neigh
borhood U of p and a function of a' (u) such that the 
metric e2ci g on U (also a generalized plane wave) has a Lie 
algebra of conformal vector fields on U consisting entirely 
of homothetic and Killing vector fields (cf. Ref. 2). 

ACKNOWLEDGMENTS 

The author wishes to thank John Pulham, John Steele, 
and Jose da Costa for many useful discussions. 

IR. F. Bilyalov, Sov. Phys. 8, 878 (1964~; 
2L, Defrise-Carter, Commun. Math. Phys. 40, 273 (1975). 
3K. Yano, The Theory of Lie Derivatives and its ApplicatiOns (North-
Holland, Amsterdam, 1955). 

4T. Siguri and S. Ueno, Tensor, N. S. 14, 253 (1972). 
SR. P. Geroch, Commun. Math. Phys. 13, 180 (1969). 
6J. Ehlers and W. Kundt, in Gravitation: An Introduction to Current 

Research, edited L, Witten (Wiley, New York, 1962). 
7D. Kramer, H. Stephani, M. A. H. MacCallum, and E. Herlt, Exact 
Solutions of Einstein's Field Equations (V.E.B. Deutscher Verlag der 
Wissenschaften, Berlin, 1980). 

8J. K. Beem, Lett. Math. Phys. 2, 317 (1978). 
9G. S. Hall, Gen. ReI. Grav. 20, 671 (1988). 

lOG. S. Hall, Class. Quant. Grav. 6, 157 (1989). 
II S. Kobayashi and K. Nomizu, Foundations of Differential Geometry 

(Interscience, New York, Vol. 1, 1963 and Vol. 2, 1969). 
12G. S. Hall, "Symmetries in General Relativity" in Relativity Today, 

edited Z. Perjes (World Scientific, Singapore, 1988). 
13M. W. Hirsch and S. Smale, Differential Equations, Dynamical Sys

tems, and Linear Algebra (Academic, New York, 1974). 
14R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, 

and Applications (Addison-Wesley, Reading, MA, 1983). 
15V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differ

ential Equations (Springer, New York, 1983). 
16E. Nelson, Topics in Dynamics, 1. Flows (Princeton U.P. and Univer

sity of Tokyo Press, Princeton, 1969). 
17 G. S. Hall, to appear in Gen. Relat. Gravit. (1990). 

G.S.Hall 1206 



                                                                                                                                    

18G. S. Hall, J. Phys. A 9, 541 (1976). 
19R. F. Crade and G. S. HaIl, Phys. Lett. A 75 17 (1979). 
20M. A. H. MacCallum, in Essays on General Relativity, edited by F. 

Tipler (Academic, New York, 1980). 

1207 J. Math. Phys., Vol. 31, No.5, May 1990 

21 0. Alexeevski, Ann. Glob. Anal Geom. 3, 59 (1985). 
22G. S. Hall and J. D. Steele, to appear in Gen. Relat. Gravit. (1990). 
23H. Salazar, A. Garcia, and J. F. Plebanski, J. Math. Phys. 24, 2191 

(1983). 

G.S.·Hall 1207 



                                                                                                                                    

Future null infinity of Robertson-Walker space-times 
Osvaldo M. MoreschiB

) 

International Centre/or Theoretical Physics, Strada Costiera 11,34014 Trieste, Italy 

(Received 6 September 1988; accepted for publication 22 November 1989) 

The future null infinity for all noncontracting Robertson-Walker space-times is studied 
systematically. A theorem is proved that establishes the expected relation between the nature 
of /+ and the appearance or absence of cosmic event horizons. 

I. INTRODUCTION 

In the standard model of cosmology it is assumed that, 
on the largest scale, the universe can be reasonably repre
sented by a Robertson-Walker (RW) space-time. 

When we observe the universe we usually obtain infor
mation encoded in the electromagnetic radiation that arrives 
from the particular observed object. As we try to study more 
distant objects we are forced to direct our attention to earlier 
times. Thus when we are studying the largest scale of our 
universe we are, for all practical purposes, at future null in
finity of the observed region. 

It is then necessary in the study of the largest scale of the 
universe to have a clear picture of future null infinity of the 
Robertson-Walker space-times. 

In this paper we make a systematic study of future null 
infinity for noncontracting R W space-times. 

Some particular examples have been extensively dis
cussed in the literature. I

-
3 However, here we develop the 

techniques that allow the study of all noncontracting mod
els. In any case, we review the Minkowski and de Sitter ex
amples in Sec. II and the dust Friedmann models in Sec. III. 

In Sec. IV the general method is described, and it is 
applied to characteristic asymptotic behavior. 

Section V contains some closing remarks. 
In the remainder of this introductory section we will 

mainly present the notation to be used. 
Let us consider noncontracting Robertson-Walker 

models. Their line element can be given by 

ds2=dt2-A(t)2dL~, (1.1) 

where dLK can be expressed in several equivalent ways: 

dL ~ = dP/(l- KP) + P dl?, 

dL ~ = (dr + r dl:2)/(l + Kr/4)2, 

dL ~ = dX2 + A: (X)dl:2. 

( 1.2) 

(1.3 ) 

(1.4) 

Here dl:2 is the line element of the unit sphere, which can 
also be expressed in a variety of ways, for example, 

dl:2-=.d0 2 +sin(O)2d¢/ (1.5) 

= (4 d; d;)/(1 + ;;)2 = (d; d;)/P~, (1.6) 

with 

Po-=' (1 + ;;)/2. 

Finally the function /K is defined by 

{

Sinh(X), for K = - 1, 

/K(X) = X, for K = 0, 
sin(x), for K = 1, 

( 1.7) 

o<X< 00, 

O<X< 00, (1.8) 

O<X<1T· 

a) Present address: FAMAF. Laprida 854. 5000 Cordoba. Argentina. 

The range of the coordinate t is associated with the behavior 
of the function A (t). When there is an initial singularity 
followed by a continuing expansion one takes 0 < t < 00. 

By a noncontracting R W space we mean that the scalar 
A(t) must satisfy 

aA ;;;'0. 
at ( 1.9) 

In the study of future null infinity of asymptotically flat 
space-times, the use of null coordinates and/or null tetrads 
adapted to scri has proved useful. It is also useful in our case 
to introduce a null coordinate u by the equation 

dt 
du =--dX. (1.10) 

A(t) 

Using this relation to replace dt in the line element one ob
tains 

( 1.11) 

The range of the coordinate u is determined by the asympto
tic behavior of the scalar A (t); that is, for example, if 

. II dt' hm --= 00, 
1-00 I"A(t') 

(1.12) 

then the function u is unbounded from above and its range in 
the cases K = - 1 and K = 0 is - 00 < u < 00. Instead, if 
the limit is finite then the coordinate u is bounded from 
above (let us say u < uo); this can be thought of as the mani
festation of the appearance of cosmic event horizons. 

We can also define the coordinate r by the expression 

I
I(U'X) 

r-=. A(t')dt' - ro(u); 
I" 

(1.13) 

which satisfies 

(1.14 ) 

so that 

dr = (A 2 - ;'o)du + A 2 dx, (1.15) 

where we are using the notation ;'o-=.dro/du. 
Then using rinstead of the coordinate X, the Robertson

Walker line element is given by 

ds2 = (2;'0 - A 2)du2 + 2 du dr - A 2 /~ dl:2. (1.16) 

Note that the line element is spherically symmetric; thus we 
do not change the angular coordinates. The relation between 
the original nonangular coordinates and the new ones can be 
expressed by the following differential equations: 
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dX = UoiA 2 - l)du + (1/A 2)dr, 

dt = UoIA)du + (lIA)dr. 

( 1.17) 

(1.18 ) 

Let us now introduce a null tetrad adapted to this new 
coordinate system. We can deduce from the line element that 
u = const are null hypersurfaces, so we take the null vector I' 
to be 

and 

1'= duo 

Then we have 

g"b t;, t;, = 0, 

l'''Val'b=O, 

(1.19) 

( 1.20) 

(1.21) 

( 1.22) 

that is, r is an affine parameter of the future directed null 
geodesics in the null hypersurface u = const. 

Complex null vectors rna and ma are taken such that 

a 1 a 'h a_"'2p. a rn =--rno, WIt rno=V"- 0-' 
AA at 

(1.23 ) 

The last null vector n is defined by 

na = (~+ U ~)a, with U=-.l (A 2 - 2;'0)' 
au a, 2 

(1.24 ) 

This null tetrad satisfies the usual contraction relations 

( 1.25) 

while all other contractions are zero. 
Although now the expansion parameter A is a function 

of u and r, it is convenient to retain the original functional 
dependence of A (t). Therefore we will use a prime to denote 
derivatives with respect to t, that is, 

A ,=aA(t) , 
at 

( 1.26) 

and evaluate coordinate derivatives of A in terms of A '. They 
are 

and 

aA =A' ;'0 
au A 

aA A' 
a, A 

( 1.27) 

(1.28 ) 

We obtain similar expressions evaluating coordinate de
rivatives of A ': 

aA' A". 
--=-'0 
au A 

( 1.29) 

and 

aA' A" 
( 1.30) 

ar A 
Using the fact that 

a/K I ~ --="l-K K' 
aX 

(1.31) 

the coordinate derivatives of /K can be expressed by 
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( 1.32) 

and 

(1.33 ) 

In terms of the Geroch-Held-Penrose (GHP) nota
tion4 the only components of the curvature tensor different 
from zero are 

<1>22 = (K +A,2 -AA ")/4, 

<l>ll = (K +A,2 -AA ")/4A 2, 

A = (K +A'2 +AA ")/4A 2, 

<1>00 = (K +A,2 -AA ")IA 4. 

(1.34 ) 

(1.35a) 

(1.35b) 

( 1.36) 

At this stage it is natural to try to follow some of the 
techniques that were used in the definitions offuture asymp
totically flat space-times.5 These techniques include the use 
of a conformal factor n, which will bring infinity to a finite 
distance in the conformally related manifold if with metric 

gab=n2gab . (1.37) 

We have constructed our null tetrad and coordinate sys
tem out of a family of null hypersurface that define a null 
congruence reaching the asymptotic region under study. 
Then, since the function , is an affine parameter along these 
null geodesics, we know that taking n proportional to 1/r 
will bring future null infinity to a finite affine distance. 

We will study the consequences of taking n = 1/, in 
Secs. III-V. But let us first review two of the most celebrated 
isotropic cosmological models. 

II. TWO EXCEPTIONAL CASES: MINKOWSKI AND de 
SITTER 

Among the RW family, two space-times deserve special 
treatment: they are Minkowski and de Sitter space. These 
are the only6 metrics that can be expressed in more than one 
of the forms 

ds2=dt 2-A(t)2dLi; (1.1) 

that is, Minkowski can be represented by a line element of 
this form with K = 0 and K = - 1, while de Sitter can be 
represented by the three possible values of K. 

A. Minkowski space 

and 

In Minkowski space we have 

0= (K +A,2 -AA ")/4A 2 

0= (K + A ,2 + AA ")/4A 2; 

therefore 

A'=~-K, 

with solutions 

A = t, for K = - 1, 

and 

A = const = 1, for K = 0; 

Osvaldo M. Moreschi 

(2.1 ) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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where, without loss of generality, we have chosen the arbi
trary constants to be 1. So we can express A (t) by 

A(t)= -Kt+(1+K). (2.6) 

Minkowski space is particularly special among the R W 
modes since it is flat; and obviously asymptotically flat. 
When K = - 1, one refers to it as the Milne model.7 

It has been customary to represent the null infinity of 
Minkowski space by its conformal map into the Einstein 
universe, which is obtained from the K = 0 form of the met
ric through the transformation 

t' = arctan(t + X) + arctan(t - X), (2.7) 

X' = arctan (t + X) - arctan (t - X), (2.8) 

with the coordinate range - 11" < t' + X' < 11" and - 11" < t' 
- X' <11". 

The Minkowski line element can then be expressed by 

d~ = dt 2 - dr - X2 d!? 

= [ sec«t' + X')/2~eC«(t' - X')/2) r 
(2.9) 

where, from the last line, one can see the conformal relation 
between the Minkowski metric and that of the Einstein 
space-time. Null infinity agrees with the region where the 
conformal factor is zero, and, as is well known, it is formed 
by two null hypersurfaces in the Einstein space correspond
ing to future and past null infinity, respectively. 

Alternatively one could also study future null infinity of 
this space without making any reference to the Einstein uni
verse. 

Here we end our short characterization of Minkowski 
space, and go on to consider other nontrivial cases. 

B. de Sitter space 

Ifwe only require the trace-free part of the Ricci tensor 
to be zero we obtain 

O=K +A,2 -AA', 

and, due to the contracted Bianchi identities, 

A = (K +A,2 +AA ")/4A 2 = C/2, 

(2.10) 

(2.11 ) 

where C is a constant. From these equations we deduce 

(K+A,2)/A 2=C 

and 

AA "/A 2=C. 

The solutions of which, for C> 0, are 

t = C- 1/2 In(AC/2 + (A 2C - K) 1/2), 

or, in terms of A(t), 

{

( 1/~ ) sinh (tC l12 ), 

A(t) = (1/2~)e(tC'''), 

( 1/~)cosh(tCl/2), 

forK= -I, 

for K= 0, 

for K = I, 

which can also be expressed in one line as 

A(t) = (1/~)(e(tC''') + Ke( - tC''')/2). 

Defining the function 
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(2.12) 

(2.13 ) 

(2.14 ) 

(2.15 ) 

(2.16) 

t' = arctan(sinh(tCI/2», (2.17) 

the de Sitter metric can be expressed by 

ds2 = A (t)2(dt'2 - dX2 - sin(x)2 dl?). (2.18 ) 

We see that this space is conformal to a portion of the static 
Einstein universe with the range of the time coordinate given 
by - 11"/2 < t' < 11"/2. One then takes the conformal factor 0 
to be given by A -I. By doing so one finds that J+ turns out 
to be a spacelike hypersurface in the static Einstein universe. 

As we have observed these two exceptional examples are 
easily related to the Einstein space. This suggests we should 
refer every R W model to its conformal image in the Einstein 
universe since "it is a kind of maximal universal conformally 
flat spacetime ... 3 

Instead of carrying out this program, in Sec. IV we will 
try to follow closely the techniques used in the study of 
asymptotically flat space-times. Note that de Sitter space is 
particularly easily related to the Einstein universe because it 
can be expressed as a line element with K = 1. 

III. IS THE FRIEDMAN MODEL ASYMPTOTICALLY 
FLAT? 

One of the key features of the definition of GeF AF 
space-times5 is the flatness condition on the Riemann tensor, 
which in the regular case is 

(3.1) 

where Rabe d is a regular tensor at future null infinity and 
DR abc d goes to zero faster than O. 

In our case, for the Robertson-Walker space-times, we 
expect to have a generalization of this behavior that will look 
like 

Rabe d = h(O)Rabe d + DR abc d; (3.2) 

where now h (0) is some function of 0 that might diverge 
for 0-+0. 

It is amusing in any case to compare Eq. (3.1) with Eqs. 
(1.34 )-( 1.36). Observing equations (3.81), (3.83), (3.85), 
and (3.86) of Ref. 5, we see that this comparison will imply 
the following relations: 

<1>22 = (K +A,2 -AA ")/4 = {tJ$22 + D<I>22> (3.3) 

<1>11 = (K + A ,2 - AA ")/4A 2 = (tJ3$1I + D<I>II' (3.4) 

<1>00 = (K + A,2 - AA ")/A 4 = {tJ5$00 + D<I>oo, (3.5) 

A = (K + A,2 + AA ")/4A 2 = {tJ3A + tJA, (3.6) 

where we are using {tJ in order to differentiate from the true 
conformal factor O. It is observed then that this comparison 
establishes the following proportional expressions: 

(K+A,2_AA") a: {tJ, (3.7) 

1/ A a: {tJ, 

(K + A ,2 + AA ") a: {tJ. 

Therefore one should have 

(K +A,2 -AA") a: 1/A 

and 

(K +A,2 +AA") a: 1/A; 

which implies 

Osvaldo M. Moreschi 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

1210 



                                                                                                                                    

(3.12) 

and 

AA" = Q'IA, (3.13 ) 

for some constants Q and Q'. Computing the derivative of 
the first expression, we obtain 

(K+A,2)'=2A'A"= _(QIA 2)A'; (3.14) 

so the second equation is a consequence of the first and, in 
particular, we have that Q' = - Q 12. 

The first equation is nothing other than the Friedmann 
equation. It is then somewhat surprising that by playing 
around with the idea of RW space-times that look future 
asymptotically flat, we do not find a trivial or extremely 
complicated new model, but instead the dust Friedmann 
model. 

It can easily be seen that in the Friedmann model and 
the curvature components are given by 

$22 = (K +A'2 -AA ")/4 = 3Q18A, 

$11 = (K +A'2 -AA ")/4A 2 = 3QI8A 3, 

$00 = (K + A ,2 - AA ")1 A 4 = 3Q 12A 5, 

A = (K +A,2 +AA ")/4A 2 = QI8A 3. 

(3.15 ) 

(3.16) 

(3.17) 

(3.18 ) 

We will now relate these expressions with the family of con
formal factors 0 proportional to the inverse of the affine null 
distances, that is, 

o 0:: l/r. (3.19) 

It will be useful to note that 

dA = aA du+ aA dr=A' ro du+~dr 
au ar A A 

A' = - d(ro + r), (3.20) 
A 

since then we can express 

f AdA f AdA 
r+ro= ~= ~QIA-K l

~Q + 1 (~- 3QA) + 3Q2
1n ( ~QIA + 1 + 1), 

_ A 2 4 8 ~QIA+1-1 
- 2A 5/2 

--, forK=O. 
5& 

for K= -1, 

(3.21 ) 

It is observed from the last expression that in the limit r ..... 00 

one also has A ..... 00; and the leading order of this equation 
gives 

r;:::;A 2/2, forK = - 1, (3.22 ) 

and 

r;:::;2A 51215&, for K = o. (3.23 ) 

Let us next study the two cases corresponding to the two 
possible values of the constant K. 

A. Case K=-1 

In this case we can take the conformal factor 0 to be 

(3.24) 

that is, 0 is asymptotically given in terms of the affine dis
tance rby 

0;:::; 1I2r. (3.25) 

Let us see what the conformal metric looks like at future 
null infinity. From Eq. (1.16) we obtain 

df2 = 0 2 ds2 = A -4(2rO - A 2)d,/ + 2A -4 dll dr 

-A -2.1'i d''1.2. (3.26) 

The first two terms of this equation present no problem; 
however, we should study in detail the asymptotic behavior 
of the third term. Using Eq. (1.14) asymptotically one ob
tains 

~=~I =A2;:::;2r; 
aX ax" 

from which it is deduced that, for very large r, 

r;:::;e2x. 
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( 3.27) 

(3.28 ) 

Then since, for very large X, one has that.l'i ;:::;e2x/4, it is 
deduced that asymptotically 

(3.29) 

So the conformal metric at future null infinity is given by 

(3.30) 

which is a nondegenerate regular metric. This means that the 
present choice of 0 does the job of bringing infinity to a finite 
distance and provides us with a well behaved conformal met
ric at future null infinity in this case. 

It is then reasonable to ask under what conditions on 
A (t) will the choice of 0 as the inverse of the affine distance 
along null geodesics have this property. We will study this in 
a later section. 

The Riemann tensor can now be expressed in terms of 
0, obtaining 

$22 = (3QI8)01/2, 

$11 = (3QI8)0312, 

A = (QI8)o.3l2, 

$00 = (3Q 12)0.5/2. 

(3.31) 

(3.32a) 

(3.32b) 

(3.33 ) 

Equation (3.2) implies asymptotic behavior of the form 
" $22 = h(o.)$22 + 0$22' 

2" 
$11 = h(o.)o. $11 + 0$11' 

A = h(o.)o.2A + oA, 
4" 

$00 = h(O)o. $00 + 0$00· 

It can be seen from the last equation that 

h(o.) = 05/2-812 = 0.- 3/2• 

Osvaldo M. Moreschi 

(3.34) 

( 3.35a) 

(3.35b) 

(3.36) 

(3.37) 
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This means that the Riemann tensor diverges as 0 -3/2 
as one approaches null infinity. And to avoid any confusion, 
it is convenient to remark here that the Friedmann K = - 1 
model is not asymptotically fiat, and the scalar Ct) used above 
does not coincide with the conformal factor 0 used in the 
construction of the conformal metric. 

Let us now consider the other expanding Friedmann 
model. 

B.CaseK=O 

We now try to repeat the same construction as before by 
taking the conformal factor 0 proportional to the inverse of 
the affine distance; more precisely we take 

0= lIA 512. (3.38) 

The conformal metric is given in this case by 

asz = 0 2 d$2 = A -5(270 A 2)du2 + 2A -5 du dr 

_ A -3 /~ tf~,2. (3.39) 

Studying the asymptotic behavior of A -3 /~ in a simi
lar fashion, we obtain 

.E!...=.E!...\ = A 2:::::;( 5Q 1/2r)4/5; 

aX ax" 2 
(3.40) 

which means that asymptotically we have 

X:::::; (2/5Q 1I2)4/55rI/5. (3.41 ) 

Then for large r one obtains 

A -3 /~ =A -3X2:::::;(5Qll2r/2)-6/5(2/(5QI/2»81552rI5 

(3.42) 

so the conformal metric obtained in this way turns out to be 
degenerate at future null infinity. 

Note that traditionally the Friedmann models have 
been studied through their conformal representation in the 
Einstein universe, where this bad behavior of the conformal 
metric is absent. This reinforces the initiative of relating ev
ery R W model conformally to the Einstein universe. How
ever, we should also note that in this last example the bad 
behavior of the metric at future null infinity is associated 
with the choice of the conformal factor as the inverse of the 
affine distance, since it produces complications with the 
asymptotic behavior of the angular part of the metric; and 
thus it is clear that these complications will disappear if we 
choose the conformal factor as the inverse of the luminosity 
distance, although probably at the expense of introducing 
other complications. 

It is therefore clear that we need a systematic study of 
future null infinity in the R W models. We do this in the next 
section. 

IV. THE GENERAL CASE 

We are therefore confronted with the question of how to 
choose an appropriate conformal factor that will make the 
conformal metric regular (meaning at least continuous) at 
future null infinity. Of course, this is associated with the 
behavior of the function A(t), which is the only nontrivial 
input in the metric. 

Let us be more precise in our discussion. We will define 
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the manifold f+ to be future null infinity of a noncontract
ing CO() Robertson-Walker space-time (M, gab) if there ex
ists a manifold M with boundary f+, metric gab' and a 
function 0 on M such that a neighborhood of f+ in Mis 
diffeomorphic to a neighborhood of f+ in the manifold 
M U f+ and (a) onM, 0 is Coo, 0>0, and gab = 02gab ; 

and (b) at f+, 0 = 0, 0 is Co; at every point of f+ there 
end future directed null geodesics of M, and gab is nondegen
erate. 

Note that we are implicitly requiring the conformal 
metric to be C I at scri. Also it should be observed that noth
ing is said about the differentiability properties of 0 at scri, 
that is, we only require it to be continuous. 

At this point it is important to recall that if l" is an affine 
parameter along the null geodesics contained in the null hy
persurfaces u = const, but with respect to the conformal 
metric gab' then it can be related to r by the equation 

(4.1 ) 

Since l" is a natural coordinate of M, it is then clear how the 
choice of 0 determines the differentiable structure of the 
conformal manifold. 

Because of the present symmetries, the scalar 0 is taken 
to be a function depending only on lL and r; so one can define 
l" to be 

l' = - ir 

0(u,r,)2 dr' + l"o(u), 
r, 

(4.2) 

with l" = 0 at scri. In this way we will have 

dl" = - 0 2 dr + ( ~o - f 20i! dr' ) du, (4.3) 

where as before a dot means partial derivative with respect to 
the coordinate U. For example, 

. aOI 0=- . au r=const 
(4.4) 

Let us note that the existence of the coordinate l" in the con
formal manifold M requires that 

lim i r 

0(u,r,)2 dr' must exist. 
r_ co r, 

The conformal metric can then be expressed by 

asz = 0 2 ds2 

(4.5) 

= 0 2
( 270 A 2)du2 + 202 du dr _ 02A 2 /~ dk2 

= ( 0 2
( 270 - A 2) - 2 f 20i! dr' + 2~0)du2 

(4.6) 

It is crucial to notice that this expression for the confor
mal metric is an invariant one, that is, it has been geometri
cally defined; and that du, dl", and d!,2 have a clear invariant 
meaning. Therefore the three terms appearing in the above 
expression are geometrically well defined and it makes sense 
to refer to the asymptotic behavior of each of them. From the 
last term, in particular, we observe that the algebraic condi
tion that will make this term regular at f+ is 02A 2 Ii

ex:: const. 
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One may ask, "Is it possible then that by taking 0 to be 
the inverse of the luminosity distance rL the conformal met
ric is regular at f+?" 

The luminosity distance is a scalar that satisfies 

arL -= -prL • (4.7) 
ar 

The natural choice for r L is 

rL =A/K • (4.8) 

So by taking the conformal factor 0 to be the inverse of the 
luminosity distance we obtain 

0= 1IrL = 1IA/K (4.9) 

and 

asz = (~ ( ~~ - 1) - 2 r 200 dr' + 2~0) du
2 

- 2 du dv - d~2. (4.10) 

It is then clear that for this metric to be regular at scri we 
should have the expression 

'lr == i' 00 dr' 
" 

(4.11 ) 

regular at scri. 
The last expression can be further transformed by not

ing that 

. _ 1 J 11 ro (~I-K4+A'/K) O---"I-K K ---
A4 A/K A2/K 

=_I_~I-K4 +~p 
A4 A/K 

~1-KA . 
=0 +Orop 

/K 

( ~I-K4 . ) 
=0 /K +rop, (4.12) 

which implies 

'lr== r 02 (~1 -K4 + rop) dr'. (4.13) 
)" /K 

Then using the relation 

ao 1 arL 1 
---=-p= Op, (4.14) 

ar ri ar rL 

we can express 'lr by 

'lr=i'(02~I-K4 + roO aO)dr' 
" /K ar 

= i'( 0 2 ~1 -K4) dr' + ro~ I r. (4.15) 
" /K 2 " 

This means that we only need to consider the first term in the 
asymptotic region in order to determine the regularity of the 
conformal metric at f+. 

At this stage it is clear that we need a detailed study of 
the asymptotic behavior of the functions A and X as r goes to 
infinity. We have explicitly mentioned that we consider 
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A ';>0. Next let us observe that the optical scalar p is given by 

p= - (~I-K4 +A',I;:)IA 2,1;:, (4.16) 

and therefore satisfies p < 0; which implies that 

arL ->0. 
ar 

( 4.17) 

But furthermore, by taking the conformal factor 0 = 11 r L' 

we are implicitly assuming that in the limit r ...... 00, we should 
have 0 ...... 0, or equivalently rL ...... 00. Can we have lim,_ 00 rL 

< oo? We will see later that, under the present conditions, 
rL ...... 00 as one approaches f+. 

In order to obtain information on the asymptotic behav
ior of the coordinate X along the null geodesics contained in 
the null hypersurfaces u = const, it is convenient to study 
the equation 

dt 
du =--dX, (1.10) 

AU) 
since, when u = const, we have 

r dt' 
X = J~, AU') . 

Defining X 00 by 

(00 dt I 
Xoo=J,,, AU')' 

(4.18 ) 

( 4.19) 

we want to know whether X 00 is bounded (finite) or un
bounded (infinite) . We can then classify the R W space
times in two classes such that class B corresponds to X 00 

bounded and class U corresponds to X 00 unbounded. Case B 
coincides with the appearance for each observer of an event 
horizon; since, for example, an observer traveling along the 
geodesic X = const > X 00 , () = const, and <p = const will nev
er be able to get information from the events with t> to and 
X <X 00' Case U refers to those models where there is no 
event horizon. 

Case B: Since in this case,l;: (X 00 ) is finite we deduce 
that a sufficient condition for 'lr to be regular at f+ is that 

!~n;, L 0 2 dr' exists; (4.20) 

which agrees with Eq. (4.5), and it is also equivalent in this 
case to the condition that 

i' 1 
-2 dr' exists for r ...... 00. 

" A 
(4.21 ) 

Case U: Since X 00 is unbounded, we disregard the possi
bility K = 1, and we consider the cases K = - 1 and K = 0 
separately. 

Case U, K = -1: We now also require that the expres-
sion 

0 2 dr' = --- dr' exists for r ...... 00, i' i' 1 
" " A24 

(4.22) 

which also coincides with Eq. (4.5). 
Case U, K =0: In this situation it is required that 

i' 02 i' 1 - dr' = --- dr' exists for r ...... 00, 

" /K " A24 
(4.23) 
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which is weaker than the condition for the existence of the 
function U'. 

It is clear in all cases considered that rL ..... 00 as r ..... 00, 

since at least A or /K is unbounded in this limit, and both 
satisfy A > 0 and /K > O. 

We have that the condition of regularity of r in the 
cases considered above is satisfied if the function U' is well 
defined. Let us now observe that in all cases U' is well defined. 

In case B we have that the integral (4.19) exists; while 
for U' to be well defined we should have that 

i T 1 
--- dr' exists for r ..... 00; 

" A 2/1: 
which in this case is equivalent to the condition that 

- dr' exists for r ..... 00. i
r 1 

r, A 2 

(4.24) 

(4.25) 

This integral is easily shown to be equivalent to (4.19) since 

i
oo 

1 foo 1 ar' I foo 1 
-2 dr' = -2 - dt= -dt. 

" A "A at" I, A 
Therefore I" is well defined in case B. 

In case U one has 

-dt= 00, f"" 1 

" A 
and one would like to have 

i
OO 1 
---dr' < 00. 

r, A2/1: 

(4.26) 

(4.27) 

(4.28) 

But let us note that since K can only have the values - 1 and 
0, one has that 

j(x»x; ( 4.29) 

from which one concludes that 

i
r 1 

lim -,--dr' 
r-oo "A':/1: 

1· filar I d' = 1m ----- t 
1_00 "A 2j'i at' u 

1· f' 1 d' l' IX 1 at ' I d' = 1m -- t = 1m --- X 
t_ 00 I, A /1: x- 00 x, A j'i aX' u 

1· IX 1 d' I' IX 1 d ' = 1m - X <; 1m ~ X < 00. 
X-oo x, j'i X-oo X, X 

( 4.30) 

Therefore we see that also in case U the function I" is well 
defined. 

Then since the regularity conditions of r are satisfied if 
U' exists, we conclude that the choice 

(4.31 ) 

provides us with a construction of f+ for all noncontract
ing R W models. 

It now remains to be seen when dO. is regular at f+, 

and what type of hypersurface f + is, namely, whether it is 
timelike, null, or spacelike. 

In terms of the coordinates (tl,U',;l) of the conformal 
manifold if the differential of 0. is given by 
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Xdtl + 0,. dv, (4.32) 

where 

(4.33 ) 

Then dO. will be regular at f + if and only if 0" is regular at 
f+; furthermore, at J+ we have 

dOI.r = 0.,.1 ...... + dU'o (4.34) 

If dO. is well behaved at J+ the character ofthe hyper
surface J+ can be studied from the expression 

g(dO,do.) = (A'/A)2- (~I-K/1:/A/K)2, (4.35) 

where one can see that since it is the difference of two posi
tive terms, in principle it could be positive, negative, or zero. 

In order to have a concrete picture of the different possi
ble behavior, let us consider the following examples: 

( a) constant, 

A= 1, 
A' 
-=0, 
A 

(b) very slow, 

t 
A=--, 

t+ 1 
A' 1 
-= , 
A t(t + 1) 

(c) slow, 

A = In t, 
A' 1 
-=---, 
A tin (t) 

(d) power law, 

A = tn, n>O, 

A' n 
= 

A t 

(e) fast, 

A = cosh t, 
A' 
-=tanht. 

t 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

The first three cases belong to class U. The examples (d) 
with n<; 1 are also of class U, while, when n> 1, they belong 
to class B. Finally the last example is of class B. So we see 
that A = t is a boundary case among our examples which 
divide them into classes U and B. 

Table I shows the value of 0,. andg(dO,do.) atJ+. 
It is observed that although we are forced to take the 

conformal factor as the inverse of the luminosity distance, in 
order to obtain a regular metric at scri, this conformal factor 
is not suitable for the study of the nature of seri, sinee we 
have seen that dO. is sometimes zero or not defined at serio 

However, we can choose the coordinate v such that 
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TABLE I. Values oro, and g(dO,d{l) at seri. 

Example Class K 0,1f< g(dO,d{l) I., + Remarks 

-I tXJ 
(a) U 0 0 Minkowski space 

-I tXJ 
(b) U 0 0 

-1 tXJ 
(c) U 0 0 

-1 tXJ 
(d) n < 1 U 0 0 A = t 2 /

3 isa 
Friedmann model 

-1 2 0 Minkowski space 
(d) n= 1 U 0 I 0 

-1 0 

(d) n> 1 B 0 0 
1 0 

-1 sinhx~ 

(e) B 0 x~ 
1 sinx~ de Sitter space 

u- = 0 at f+ by appropriately defining u-o(a); and by doing 
so we can use du- for the study of the nature of f+, since 
obviously u- is a regular function at scri. In fact, one finds that 

g(du-,du-) = 1I/i; (4.41) 

so scri is nontimelike, and, furthermore, in case U it is null 
and in case B spacelike. 

We have just proved the following thereom. 
Theorem: The"future null infinity of noncontracting 

Robertson-Walker models is null or spacelike according to 
the absence or presence of cosmic event horizons, respective
ly. 

This completes the statements appearing in the litera
ture3 which claimed, based on intuitive arguments, that 
when f+ is null one expects no event horizons, and when 
f + is spacelike each observer will be assigned an event hori
zon. It is important to emphasize that although the same 
intuitive arguments were used for the nature of past null 
infinity, which normally coincides with the initial cosmic 
singularity, the analog theorem is not true. For example, the 
K = - 1 de Sitter model would violate it, since past null 
infinity of de Sitter space (which is spacelike) does not coin
cide with the initial null cone cosmic singularity of the 
K = - 1 model (which does not possess particle horizons). 

It was asked previously under what circumstances 
would the choice ofthe conformal factor as the inverse of the 
affine distance provide us with a construction of J+. To see 
this let us note that 

arL a; = D". (4.42) 

Thus, since we know that the choice of the inverse of the 
luminosity distance as the conformal factor provides us with 
a construction of J+, we are sure that the affine distance 
will do the job if 

(4.43) 

It is clear then from Table I why in the case K = 0 of the 
Friedman model it is inappropriate to take 0 = lIr. 
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V. FINAL COMMENTS 

We will proceed here with a quick recapitulation of the 
topics we have covered, and take the opportunity to insert 
some comments. 

In order to put our work into perspective we have re
viewed in Secs. II and III what could be considered the most 
significant Robertson-Walker models, namely, Minkowski 
space, de Sitter space, and the open dust Friedmann models. 
We have approached the first two spaces through their stan
dard conformal representations in the static Einstein uni
verse. 

In Sec. III we have observed that a naive comparison of 
the asymptotic behavior of a regular asymptotically flat 
space-time with the Riemann tensor of a RW model leads us 
to the dust Friedmann models. Actually, as we have seen, 
these models are not asymptotically flat. This might seem a 
little curious, since, for example, in the K = - 1 dust Fried
mann model the scalar A (t) asymptotically approaches the 
functional form A:::::: t for large t. And, since Minkowski 
space can be represented as a R W model with K = - 1 and 
A = t, one would be tempted to conclude that the K = - 1 
dust Friedmann model is asymptotically flat at future null 
infinity. Instead we have seen that this is not the case; in fact, 
the curvature tensor of this model diverges at future null 
infinity. One might, however, introduce the notion oftime
like infinity and argue that the K = - 1 dust Friedmann 
model is asymptotically flat in that region; we, instead, for 
the moment concentrate our attention on future null infin
ity. 

We have also studied the use of the conformal factor as 
the inverse of the affine distance and found the following: 
while in the case K = - 1 for the dust Friedmann model it 
provides us with a well behaved metric at future null infinity, 
in the case K = 0 it produces a degenerate metric at scri. 

From the contents of Sec. IV we have proved that the 
choice of the conformal factor as the inverse of the luminosi
ty distance permits the construction of J+ for all noncon
tracting R W models. We have also seen that although this 
choice is necessary if one wants to obtain a regular metric at 
scri, one cannot always use the gradient of this conformal 
factor for the study of the nature of J+, since in some cases 
dO is zero or not defined at scri. In any case it was proved 
that in the noncontracting RW models J+ is not timelike, 
and more precisely the theorem of the last section relates its 
nature to the appearance or absence of cosmic event hori
zons. 
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A Lagrange multiplier approach is applied to Gauss-Bonnet-type invariants in Riemann
Cartan geometry. Lancws-type identities are then derived. The use of the variational 
procedure in the context of gravitational theories with a Gauss-Bonnet invariant limit is 
discussed. 

I. INTRODUCTION 

Recently it has been pointed out that the universal 
Gauss-Bonnet (GB) form seems to be of crucial importance 
as a correction to supergravity Lagrangians in higher space
time dimensions. I By contrast, in four dimensions the role of 
the GB combination is at first rather restricted. It is a topo
logical invariant and its addition to an action that describes a 
gravitational theory does not modify the resulting field equa
tions.2 In spite of this, one can suggest quadratic curvature 
combinations that contain as a limiting case the four-dimen
sional GB invariant. Such quadratic curvature terms pro
duce field equations that, only in the GB invariant limit, 
reduce to an identity. For instance, one can propose a gravi
tational model in four-dimensional Riemann-Cartan space 
U4 in which a particular choice of parameters and a condi
tion on the torsion tensor yield Einstein-type equations plus 
the Lanczos identity. 

In the variational derivation offield equations for theo
ries of gravitation the Lagrange multiplier technique consid
erably abbreviates the calculations. Modified variational 
principles, which include Lagrange mUltipliers, have been 
used in the literature3

-6 in the contexts of U4 and of Riemann 
space V4 • 

In this paper a particular form of variational procedure 
is applied to some GB-type invariance and also to curvature 
combinations related to GB-type invariants in U4 • The varia
tions of the topological invariants lead to Lanczos-type iden
tities, which are verified with the aid of well-known identi
ties for the curvature tensor. 

In Sec. II, we present our notation and the form of vari
ational method adopted here. In Sec. III, Lanczos-type iden
tities are derived. The relation between a GB-type invariant 
proposed in the literature7 and the second identity for the 
curvature tensorS is clarified. Section IV deals with an appli
cation of the variational approach to the construction of al
ternative gravitational models in U4 with a GB invariant 
limit. 

II. PRELIMINARIES 

For the curvature and Ricci tensors we follow the defini
tions (as in Ref. 8) 

Rap/=2a[a rp l~ + 2r{a <5lp r lP tr' 

RaP =R AapA . 

(l) 

(2) 

The metricity condition V ugap 0 leads to the connec-

tionof U4 , 

raP r={,J,} + SaP: - Sp:a + sr·ap , (3) 

where Sapr==r[~P 1 is the torsion tensor, with the square 
brackets denoting antisymmetrization. 

The modified variational principle in Riemann space V4 

consists of the introduction of a Lagrange multiplier Aa .Pr, 
which imposes a constraint to be included in the action. The 
variations are then carried out with respect to the metric gaP' 
the symmetric affine connection {~} and Aa . rfJ indepen
dently.3.4 This procedure is extendible to the U4, space.s A 
particular form of this extension will be followed here. 

Let us first consider the general action 

1= f {Jr, + LM + ~ - gAa .Pr(r(Pr) 

- {Pr} - 2SC:(fJr) )}d 4x, (4) 

where L = L(gIlY' r11ll'P a"r11lY P Sil/' ausil/) is a pure 
gravitational Lagrangian, r1lly) is the symmetric part of the 
connection and LM = LM (gill" r1lll'» S;v, ifJA>allifJA) is a 
matter Lagrangian, with the matter field ifJ A • By varying in
dependently gil'" r1Ilv), Sill' \ and A/", we get 

8L + ~ _gMllv= _ 8LM , 

8gllv 8gllv 
(5) 

8LM (6) ---A-' 
8r(llv ) 

8L 2 r-:::A[ll l'l' _ --- ,,-g A-
8SIlv A 

8LM (7) 

r1lll') = {;v} + 2S11lv) . (8) 

Equation (8) is equivalent to (3), or to the assumption 
of the U4 postulate. The symmetric tensor M Ill' is obtained 
by the variation of the term that contains A!r in (4), and is 
given by 

(9) 

* where V" ==V u + 2S"A A, V" is the covariant derivative asso-

ciated with rill' A, and the abbreviation A {YUIl} == A l'Uft _ A UIl'V 

+ AllvU is used. From Eq. (6) one obtains the Lagrange 
multiplier for a given L. By substituting this expression into 
(5) and (7), two groups offield equations result, involving 
the basic fields gaP and SafJ. r. Thus the variational derivation 
via Lagrange mUltipliers reconstitutes the field equations 
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that can be obtained alternatively from the conventional Hil
bert principle. 

III. DERIVATION OF LANCZOS-TYPE IDENTITIES 

We first recall that 

f ~ - g£a{3yli(j'VAPR a':.vR Y~AP d
4
x 

is an invariant in V4 , the usual Gauss-Bonnet form, where 

the conventions £0123 = + lIFg, £0123 = Fg are 
adopted for the permutation tensor (j'VAp. The identity relat
ed to this invariant9 can be extended to U4 and rewritten 
as 10. I I 

{j f Fg(RJlvApR ApJlV - 4RJlvR VJl + R 2) d 4x=0. 

( 10) 

In U4 , thepropertiesRJlvAp = - R JlVAP = - R JlVPA hold, but 
the symmetry relations R JlVAP = R ApJlV and RJlv = RVJl are 
valid only in V4 where Sa{3y = 0 globally. Therefore, in V4 , 

Eq. (10) reads 

{jf~g(R RJlVAP_4R RJlv+R2)d 4x=0 v - g JlVAp JlV - , (10') 

an identity frequently misquoted as being the GB identity in 
U4 • The true form is (10). 

LetustakeL = ~g(R Rylia{3_4R R{3a+R 2) I -v - g a{3yli a{3 

as the Lagrangian L in (4), with LM = O. The variational 
expressions (5 )-( 8) must give then the corresponding 
Lanczos identity. From (6) we get 

* *] + 4V P (D~R v)P) _ 2V pR (Jl~ v)p 

_ 4[ SAP (JlR V)~ Ap _ 4Sap (JlR v)p + RS ~(llV)] . 

(11 ) 

From Eq. (5) it follows that 

MJlV + NJlV = O. 

with MJlV defined at (9) and 

NJlv=loJlV(R 2 _ 4R R pA + R R paAT 
2.6 Ap ATpa 

_ 2(RR (JlV) - 4Rp (JlR v)p - R Aa~ (JlR ~Pla . 

Using the contracted Bianchi identities 

V TRJlVA:- - 2V[JlRvJA = 4ST[JlPR vJpA " 7" + 2SJlv
P RPA , 

VJlR = 2V R Jla + 4S JlPR a + 2S R JlPAa 
(7 U P' UAp , 

and also 

(12) 

(13) 

(14) 

(15) 

V[a V {3 JR JlV = ~Ra{3pi!"R pv + ~Ra(Jp ~R JlP - Sa{3" PVpR JlV , 

(16) 

we verify that ( 12) is precisely the Lanczos identity in U4 , as 
expected. 

We consider now the invariant SL2 d 4X , with 

L - r----=,.uvAPR a{3 R 
2 - V - ge" ""JlV a{3Ap' (17) 

The Lagrange multiplier in this case is 
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A SKT = 4[V R a(K cT)SAp + R Jla S (K£T) SAP 
a " "AP"" ""AP UP" 

(18) 

The substitution of (18) into (5) and (7), again with 
LM = 0, leads to expressions that are identically satisfied. 
This can be checked using the Bianchi identity. Thus the 
Lanczos-type formula associated with the Gauss-Bonnet
type invariant (17) turns out to be related to the usual Bian
chi identity in U4 • 

Let us apply the technique to an identity presented in 
Ref. 7. One can form, with the Lagrangian 

L3 = Fg(j'vAP(RJlVAP + 4SJluvS~: + 4SJlUUSAPV), (19) 

the invariant SL3 d 4X • From L3 we derive the multiplier 

(20) 

Equations (20) and (7) lead to an identity trivially verified. 
From (20) and (5) a relation similar to (12) results, in this 
case with 

anrl 

* M JlV = 2 V S (Jlcv)a{3u 
U a{3" "" 

N JlV = ca(3).(JlR v) + 4caAp(JlS v)S U 
"" a{3A" "" au" AP" 

+ 4S u£aAp(JlS v) 
au' Ap' • 

(21) 

(22) 

The second identity for the curvature tensor 

R[a{3A t = 2V[aS{3A t - 4S[a{3PSAJp i!" (23) 

is then required to verify that (MJlV + NJlV) vanishes identi
cally. Thus one can say that (23) is the Lanczos form of the 
GB-type identity discussed in Ref. 7. This is made clear by 
the use of the Lagrange multiplier procedure. 

IV. APPLICATION TO GRAVITATIONAL MODELS 

Several classes of R + R 2 gravitational theories have 
been studied recently. 12-17 The main motivation is the search 
for renormalizable divergences in the S matrix in the quan
tum version of these theories. The particular class of models 
we shall consider here contains as a limit the Einstein La
grangian plus the Gauss-Bonnet invariant in the torsionless 
case. We also find that torsion is a dynamical variable for 
various choices of the parameters in the Lagrangian. The 
existence of the Gauss-Bonnet invariant limit assures the 
restitution of Einstein gravity when the torsion tensor van
ishes. 

Our Lagrangian is 

L =a~ -gR + L Q , 

LQ = [-=g[ R 2 + (3R JlVRJlV + yR a{3JlvRa{3Jlv 

- «(3 + 4)R JlVRJlv + (1 - y)R Jlva{3Ra{3Jlv 

+ tR a{3Jl
V
R a[{3JlvJ + 1]sa{3JlS{3Jla 

(24) 

+ (}SaJlJlsav~ + ).,Sa{3JlSa{3Jl] . (25) 

The quadratic combination LQ generates the Lanczos 

R. de Azeredo Campos 1218 



                                                                                                                                    

identity in V4 when the torsion tensor vanishes. In this limit 

we have lLQ = ~ - g (R 2 - 4RI'vR I'V + RaPl'vR aPl'v. We 
note that 

Ra[Pl'v] = 3 -1 (Rapl'v + Ral'VP + Ravpl') = 0 
in V4 • In (25), {3, y, 5, 1], 0, and A are free parameters. If we 
take all these parameters to be equal to zero the action S d 4X 

becomes the Gauss-Bonnet invariant in U4 • The choice 
a = !K, where K is the Einstein gravitational constant, is 
needed to obtain the Einstein limit when SafJr = O. In this 
case, (24) becomes the most general Lagrangian in V4 with 
at most quadratic terms in the curvature which reproduces 
Einstein equations in vacuum. (Parity-violating terms such 
as E!'v).PR a!vRaP).p or ca{3l'vSl'vpSa).). were rejected. The cos

mological term ,r=g A also was not taken into account.) 
The use of the variational procedure discussed in Sec. II 

leads to two groups of field equations, which are (in vacu
um), respectively, 

aG (I'v) _ MI'V - NI'V = 0, 

a(SI'V~ _ 2S ;I'v] + 415" [I'sv~t) + E;:v + F;:v 

+H;:v +J;:v=O, 
where 

E ;:v= [.eV). (R). [vt5,,1'1 - 15" [I'R v]). - t5"R [I'v]) 

(26) 

(27) 

+ R [).v] (S,,).~ + S~).,,) - R [).I'] (S,,). v + S~ Au) ] 

(28) 

• + V). (R ~).I'V + R I'v).~) 

+ 2S [I'(R v], ).P _ R 1).lplv] ) 
).P·" " 

- S).P" (R I'V).P + R ).PI'V) ] , 

The tensor Ml'v in (26) is given by (9), with 

+ RS ~(I'V) + 4S).,,(vR 1'»).] 

- 2[V(V(t5"I')R) - V ,,(gI'vR) 

+ 2{3(R [).V]S,,).. I' + R I).I']S,,).. V)] , 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

c ;:v={3 [2(R ).(1'15;; - t5~vR 1'»).)S).pP + V).R ).(1'15:) - V). (t5~vR 1'»).)] - 4(2t5;;R V»).S).pP + V). (t5;;R v»).) _ V"R (I'v» 

+ 2y[2Sp).P(R ).(I'V)~ - R" (I'v»).) + S).P (I'(R 1).lplv)~ _ R V)~).P) + V). (R (vJ).II') _ R ).(I'V)~ >] + 2 (S).p (I'R v~~).P 

+ 2S ).R (wlplv) _ V R (v·I).II'» 
).P·" ).", (35) 

D 'I'V= _ 4.E- [S peR (I'v)· _ R .(I'v»).) + S (I'(R 1).lplv)· _ R 1).lv)p· + IV (R . (I'v»). _ R ).(I'v)· )] 
u 3~ pA· U U Ap' a u 2 A U U • (36) 

The G (I'v) in (26) is the Einstein tensor and, for N I'V, we have 

NI'V = - 2{RR (I'v) + g'"(VR I')P[{3R).p - ({3 + 4 )Rp).] + (y + nR (ATp R I'»).TP + (I - y)R ).T(I'~R ~)P).T 

+ (5/3) [R (~TpR VTP). + R).T (l'pR 1).lv)PT]} + !gI'V[ R 2 + {3R).pR ).P - ({3 + 4 )R).pR P). 

+ (y + .E- /3)R R ).TP" + (I - y)R R P").T + 2.E-R R ).P"T] _ 9 (SI'''' Svp' 
~ ). TP" ).PT" 3~· ). TP" " P 

In the torsionless limit, (27) vanishes identically and (26) 
corresponds to the Einstein equations plus the Lanczos iden
tity in V4 • Thus in this case (and for a = ! K) we regain 
general relativity. The vanishing of (27) can be checked with 
the help ofEqs. (14) and (IS). 

The existence of torsion waves in the general case for the 
class of models based on the Lagrangian (24) can be verified 
in the weak torsion approximation defined by the assump
tions (i) gaP = 1]aP' where 1]aP is the Minkowski metric; and 
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(37) 

hi) terms in which the torsion and/or its derivations appear 
quadratically are neglected. 

In this approximation, (26) becomes an identity and 
(27) reduces to an equation for the propagating torsion, 
which will be given explicitly in the following cases. 

(a) The non vanishing components of the torsion are the 
vector components of the (!, !) representation Va =Sal'~ . 

For this case, Sa{3r = i1]r[P Va I and (27) becomes 
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o VI' - ~{(3e + U - lOa/4{3 + 7y + 25') ) VI' = O. 
(38) 

(b) The torsion is determined by the axial vector of 
the (!, !) representation Aa =f,cAl'vaSAI'V, so that SaPy 

= caPyt;A t;. This gives (with the additional condition 
al'A I' = 0) 

Proca fields like those in Eqs. (38) and (39) have been 
found in some different classes of gravitational models and 
show the existence of mass torsion waves. We observe that a 
particular form of (26) and (27) was discussed in Ref. 11. 
We also remark that the main interest in the class of models 
presented here lies in the existence not only of torsion propa
gation but also of an Einstein limit accomplished via the 
Lanczos identity. This implies that the theory based on (24) 
satisfies the classical gravitational tests when the effect of 
torsion is negligible. We have also found that for axial tor
sion the field equations (26) and (27) with the weak torsion 
ansatz admit the same pp-wave solutions as in general rela
tivity. More details about this class of models and also about 
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the construction of other types of theories with the Gauss
Bonnet invariant limit are under investigation. 
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Presented are some new results concerning distorted Brownian motion, the Ito process 
associated with the Schrodinger operator with ground state. These results are obtained by 
means of Malliavin stochastic calculus. Under the condition of continuously differentiable drift 
coefficient with bounded partial derivatives, it is proved that the image of a bounded function 
after action of the expectation operator of distorted Brownian motion is twice continuously 
differentiable. This approach enabled us to prove that distorted Brownian motion has twice 
continuously differentiable transition densities. With the additional assumption that the drift is 
bounded, it is proved that the corresponding initial value problem has an infinitely 
differentiable fundamental solution. 

I. INTRODUCTION 

In this paper, we shall investigate regularity properties 
of the distribution of distorted Brownian motion. Distorted 
Brownian motion is a diffusion process that arises naturally 
in the formulation of the Schrodinger dynamics in terms of a 
ground state. 1-4 

We shall, following Ref. 4, assume that the Schrodinger 
operator H = - 11/2 + V has a strictly positive ground 
state Po such that PoEL1.1oc , VpOEL 1.1oc ' and, for fEeD', 

!( l1 fIPo)L, = CfWPO)L,· 

IfVpoEL 11oc we can define a positive self-adjoint opera
tor iI in L2(~)' (m(dx) = Po(X)2 dx), as Dirichlet forms, 
so that for fEe~, iIf= - (l1f/2 + b·V j), where 
b = Vlnpo.1 

For a potential Vin Simon's class Kd (Ref. 3), let us 
define a Schrodinger semigroup {e - Iff} in L2 as 

e-'Hf(x) = lEx {.r(B,)exp( - f V(Bs)dS)}, 

where {B I ,t»O} is standard d-dimensional Brownian motion 
starting from zero. If U is a unitary map U:L2 -> L2 (m) de
fined as U f = f / Po, then the semigroups {e - 'If) and 
{e - Iff} are related,3 as 

(1) 

The symmetric diffusion process {X"t»O} on Rd could 
be associated to the operator ii, such that for a bounded, 
measurable function J, ( fElW b ), belonging to L2 (m), 
e - Iilf (x) = lEx {f (X, )}, where lEx is expectation w.r.t. the 
measure generated by {X"t»O) such that Xo = x. 

As for the symmetry we have, forJ,gElWb nL2 (m) 

(fllE{g(X')})L,(m) = (lE{(X,)}lg)L,(m)' (2) 

Further, if bERd ® L2 (m), then {XJ is the solution of a 
stochastic differential equation 

X, -Xo= f b(Xs)ds+B" 

where Brownian motion {BJ starts from zero and 
P{XoEdx} = m(dx).1 

Following Ref. 5, the process {X,} is called the distorted 
Brownian motion. 

Let us mark with (A) the condition that b = V In Po has 
continuous and bounded first-order partial derivatives. 

Then there exists,6 a unique solution {X ;:~} of the equa
tion 

X;:~ - x = f b(X;:~)ds + B, + r f Us ds, (3) 

where r> 0, xERd and {u"t;~O} is a process in Rd, adapted to 
the natural filtration of {B"t;;~O}, such that for some {) > ° 
and all t 

(4) 

We shall denote X"x = X?~. It is clear that for 
fEMb nL2(m) e-'Hf(x) = lE{(X"x)} = lEx {(X,)}. 

Assuming condition (A), the following facts have been 
proven in Ref. 7. 

(D1) For each t>O there exists the derivative of X"x 
with respect to the initial condition x, The matrix 
DX"x = [aX ~,~I aXj n ~ 1 is nonsingular and 
sup{IIDX"x II: xERd} <ec,. (All matrix norms are to be un
derstood in Hilbert-Schmidt sense. ) 

(D2) There exists a directional derivative in the direc
tion u, DuX"x = lim,_o (X ;:~ - X"x )/r, where U is as in Ref. 
5. 

For u=[u(I)"",u(dd, the Bismut matrix DuX"x 
= [Du X,x, ... ,Du XIX]' (Ref. 8) is 

(1)' (d)' 

DuX"x = DX"x f(DXs,x)-I. Us ds. (5) 

(D3) ForfElWb nL2(m) and t> 0, e-'H f is a continu
ously differentiable function, and 

VxlEx{(X,)}=lEx{.r(X,). fDXsdBs·t- I}. (6) 

Immediate consequences of the previous assertions are 
the following two lemmas. 

Lemma I: Let {fs,O<s<t} be a family of bounded func
tions, such that 
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L Ilfsll co S-t/2 ds < 00. 

Then mapping x - Ex {fb Is (Xs )ds} is differentiable and 

VxEx {Lis (Xs )dS} 

= Ex {Lis (xs)(f DXv dBv)s-t dS}. (7) 

Prooj: We shall prove the Lemma for d = 1. Multidi-
mensional extension is straightforward. 

Let us fix SE (O,t). Then (D3) implies that 

! E31s (Xs)} = Ex {Is (Xs) l' DXv dBvS- t}. 

As 

II Ex {is (Xs) l' DXv dBvs-
t
} II co 

<s-tllfs II co s~p Ex {Ill' DXv dBv I n 1/2 

= s-tllf.11 co s~p Ex {fllDXv 11
2dV} '/2 

<s-tllf.11 co {f e2CvdV} 1/2 

<s-t /21lf.1I co eCt 

we can conclude that integral 

lEx {Lis (Xs )(1' DXv dBv )S-I dS} 

converges uniformly w.r.t. x, so relation (7) holds. Q.E.D. 
Lemma 2: Let j be a bounded function with bounded 

and continuous first-order partial derivatives. Then the 
functionalj(X"x) admits the following representation: 

j(X"x) = Ex {j(X"x)} 

+ LEx" {j'(X,_s)dX,_JdBs' (8) 

Proof' Sincej(X"x) is a square integrable functional on 
.'7, by Clark's representation,9 we have 

j(X"x) = lE{j(X"x)} + f H"x (s)dBs 

for a square integrable, adapted process {H"x (s),O<S<I}. 
Then for another square integrable, adapted process 
{us ,O<S<I} as in (4), using integration by parts formula, 
Ref. 8, and (D2), one gets 

E{f H"x (s) 'Us dS} 

1222 

= lEV (X"x) f Us dBs } 

= E{Du (j(X"x»} 

= lEV'(X"x)DX"x f (DXs,xl-l·us dS} 

= lE{L lE{{' (X"x ) DX"x (DXs,x) -II srs dS}. 

Since U is arbitrary, 
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H"x (s) = lE{j'ex"x )DX"x (DXs,x) -11.'7J. 
Now, as 

DX"x - DXs,x = f b , (Xu,x ) 'DXu,x du (Ref. 7), 

using Markov property, we can conclude that 

lE{f'(X"x )DX"x (DXs,x) -11.'7s } 

= lEx~x {f' (X, _ s )DX, _ J, 
so the Lemma is proved. Q.E.D. 

II. REGULARITY PROPERTIES OF THE SEMIGROUP 
{ e-tH} 

Now, we shall extend the concept of stochastic calculus 
from Ref. 7 and prove the following theorem. 

Theorem 1: Assume function b satisfies condition (A) 
and let {X"x} be the family of solutions of Eq. (3). Then for 
jEC~, 

E{V j (X"x )} 

= lE{.r(X"x) ·(f DXs,x dBs'l -I - f b '(Xs,x)dBs)}. 

(9) 

Proof' In Ref. 7 it is proved that {DX"x} satisfies the 
following Cauchy equation: 

DX"x - 1 = f b , (Xu,x ) 'DXu,x duo 

Then, it is elementary that (DX"x) -I exists and that 

1 - (DX"x) -I = f(DXs,x) -I'b , (Xs,x )ds, 

so multiplying by DX"x on both sides of the above equality 
one gets 

DX"x - 1 = DX"x (' DX s-:;' I. b ' (Xs.x )ds. 
Jo' 

Defining U. =b'(X.x )' by (D3) one has, 
DuX,.x = DX"x - 1. Also for U. = DX,x' it is 
DX"x = 1 -1'DuX/,x' hence 

1 = 1 -1'DuX"x - DuX"x. 

For a functionjEC~ we have 

f'(X/,x) = 1 -1'Du(f(X"x» - Du(f(X"x », 
and by integration of the parts formula (Ref. 8) the conclu
sion of the theorem holds. Q.E.D. 

Using Lemmas 1 and 2 and Theorem 1 we are able to 
prove the following theorem. 

Theorem 2: If the function b has continuous and bound
ed first-order partial derivatives then, for a bounded measur
able functionj and 1> 0 the mapping x -lE{ j(X/,x ) } i~ twice 
continuously differentiable with bounded derivatives. 

Proof' Without the loss of generality we can carry the 
proof out for d = 1. 

In (D 1) it is proved that lE{j(X/,x )} is once continuous
ly differentiable for jEMb , while the boundeness of the first 
derivative is obvious from relation (6). By the semigroup 
property lE{j(X,+s,.",}} == E{lEx~Jj(X,)}}, so it is suffi
cient to prove the theorem for /EC~. 
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Theorem 1 and (01) imply that, for fEe! 

~ E{j(X/,x)} = E{f' (X/,x)} 

+ E{.r(X/,x) f b' (Xs,x )dBs} , 

Now, using representation forj(X/,x) as in Lemma 2 we 
have 

a 
ax E{j(X/,x)} 

= E{j' (X/,x )} 

+ E{f Ex~Jf'(X/_s)DX/_Jb'(Xs,»dS}. 
The first term E{f'(X/,x)} is differentiable w.r.t. x by 

(01). Lemma 1 implies that the second term is differentia
ble as the family of functions Is (x) 
= b'(x)Ex{f'(X/_s)DX/_J obviously satisfies condi
tions from Lemma 1. 

So, we have proved that E{j(X/.x )} is twice differentia
ble, and using Markov property as in Lemma 2 in the end we 
get 

a2 

ax2 E{j(X"x)} 

= E{f' (X"x) f DXs,x dBs' t -I} 
+ E{.r' (X"x )DX"x f b' (Xs,x) (DXs.x)-1 

x(f DXu,xdBu) S-I dS}. 

The right side of the above formula is a continuous and 
bounded function in x so the theorem is proved. Q.E.D. 

Using Theorem 1 and the so-called Malliavin lemma 
(see Ref. 8) one can conclude that for t> 0 and xelRd the 
distribution of the random variable X"x is absolutely contin
uous with respect to the Lebesgue measure, and consequent
ly, w.r.t. the measure m. 

That fact is accurately stated in the following theorem. 
Theorem 3: Let everything be as in Theorem 2. Then 

there exists a function p: lR + X lRd X Rd 
..... R + such that for 

jeMb nL2(m), t> 0, xeRd 

e- ,llj(x) = E{j(X/,x)} 

= r j(Y)'p,(x,Y)'Po(y)2dy. 
JRd 

Moreover, there exist constant K depending only on di
mension d such that 

sup{p, (x, y): yelRd}.;;;K·max(t - dl2,1) 'Po(x) -2. 

Function p, (x, y) is once continuously differentiable 
w.r.t. variable t, and twice continuously differentiable w.r.t. 
spatial variables x and y. 

Proof Let {PI (x,B): t> O,xelR,Be8?J (R)} be a family of 
transition probabilities of the process {XJ. Then relation 
(8) from Theorem 2 could be expressed as 

r Vj(Y)'P,(x,dy) = r j(Y)'r,(x,Y)'P,(x,dy), 
JRd JRd 

where 

r,(x,y) 

=E{L DXs.x dBs·t- l
- l' b'(Xs.x)dBsIX/.x =y}. 

(10) 

Now, for q)J2, it is 

(L)r/(x,y)lIq'P/(X,dy»)'lq =E{IIE{f DXs.x dBs·t- l
- f b'(Xs.x ) dXs1X,.x} IIT1q 

';;;E{ 111' DXs.x dBs·t -I - l' b , (Xs.x )dBs Ilq} IIq 

';;;E{ II f DXs.x dBs . t -III T1q + E{ II f b' (Xs.x )dBs II Tlq . 

Now, by Burkholder's inequality [Ref. 10, p. 286], we 
have 

and 

E{IIL b'(Xs.x)dBsl n 

1223 

.;;;C(q)t ql2 - I. E{L lib , (Xs•x ) IIq dS} 

.;;;C(q) ·t qI2 ·C, 
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so 

(Ld IIr, (x, y) IIq·p, (x,dy) )'Iq .;;;Kt - 112eCt. (11 ) 

We can always chose q to be greater than d and using 
Theorem (1.28) from Ref. 10 conclude that there exists a 
density w.r.t. Lebesgue measure q/ (x, y) such that 

Pt(x,dy) = q,(x,y)dy 

and 

sup{q,(x,y): x,yeRd}';;;Ct -dI2edCt . 

For t.;;;1 we have sup{q/(x,y): x,yelRd}.;;;Kt -d/2 and 
for S = 1 + u, by the Chapmari-Kolmogorov theorem, 
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qs (x, y) = f ql (X,z)qu (Z, y)dz 
JRd 

So, wehavesup{q,(x,y): x,yERd},Kmax(t -d/2,1). 
Since assumption (A) implies that Po> 0, we can define 

density w.r.t. measure m as p, (x, y) = q, (x, y)Po( y) -2. 
Then we have, forfEMb nL2(m), t>O, xERd, 

e-'Hf(x) = lE{f(X,.x)} 

= f f( y) 'p, (x, y) 'Po( y)2 dy. 
JRd 

The symmetry of distorted Brownian motion, relation 
(2), implies that p, (x, y) = p, ( y,x), and consequently 

sup{p, (x, y): yERd}po(x) 2,K max(t - d/2, 1). 

For fixed xERd and s> 0, Ps (x, . ) is a bounded function 
on Rd. The Chapman-Kolomogrov formula 

P,+s(x,y) = f Ps(x,z)p,(z,Y)Po(z)2dz 
JRd 

= f Ps (x,z)p, ( y,z)PO(Z)2 dz 
JRd 

= lE{ps(x,X,.y)} (12) 

and Theorem 2 imply that mappingy-+p,+s(x,y) is twice 
continuously differentiable. Symmetry of x and y in 
p,+ s (x, y) yields that, for fixedy, mappingx-+p,+ s (x, y) is 
also twice continuously differentiable. 

The differentiability of map t-+p, (x, y) is now easily 
established. By the Ito formula 

Ps(x,x,.y) -Ps(x,y) 

= f VyPs(x,xv.y)dBv + f [~ t:::.yPs(x,xv.y) 

+ b(Xv.y)·VyPs(x,xv. y )] du, 

and taking into account expectation, it is obtained that 

ps+,(x,y) -Ps(x,y) = f lEI ~ t:::.yPs(X'Xv.y ) 

+ b(Xv.y)·Vyps(X,xv.y)} du, 

hence the proof of the theorem is completed. Q.E.D. 
In addition to the assumption that b has continuous and 

bounded partial derivatives of the first order, let us now sup
pose that function b is also bounded. 

On the space Cb of bounded, continuous functions, with 
the usual supremum norm, we can define Co semigroup of 
operators {P"t>O}, as P,!(x) =lEx{f(X,)}. Let A be a 
generator of semigroup {P, ,t;;;.O}. Then using the Ito formu
la one can easily see that C~ CDom(A) and, for jEC~, 
Af = t:::.f 12 + b·V/, while for fE~ Af = - iII Also, 
Theorem 2 implies that for t> 0, P,: Cb -+ C~ C Dom (A), 
hence mapping t -+ P, f is strongly differentiable for each 
fECb' i.e., {P"t;;;.O} is a differentiable Co semigroup.l1 Then, 
for t>Oand neN, P,: Cb -+Dom(A n) and A nop, is a bound
ed operator on Cb • II From Theorem 2 we know that, for t > 0 
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and a bounded function/, lEx {f(X, )}EC~ CCb hence 

lE. {f(X,+s)} = Ps(lE{f(X,)})e n Dom(A n). 
n=1 

Theorems 2 and 3 imply that for each fixed u> 0 and 
xERd (respectively, yERd) , p, (x,·) [respectively, p, (', y)] 
is in C~, hence 

AxPv(x,y) = t:::.xPv(x,y)12 + b(x)·VxPv(x,y). 

Then using relation (12) one has 

Axp,+s(x,y) =AxlEx{Ps(X"y)} 

so 

and 

= lEx {AxPs(X"y)} 

= f p,(x,z)'A zPs(z,Y)Po(Z)2dz JRd 

Axp, (x,y) =Ayp,+s(x,y). 

Now, as 

"" p, (X,)E n Dom(A;) 
n=1 

p, (', y)E n Dom(A ~) 
n=1 

and Dom(A)eC2 we havethatp, CC"" (Rd XRd). Having in 
mind that (a lat)p, = Ap" we have that 
PEC"" (R+ XRd XRd). 

We shall use the above considerations to prove the fol
lowing theorem. 

Theorem 4: Let b = V In Po be a bounded function with 
bounded and continuous first-order derivatives, and 
{X"x,t>O} distorted Brownian motion starting from xERd. 
Then the initial value problem (alat)u(t,x) = ~t:::.xu(t,x) 
+ b(x)·Vx (t,x) , u(O,x) = f(X)ECb has a unique solution of 

the form 

u(t,x) = f f(Y)'P,(x,Y)'PO(y)2dy 
JRd 

where p, distorted Brownian motion's transition density 
w.r.t. measure Po( y)2 dy, could be chosen such that p be
longs to C"" (R+ X Rd X Rd). 

Proof: The only unproven part is uniqueness of solu-
tions. Let UEC I

•
2

( [0,00) XRd) such that 

a 1 
- u(t,x) = - t:::.xu(t,x) + b(x)·Vxu(t,x), 
at 2 

and u(O,x) = O. For O,t,T let us define h(t,x) 
= u(T - t,x). Then, for t,T, 

a 1 
- h(t,x) + - t:::.xh(t,x) + b(x)·Vxh(t,x) = o. 
at 2 

By the Ito formula we have 

h(t,x,) - h(s,xs) = f Vh(u,Xv )dBv 
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it [a 1 + -h(v,Xv) +-Axh(v,xv) 
s at 2 

+ b(Xv)·Vxh(V,xv)] dv, 

hence, lEx {h(t,xt)} = lEx {h(s,Xs )}. Takings = o and t = T 
one gets 

0= lEx {U(O,xT)} = lEx {u(T ,xo)} = u(T,x). Q.E.D. 
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The role of complex structure deformations in representing the Virasoro algebra associated to 
any conformal field theory on a genus p> 1 compact Riemann surface is investigated. 

I. INTRODUCTION 

In the early days of conformal field theory it was already 
clear that the Virasoro algebra I plays an essential role in 
describing the symmetry content of conformal invariant 
models defined on the plane. 2 In the last few years there has 
been considerable progress in the study of conformal field 
theories on a general Riemann surface. This development, 
which was stimulated by string theories3 and the study of 
critical phenomena,4,7 naturally poses the problem of gener
alizing the Virasoro algebra to Riemann surfaces of nontri
vial genus. Recently there have been a few attempts8 at solv
ing this problem in abstract form. In the present paper, we 
will be mainly concerned with the approach of Eguchi and 
Ooguri. 91t is worth mentioning that in the formalism of Ref. 
9, the Ward identities reflect the conformal invariance, also 
taking into account the deformations of the complex struc
ture on the underlying genus p> 1 compact Riemann surface 
l:p. By means of these generalized (with respect to the famil
iar p = 0) Ward identities,4 Eguchi and Ooguri show that 
the Euclidean correlation functions of the system give rise to 
a representation f of two commuting (conventionally 
called left and right) Virasoro algebras. Each of these alge
bras is originally defined on any coordinate patch of l: p' but 
may be consistently glued together to form a global algebraic 
structure on l:p. It turns out that this structure is universal 
(p independent) and consequently, the commutation rela
tions are those from the p = 0 case. All information about 
the nontrivial genus is carried by the representation f. In 
order to make a comparison, we recall that for p = 0 the 
space f has the structure4 

f= ffia,p>ofdha,c)®fR(iip,c), (1.1) 

where f L(R) (h,c) is a highest weight representation of the 
left (right) Virasoro algebra characterized by central charge 
c and highest weight h. Moreover, in conformal field theory 
h>O and the representation fvac =f L (O,c) ®f R (O,c), 
which we call the vacuum sector, appears exactly once in the 
direct sum (1.1). 

In the present paper we further pursue the investigation 
of Ref. 9 by extracting from the conformal Ward identities 
information about the structure of the representation f for 

p> 1. We show that some new phenomena related to the pres
ence of complex structure deformations occur. In particular, 
by deforming the complex structure on l:p' one obtains in 
general unitarily inequivalent field theories. The reason is 
that the energy-momentum tensor Tzz develops a nontrivial 
vacuum expectation value (Tzz ) that depends on the com
plex structure. By means of the conformal Ward identities 
we prove that (Tzz ) cannot be absorbed in a redefinition of 
Tzz ' maintaining conformal invariance. As a consequence of 
this phenomenon, field theories that for p = 0 give rise to a 
representation of the Virasoro algebra of the type given by 
Eq. (1.1) in general do not preserve this property when 
quantized on l:p with p> 1. Indeed, we show that for p> lone 
has the following alternative. One can have either nondegen
erate vacuum or standard Hermiticity properties of the Vira
soro generators on f vac> but not both. Therefore, in both 
cases the vacuum sector f vac is not a unitary highest weight 
representation. We also prove that, different from the p = 0 
case, for p> 1 some of the descendent states infvac couple to 
the vacuum. 

Finally, we discuss some sufficient conditions for the 
vanishing of (Tzz ). These conditions are expressed in terms 
ofthe partition function and in this sense are not universal, 
but depend on the model. We also show that as a conse
quence of modular invariance, (Tzz ) vanishes on the orbi
fold points of the moduli space j( p associated to l: p' 

Our paper is organized as follows. In Sec. II we derive 
the general form of (Tzz ) as a solution of the conformal 
Ward identities and clarify its meaning. Following Ref. 9, we 
introduce in Sec. III the Virasoro algebra and study the im
pact of (Tzz ) on its representation. Section IV contains some 
examples on the torus. A comparison to the finite tempera
ture theory on the cylinder is also given. Section V is devoted 
to our conclusions and we comment on string unitarity. 

II. THE ENERGY-MOMENTUM TENSOR ON A RIEMANN 
SURFACE 

In this section we consider a field theory with the classi
cal action 

Sci = f d 2x..{g.1'(ua A"ua ), (2.1) JIp 
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where Ua are two-dimensional matter fields and ~p is a com
pact Riemann surface of genus p equipped with the metric 
g/lv' It is worth stressing that Sci need not be a Gaussian 
action. We assume further that (2.1) is invariant under 
Weyl rescalings and both diffeomorphisms and local Lor
entz transformations on ~p. This assumption implies (see, 
e.g., Ref. 10) the following functional dependence: 

Sci = Sci (m;ua,a/lu a ), 

Here m is a point in the moduli space 

mE.4>==Met(~p )/Diff(~p) ® 7Y', 

(2.2) 

(2.3) 

where Met(~p) is the set of all metrics on ~p' while 
Diff( ~p) and 7Y' denote the groups of diffeomorphisms and 
Weyl rescalings, respectively. As is well known, JI p is finite 
dimensional. For the real dimension dim JI p = 2Mp one has 
Mo = 0, M, = 1, and Mp = 3p - 3 for p>2. It can be 
shown that JI p has a natural complex structure. For the 
relative complex coordinates we shall use the notation 
{y):j 1, ... ,Mp }' 

In performing the quantization, Diff( ~p) and 7Y' are in 
general potentially anomalous. Assuming that the Lorentz 
symmetry is not anomalous, by means oflocal counterterms 

(Tzz<p, (z"z,)·· '<Pn (zn,zn) > 

all anomalies can be shifted to Jr. In what follows we shall 
assume that this shift has been performed. Consequently, for 
the quantum action Sq one has 

. Sq Sq(y,ji;u(x);ua,a/lua), (2.4) 

where u(x) stands for the Liouville mode. The associated 
partition function will be denoted by 

Z( y, ji;u(x)). (2.5) 

The next step toward the conformal Ward identities is the 
construction of the energy-momentum tensor T/lv (x) and 
the conformal fields <P k (x). In general T/lv and <P k are com
posite operators built up in terms of the elementary fields 
Ua (x). Finally, the conformal Ward identities are expressed 
in terms of the Euclidean correlation functions 

(2.6) 

For convenience we switch from now on to complex 
isothermal coordinates, i.e., ~p is covered by an atlas 
d' = {Ua } of local coordinates such that on each coordi
nate patch one has gzz = gzz = 0 and gzz gzz. In these co
ordinates the conformal Ward identities with one energy
momentum insertion read as9 

j~' hz/(z) f d 2un[ggww1Jw wJ (w,w) (Tww<p, (Z"Zl)" '<Pn (zn,zn) > kt, [hk V Zk G
Z

' zz (Zk'Z) + GZ'zz (Zk,Z)V;:k)] 

X (<p, (z"z,) .. '<Pn (zn,zn» - _c_ f d 2un[gG W
zz (w,z)awR(w,w) (<p,(z"z,) .. '<Pn (zn;zn»' (2.7) 

481T 

where hk is the conformal weight of <Pk defined in terms of 
the dimension dk and the spin Sk by hk = !(dk + Sk)' The 
covariant derivative V;S) is given by 

V~S) = az + isOJz ' 

where OJz is the spin connection. The function G wzz is the 
Green kernel for the operator VW and satisfies 

1 VWGwzz(w,z) = -8(z - w) 
Jg 

Mp 

- I g'"w1JwwJ(w,w)hzz/(z), (2.8) 
)=, 

where {hzz.'} is a basis of holomorphic quadratic differen
tials on ~p, while {1JzzJ} are the Beltrami differentials dual to 
hzz.), i.e., 

(2.9) 

Finally, R in (2.7) is the scalar curvature and the numerical 
factor C is the central charge of the associated Virasoro alge
bra. A similar identity holds for T zz' 

Let us now concentrate on the vacuum expectation val
ue (Tzz ). From (2.7) one obtains 

(Tzz ) )~l hzz/ f d2un[ggWW1JwwJ(Tww) 
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(2.10) 

which represents an integral equation for (T zz). For solving 
(2.10) it is convenient to introduce the field9 

tzz(z,z)=azpzz -!(rZ
zz )2, (2.11) 

which behaves as a Schwarzian differential" under holo
morphic transformations. A simple computation shows that 

(2.12) 

Inserting (2.12) in the rhs of (2.10) and integrating by 
parts, with the help of (2.8) one obtains 

(Tzz ) + _c_ tzz - I hz/f d 2wJggWW1JWWJ 
241T j= 1 

X(Tww) +_C_ tww ) =0. (2.13) 
241T 

By means of (2.9) one can easily verify that the general solu
tion of (2.13) is 

Mp 

(Tzz ) = I hz/rj(y,ji) -_c-tzz(z,z), (2.14) 
}= 1 241T 

where r} defines a vector field on JI p which is still to be 
determined. Equation (2.14) deserves some comments. 

Under the holomorphic change of coordinates ~ f (z), 
tzz transforms as 
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tzz (dZ)2f-+ tzz (dZ)2 - {f,z}(dz)2, 

where {J,z} is the Schwarzian derivative I I 

{ z} =f"'(z) _lJf" (z) ]2. 
J, f'(z) 2 If'(z) 

(2.15) 

(2.16) 

Therefore, for c =f 0, T zz is not a tensor field, but as expected 
on general grounds, generates a Schwarzian under general 
holomorphic reparametrizations. 

In the case c =f 0, the rhs of (2.14) depends in general on 
z, which makes impossible the introduction of the Virasoro 
algebra by means ofa Laurent expansion of Tzz . From Eq. 
(2.12) one obtains 

aZ tzz = -~zZazR, (2.17) 

which implies that Tzz is a meromorphic function if and only 
if the metric is of constant curvature. From now on we as
sume that this is the case. For constant curvature Eq. (2.10) 
states that the projection of (Tzz ), orthogonal to the qua
qratic differentials, vanishes. Therefore, one has 

Mp 

(Tzz ) = L hzz/(z)~(y,y), (2.18 ) 
j= I 

where ~ is the vector field on JI p one obtains from 'Y'j by 
specifying that the metric has constant curvature. For the 
slice of constant curvature metrics, the absence in the rhs of 
(2.18) of a Schwarzian differential is consistent over the 
whole surface. In fact, in this case the atlas d can be chosen 
so that the transition functions between overlapping patches 
are isometries; it is also known that {f,z} vanishes iffis an 
isometry. The existence of an atlas d with the above proper
ties is crucial for defining the theory globally on l:p because 
for c =f 0 only the isometries are unitarily implementable and 
do not modify physics. On the contrary, general holomor
phic coordinate transformations connect physically inequi
valent theories and can be used, for example, to deriveS the 
central charge as a kind of Casimir effect. 

In the case p = 0 one obtains from (2.18) that 
(T zz) = 0, which is extensively used in deriving the familiar 
properties of the Virasoro algebra on the sphere. 

In the rhs of Eq. (2.18) one recognizes the general 
expression of the classical energy-momentum tensor used in 
Ref. 8. All dynamical information is contained in ~. In or
der to clarify the physical meaning of (2.18) for p;;;.l, it is 
useful to compute ~ explicitly. We recall first that for an 
infinitesimal deformation oy j of the complex structure one 
has lO,12 

Mp 

ogzz = 2 L g-zz7tzj oyj, 
j=1 

Therefore, under deformations, 

8( (tPl" 'tPn )Z) 

(2,19) 

(2,20) 

where Zis the partition function (2.5), Equivalently, 

a 
ayj «tPl" ·tPn )Z) 

= f d2w-.[ggWW1/wwj(TwwtPl .. ·tPn)Z, (2.21) 
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which in view of (2.9) implies 

Mp a 
Z(TzztPl·,·tPn) = j~1 hzz/ ayj (Z(tPl· .. tPn»· (2,22) 

For n = 0 one obtains 

Mp a 
Z (Tzz ) = L hz/-Z, 

j= I 'ayi 

Comparing (2,18) and (2,23) we deduce that 

~(y,y) = ~ log Z( y,y), 
ayJ 

(2.23) 

(2,24) 

provided that Z( y, y) =f0. Here and in what follows we sup
press the q dependence of Z [see Eq. (2.5)] for notational 
simplicity and because it is not essential for our purposes. In 
the points mE..ff p where Z vanishes, Eq. (2,23) carries no 
information about (T zz ). In such points (T zz) requires a 
separate investigation-see Sec. IV for an example of this 
kind, 

Let us now concentrate on Eqs. (2,18) and (2,24). The 
net result is that Tzz develops in general a nontrivial vacuum 
expectation value (Tzz ), which physically can be interpreted 
as a sort of Casimir effect due to handles, We stress that in 
our case (Tzz ) is not related to the central charge and in this 
sense is not the effect considered in Ref. 5, The phenomenon 
we have described occurs even when the central charge van
ishes. From the point of view offield theory, condensates like 
(Tzz ) usually parametrize unitarily inequivalent field repre
sentations. In our case the field theories corresponding to 
different complex structures on l:p are in general unitarily 
inequivalent. Expression (2.24) for ~ teaches us that it is 
exactly (Tzz ) that reflects the fact that a deformation of the 
complex structure leads in general to an inequivalent two
dimensional field theory. Indeed, if one associates with the 
deformation (2.19) the "charge" operator13 

Q -fd2 ... c:. ww W T 
j= wvgg 1/ wj ww' 

from (2.18) one obtains 

(Qj) = ~(y,Y). 

(2.25) 

(2,26) 

From the above discussion it should be evident that the 
identity 

(2,27) 

is an intrisic property of the system and that there exists no 
field redefinition 

(2,28) 

compatible with conformal invariance and such that 

(2.29) 

Since this point is crucial for what follows, we now give an 
independent proof of the above statement (considering for 
simplicity the case c = 0). Before giving the argument, we 
note that by means of Eq. (2.21), the Ward identity (2.7) 
can be rewritten in the form 

Guadagnini, Martellini, and Mintchev 1228 



                                                                                                                                    

n 

- L [hkVZkGZ\z(Zk,z) 
k~1 

(Tzz Tww,pl" ',pn) - (Tzz ) (Tww,pl' . ',pn) 

(2.30) 

where the last term (called the Teichmiiller term) makes 
explicit the contribution of deformations. We shall also need 
the Ward identity with two insertions of Tzz : It reads as 

- _c_ (V w )3G w
zz (w,z) (,pI" ',pn) - [2V wGwzz (w,z) + GWzz (w,z)V w] (Tww,pl" ',pn) 

2411" 
n Mp a 

- L [hkVz,GZ\z(Zk,Z) + GZ'zz(Zk,Z)V;:k)](Tww,pI···tPn) + L hZ/-a .(Tww,pl···,pn)· (2.31) 
k~1 i~l y' 

Assume now that Tzz and T~ obey (2.30) and (2.31) 
and that (Tzz> =1=0, but (T~) = 0. Applying (2.30) for Tzz 
and T;2 one obtains 

(2.32) 

From (2.28) it follows that Czz is a conformal field of weight 
(2,0). The same is true for Tzz provided that c = 0. Taking 
n = 1 in (2.32) and substituting,pl = Cww or tPl = Tww' in 
view of (2.28) and (2.29) one obtains 

(CzzCww ) = (Czz ) (Cww ) = (Tzz)(Tww ), 

(CzzTww) = (Czz ) (Tww) = (Tzz)(Tww)' 

(2.33) 

(2.34) 

Consider now the identity (2.31) for T;z and with n 0. 
Using (2.29) one finds 

(2.35) 

which combined with (2.28), (2.33), and (2.34) implies 

(TzzTww ) - (Tzz)(Tww) = 0. (2.36) 

Now applying (2.31) for Tzz with n = 0, one obtains from 
(2.36) that 

[2VwGwzz (w,z) + GWzz(w,Z)Vw] (Tww) 

Mp . a 
= L hzz,' -a i (Tww )' (2.37) 

j~1 Y 

which is contradictory because the rhs is holomorphic in Z 

and w, while the lhs is not. On the torus, for example, (2.37) 
takes the form (we use the notations and conventions of Ref. 
9) 

[g;>(Z - w) + 21/I(r) ](Tww) = - i11"~ (Tww ), ar 
(2.38) 

where r = r l + ir2 is the Teichmiiller parameter, and 

1/1(r) = - 2i11"~log 1/(r) ar 
= (211")2[_1_ - f nee - U"nr - 1) -I], (2.39) 

24 n~ 1 

where g;> and 1/ are the Weierstrass and Dedekind functions. 
Equation (2.38) is manifestly inconsistent; (Tww) #0 by as
sumption and the Ihs has a second-order pole in Z = w, while 
the rhs is constant in z. 
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The content of this section can be summarized as fol
lows. Deformations of the complex structure behave locally 
as diffeomorphisms. 14 Therefore, the local properties of the 
fields (short distance leading singularities) do not distin
guish between deformations 'and diffeomorphisms. Thp. dif
ference emerges at the level of vacuum expectation values, 
where the global properties of the Riemann surface enter 
through the vacuum state. We have shown in this section 
that on a genus p> 1 surface, the energy-momentum tensor 
develops in general a nontrivial vacuum expectation value 
(2.18) related to the fact that different complex structures 
correspond to (unitarily) inequivalent field theories. Equa
tions (2.18) and (2.27) follow directly from the conformal 
Ward identities and there is no field redefinition compatible 
with conformal invariance and leading to a vanishing (Tzz ). 

Analogous statements hold for Tzz , which obeys 
Mp 

(Tzz ) = L hzz/Cz)~(y,y), (2.40) 
j~1 

where {hzz,'} is a basis of antiholomorphic differentials and 

~(y,y)=~logZ(Y,y), (2.41) 
ay' 

provided that Z( y,y)#O. 

III. SOME PROPERTIES OF THE VIRASORO ALGEBRA 
AT NONTRIVIAL GENUS 

As already mentioned in Sec. I the correlation functions 
(2.6) give rise to a representation f of a Virasoro algebra. 
In this section we translate Eq. (2.18) in terms of this alge
bra and derive some properties of the representation f. 
Take an aribtrary point Pe~p. Here Pbelongs to some patch 
UE.sf and we denote its coordinates by z. We assume that 

00 

Tww(w)= L Ln(z)(w-z)-n 2, (3.1) 
n= - 00 

where I w - zl = 1 and the series has convergent matrix ele
ments in f. Equation (3.1) defines the Virasoro generators 
in P. By means of the conformal Ward indentities (2.30) and 
(2.31), Eguchi and 00guri9 show that 

[Lm (z),Ln (z)] = (m - n)Lm + n (z) 

+nc(m3-m)c5m+n,o (3.2) 
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and that the algebra (3.2), originally defined on U, can be 
consistently extended to a global algebraic structure on l:p. 
In the atlas .4 introduced after Eq. (2.18), the transition 
functions are isometries Zl---+f (z) and one has 

Ln (z)~I'(z) - nLn(f(z» + !(l - n)f" (z)l'(z) - n - 2 

XLn+ 1 (f(z» + "', (3.3) 

where the ellipsis stands for terms proportonal to Lm(f(z» 
withm>n + 2. 

Taking the vacuum expectation value of Eq. (3.1) one 
obtains 

'" (Tww)= L (w-z)-n-2(L n (z». (3.4) 
n = - 00 

On the other hand, inserting the expansion 

'" hww/(w) = L (w - z)ihzz/(z) (I) (3.5) 
1=0 

into Eq. (2.18) one has 

'" Mp 

(Tww) = L (W_Z)i L hzz/(z)(/)~(y,y). (3.6) 
1=0 j= 1 

Comparing (3.4) and (3.6) we finally obtain 

(L" (z» = 0, Vn> - 1 (3.7) 

and 
Mp 

(L,,(z» = L hz/(Z)(-"-2)~(y,y), Vn<-2. (3.8) 
j=1 

Equations (3.7) are common for every genus and are consis
tent with the requirement ofsu( 1,1) invariance. Before ana
lyzing the infinite set of equations (3.8), which are the no
velty for p> 1, we would like to recall some basic facts from 
the theory of holomorphic quadratic differentials (see, e.g., 
Ref. 15). 

Consider the Mp X Mp matrix 

aji(z) = hzz/(Z) (i) (1<J<Mp,O<i<Mp - 1). (3.9) 

The determinant 

W(P) = det aji (3.10) 

is known as the Wronskian of hzz/ in the point P. Following 
the terminology of Ref. 15, P is called a Weierstrass point if 
W(P) = O. One can show that there are no Weierstrass 
points on the torus. A point P is called generic if W(P) #0. 
Note that this characterization of the points on l:p is inde
pendent of the choice of local coordinates because the van
ishing of W(P) has this property. 

Returning to Eq. (3.8), we assume first that Pis a gen
eric point. Since W(P) #0, the vacuum expectation values 
(L _ n (z» vanish for 2<n<Mp + 1 if and only if 
~(y,y) = o for all 1 <J<Mp' In other words, if some ~ #0, 
then there exist some integers s, 2<s<Mp + 1 such that 

(L_s(z»#O (3.11) 

in a generic point on l:p. We emphasize that the above state
ment is independent of the choice of local coordinates. On 
the contrary, apart from Smin' the values of s for which (3.12) 
takes place are in general coordinate dependent [see Eq. 
(3.3) ]. 

Consider now the case when P is a Weierstrass point. 
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Then W(P) = 0, but one can show 15 that taking a sufficient
ly small n< - 2 in (3.8), there exists an Mp XMp submatrix 
in the rhs of (3.8) with a nonvanishing determinant. There
fore, the previous conclusions remain true. 

Summarizing the above considerations, we have proven 
the following proposition. Let {V1"",VM }#O. Then forev-

p 

ery point PEl:p (independent of the choice of coordinates) 
there exist some integers s>2 such that (3.11) holds. 

Equation (3.11) has some important consequences on 
the representation of the Virasoro algebra associated with 
the system under consideration. Denote by f the represen
tation space of (3.2) equipped with a sesquilinear form (in
ner product) (','). Then there are two possibilities. Assume 
first that there exists a unique vacuum state o.U such that 

(o.,L" (z)o.) = (L" (z». (3.12) 

Taking the complex conjugate of (o.,Ls(z)o.) and using 
(3.12), (3.11), and (3.7) we deduce that 

(3.13 ) 

where the dagger represents the Hermitian conjugation with 
respect to (','). This means that one of the basic unitarity 
requirements is violated at least in the vacuum sector 
fvacCf. 

Consider now Eq. (3.2) with m = 0 and n = - sand 
take its vacuum expectation value. One obtains 

(0., [Lo (z),L _ s (z)] 0.) = s(o.,L _ s (z)o.) #0. 

On the other hand, from rigid scale invariance, 

Lo(z)o. =0 

and (3.14) takes the form 

(o.,Lo(z)L _ s (z)o.) #0. 

Equations (3.15) and (3.16) imply that 

Lo(z) #L 6 (z). 

(3.14) 

(3.15 ) 

(3.16 ) 

( 3.17) 

A similar argument shows that (3.13) also extends for s = 1. 
It is also worth stressing that different from the p = 0 case, 
not all of the states {L _" (z)0.:n>2} decouple from the 
vacuum. 

The second possibility, explored usually in the operator 
approach to string theories, 16 is to preserve the Hermiticity 
property 

L_,,(z) =L~(z) (3.18) 

for all n, but to admit the existence of (at least) two vacuums 
0. and n such that 

(3.19) 

Now Eq. (3.11) implies that, in general, at genusp> 1, there 
exist s>2 such that 

(3.20) 

and the states {Ls (z)n} couple to the vacuum 0.. Therefore, 
also, in this case f vac is not an irreducible highest weight 
representation in the sense of Ref. 4. 

We have shown above that for p> 1 the vacuum sector 
f vac has in general a richer structure than a standard h = 0 
irreducible highest weight representation; some of the 
descendent states of the vacuum couple to the vacuum itself. 
Concerning the construction of the physical state space in 
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string theory, we recall that there one has to integrate over 
the compactified moduli space JI p' After this integration 
the decoupling of the aforementioned states is recovered l7 

modulo total derivatives. The latter are not a priori always 
innocuous because for p:;;.2 the space JI p has a nontrivial 
boundary. 

The above pathologies in the representation.f vac' relat
ed to a conformal field theory on l: , occur in the points of 
the moduli space where {VI"'" V M }#O; the safe points are 

p 

those in which 
Z(y,y)#O (3.21) 

and 

~ Z( y, y) = 0, Vj = 1, ... ,Mp • 
ay} 

(3.22) 

The set on which Z vanishes has to be examined separately. 
Assuming that (3.21) holds, we concentrate on Eq. (3.22). 
This is a local condition in 1p and consequently, can be 
formulated on the Teichmiiller space 

Yp = Met(l:p )/Diffo(l:p) ® 'Jr, (3.23) 

where Diffo(l:p) is the subgroup of Diff(l:p) connected to 
the identity. Denote by {7 j :j = 1, ... ,Mp} the complex co
ordinates on Yp . Then Eq. (3.22) is equivalent to 

~Z(7,'7) =0, Vj= 1, ... ,Mp , (3.24) 
a7} 

where Z ( 7, '7) is modular invariant. Consider now a modular 
transformation 

7~F(7), (3.25) 

which admits a fixed point TEYp such that 

det[~Fi(7') -8;]#0. 
a7] 

(3.26) 

Then as a consequence of modular invariance, 

~Z(7','7') = 0, Vj= 1, ... ,Mp 
a7} 

(3.27) 

and (Tzz ) vanishes on the orbifold pointy'EJlp correspond
ing to 7'EYp ' We shall see in Sec. IV that the two orbifold 
points of 11 satisfy (3.26). We also note that condition 
(3.26) is universal (model independent), but we are not 
aware ifit holds for all orbifold points of 1 p withp:;;.2. The 
tempting conjecture that this is the case needs a separate 
investigation. 

In conclusion, we observe that all the statements of this 
section hold mutatis mutandis for the generators In (z) de
fined by 

'" TwwCw) = L In (z)(w - z) - n-2. (3.28 ) 
n = - 00 

Using Eq. (2.40) one finds the counterpart of (3.8), which 
states that for any n< - 2 one has 

_ Mp _ 

(Ln(z» = L hzz/(z)(-n-2) V;(y,y). (3.29) 
j~1 

IV. EXAMPLES ON THE TORUS 

We illustrate below the general results of the previous 
sections on some explicit examples. For simplicity we con
sider models defined on the torus equipped with the metric 
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dsZ = Idzl2, where z = XI + 'TX2. The different complex 
structures are described by the Teichmiiller parameter 
7 = 71 + i72. The fundamental domain Y I of 7 is fixed to be 

Y I ={ - ~<71<0,171:;;.nU{0<71 <~,171 > n. 

Here Y I is a covering of 11 and 7 is a well-defined local 
coordinate on 1 1, With these conventions the Beltrami and 
quadratic differentials are given by 

7]zz = i/272, hzz = - i, (4.1 ) 

while the explicit form of G wzz (w,z) is 

t'J; (z - W17) W - Z - iii + z 
GWzz(w,z) = + . (4.2) 

21Tt'J1 (w - Z17) 272 

Here t'J I is the Jacobi theta function 

t'J I (zI7) =i .f (-1)n exP[i1T(2n-1)Z 
n= - 00 

(4.3) 

and the prime means the derivative with respect to the first 
argument. 

The simplest, but quite instructive, example is the free 
scalar field with the modular invariant two-point function 

(ip(z,z)ip(w,w) ) 

(4.4) 

The relative partition function is also modular invariant and 
reads as 

ZB (7,'7) = 1//7;7]( 7) 7](7), 

where 

(
i1T7) '" 7]( 7) = exp - II [l - exp(2in1T7)]. 
12 n~ 1 

(4.5) 

(4.6) 

From the explicit form of 7] it follows that ZB (7,'7) has no 
zeros in Y 1• Therefore, Eq. (2.24) applies and 

hzz V(7,'7) = -i~logZB(7,'7) =_1 ___ 1_7]1(7), 
a7 472 217' 

(4.7) 

with 7]1 defined by (2.39). 
Let us first check identity (2.27). Taking into account 

( 4.1) and (4.7), Eq. (2.27) is indeed satisfied because 

(Tzz ) = lim [azaw (ip(z,z)ip(w,w» + _l_(Z - w) -2] 
w_z 417' 

(4.8) 

As already mentioned, the torus has no Weierstass points 
and from (3.8) and (4.7) one obtains, for the left Virasoro 
algebra, 

(L _ 2 (z» = 1/472 - (1/217')7]1 (7), (4.9) 

where the first term on the rhs keeps trace of the zero modes. 
Analogously, for the right Virasoro algebra one obtains 

(I _ 2 (z» = 1/472 - 0/211')7]1 ( - '7). (4.10) 

Consider, also, the vertex operator 
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cp = f d 2z'J"g:exp [ 4i{iTljJ(z,z) ]: , 

which is the integral of a conformal field of weight (1,1). By 
means of (2.30) one easily obtains 

i a 
( T CP"'CP) = --- (Z (cp"·CP». 

zz ZB a1' B 
(4.11 ) 

Equation (4.11) is a particular case of the general relation 

1 Mp a 
(T cp .. 'CP) = - L h j-. (Z (cp" 'CP», (4.12) 

zz Z j~1 zz, ayl 

valid for any p';P 1. 
We focus now on Eqs. (4.9)-(4.11). Denote by f L(R) 

the representation of the left (right) Virasoro algebra as in
troduced by Eq. (3.19). Then because of (4.9) and (4.10), 
the vacuum sector f L ® f R has all the peculiar properties 
described in Sec. III. Moreover, according to Eq. (4.11), the 
new states arising in the vacuum sector couple not only to the 
vacuum, but also to the sector with conformal weight ( 1,1). 

Let us look now for points in J( ), where the rhs of Eqs. 
(4.9)-( 4.11) vanish. As is well known, the modular group 
SL(2,Z)/Z2 acts on.7) with fixed points. Indeed, r' = i and 

1''' = ~ ( - 1 + i.J3) are fixed points for the modular trans
formations 

S:n--+ - 1/1', 

T- I oS:1' ........ -I-1/1', 

(4.13 ) 

(4.14 ) 

respectively, and correspond to the two orbifold points of 
J( I' Moreover, 

.i..S(1") # 1, .i.. [T- 1oS](1''')#1. 
a1' a1' 

Combining this information with the fact that the expecta
tion values (L_ 2 (z», (L_ 2 (z», and (Tzzcp" 'CP) are de
rivatives of modular invariant functions, we conclude that 
the rhs of (4.9)-( 4.11) vanish on the orbifold points of J(). 

From the explicit form of 17 I ( 1') [see Eq. (2.39)], it is not 
difficult to see that there are no other points on J() where 
(L_ 2 (z» = (L_ 2 (z» =0. The point 1" describes a torus 
with equal radii and without a Dehn twist. It is also worth 
mentioning that Schroer's investigation 18 of positivity on the 
torus shows that in 1" positivity is also satisfied. 

A brief comment concerning finite temperature two-di
mensional field theories is in order. As is well known,S, 19 the 
theory of a free boson field on the torus is related to the 
theory ofa free boson field on the cylinder at thefinite (com
plex) temperature f3 = - 2i1T1'. Indeed, the partition func
tion (4.5) can also be written as 

ZB (1',7) = Tr qKo - 1124 qKo - 1/24, 

where 

q = e2i1
"'·. 

(4.15) 

The trace in the rhs of (4.15) is carried out over the state 
space of the model on the cylinder and consistently Ko is the 
energy operator of the Virasoro algebra {Kn} associated to 
this model. From (4.15) it follows that 

(Ko)r =i.l+ 1I81T1'2- (1/4~)171(1'). (4.16) 

Note that at zero temperature ( f3 = 00 ) the rhs of (4.16) 
vanishes and scale invariance is restored, as it should be. 
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Inserting (4.9) into (4.16) one finds 

(Ko)r = i4 + (1/27T) (L_ 2 (z». ( 4.17) 

The presence of two different moments of the energy-mo
mentum tensor in Eq. (4.17) is not contradictory because 
(4.17) relates expectation values computed in two different 
field theories. In fact, (Ko) r # 0 signals the breaking of scale 
invariance at finite temperature for the boson field on the 
cylinder. On the contrary, the free boson field on the torus is 
scale invariant and (L_ 2 (z» #0 implies noninvariance un
der deformations of the complex structure. 

Several models on the torus share the properties of the 
free boson field, as described in this section. Among them we 
mention the toroidal compactification of a free boson field: 

ZB (1',7) 

=ZB(1',1') m,n~- 00 exp[ - ~ (m2 
+ n

2
11'12 - 2mn1'I)], 

( 4.18) 

the ghost b - c system: 

Zgh (1',7) = 1'21 17 ( 1') 14 , 

and the critical Ising model: 

ZI (1',7) = (1I2117( 1') 1)(1-82 (011') 1 

+ [-83(011') 1 + [-84(011') I), 

(4.19 ) 

(4.20) 

where -8 v are the usual theta functions. 15 From (4.5) and 
( 4.19) one recovers the modular invariant string partition 
function density 

Zstr (1',7) = ZB (1',1') 26Z gh (1',7) 

= [Fz17(1') 17(1')] -24, 

which gives rise to the partition function 

i d1'M -
Zstr = --Zstr ( 1', 1') . 

. 7. T~ 

(4.21 ) 

(4.22) 

In the examples we have considered until now, the parti
tion function was non vanishing at any point of Y I and we 
applied Eqs. (2.24) and (2.41). If the partition function 
vanishes in some points or on the whole Y), one may com
pute V( 1',7) and V( 1',7) directly from the condensates (Tzz ) 
and (T Zi ). Consider, for example, the periodic-periodic free 
spinor field on ~ I' As is well known, the relative partition 
function vanishes identically on Y I' Nevertheless, (Tzz ) 
and (T Zi) are non vanishing and the direct computation 7 

shows that, for example, 

(Tzz ) = lim [..!.....( ¢(z,z)aw ¢( w,w» - _1_ (z - w) -2] 
w-z 2 47T 

1 1 
=-17)(1') --. (4.23) 

27T 41'2 

Consequently, the discussion following Eq. (4.8) applies. 

v. CONCLUSIONS 

In the present paper we have studied the role of complex 
structure deformations in conformal field theory on a Rie
mann surface of nontrivial genus. By means of the conformal 
Ward identities we have shown the following. 

(i) The energy-momentum tensor Tzz develops in gen-
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eral a nontrivial vacuum expectation value (T zz ). Maintain
ing conformal invariance, (T zz) cannot be absorbed in a re
definition of T zz . 

(ii) Deformations lead in general to unitarily inequiva
lent field theories. 

(iii) The representation of the Virasoro algebra, asso
ciated to the conformal field theory, is in general not of the 
familiar form [see Eq. (1.1)] known for p = O. 

(iv) Under certain conditions, including modular in
variance, (Tzz ) vanishes on the orbifold points of JI p' 

We illustrate the above phenomena on the torus. 
Throughout our investigation we need only local properties 
of the moduli space, although we use several global proper
ties of the underlying Riemann surface. It is worth stressing 
that our results apply for any (not necessarily Gaussian) 
conformal field theory. We also mention that an alternative 
analysis of the problems we were concerned with in this pa
per can be performed20 by means of the Krichever-Novikov 
algebra.8 As one should expect, there is complete agreement. 

In conclusion, we point out that our investigation has 
some implications for string theory, where by construction 
one integrates over all complex structures. In this sense any 
string theory is a superposition of conformal field theories 
with different complex structures. According to (ii) the in
dividual field theories are in general not unitarily equivalent 
and from point (iii) it follows that not all provide standard 
unitary highest weight representations of the Virasoro alge
bra. Nevertheless, one expects to recover unitarity after inte
gration over the moduli space. I? Thus the global structure of 
JI p' as well as the behavior of the partition and correlation 
functions on the boundary aJi p' enter the game.21 In this 
context the statistical mechanics of conformal invariant sys
tems on a Riemann surface may also require an integration 
over the moduli space. These problems deserve further in
vestigations. 
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It is shown that Backlund transformations related to the Yang formulation of the self-dual 
Yang-Mills equations reduce to Zakharov-Shabat transformations when the gauge group is 
GL(2,C). 

I. INTRODUCTION 

In Ref. 1 we discussed the relations between the Zak
harov-Shabat transformation (ZST) method2 and the 
Atiyah-Ward method3 of solving the self-dual Yang-Mills 
(SDYM) quations for G = GL(2,C). Our main result was 
that all solutions generated by the Atiyah-Ward Ansatze 
can be obtained from the simplest Ansatz do by means of 
ZST's. In this paper we investigate some other approaches to 
the SDYM equations, namely Backlund transformations 
(BT's)4-6 connected with the Yang equations. 7 We show 
that for G = GL(2,C) they reduce to some ZST's (which 
are also a kind of BT) . 

This paper is continuation of Ref. 1. We adopt the same 
formalism and notation. We assume the gauge group to be 
GL(2,C) and we consider the SDYM equations in the com
plexified Minkowski space eM, 

(1) 

where F is the curvature of a gauge field A and A,B,C are 
spinor indices. 

Equations (1) are integrability conditions of the follow
ing system oflinear equations,8.9 

A A (aAiI +AAiI)1/' = 0, (2) 

whereAA = (1,.-1.), A being a complex parameter. The Zak
harov-Shabat method is based on the observation that the 
Ansatz 

1/" = x1/', (3) 

where X is a simple meromorphic function of A (each of X 
and X -I is assumed to have exactly one first order pole in A), 
leads to new self-dual solutions from a given one (see Ref. I 
for details). 

When referring to an equation in Ref. 1 we will use the 
notation (l.a), where (a) is the equation number in Ref. 1. 

II. BACKLUND TRANSFORMATIONS OF POHLMEYER 
AND PRASAD et al. 

Yang 7 noticed that Eqs. (1) are equivalent to a single 
second-order equation for a matrix valued function J. In
deed, it follows from (1), for A = B, that 

ALB = J-1aIBJ, 

A2i1 = ° 
(4) 

(5) 

a) On leave of absence from Institute of Theoretical Physics, University of 
Warsaw, Hoza 69, 00681, Warsaw, Poland. 

in some gauge. In virtue of (4) and (5), Eqs. (1) reduce to 
the Yang equation 

af(J-lalilJ) = 0. (6) 

This equation admits BT's (for any gauge group) of the form 

J'-laIBJ' = J -I alBJ - a2i1 (e
a J -IJ') - alBa (7) 

and 

J'-laIBJ' = J- l alBJ - a2B (fi3J'- IJ) - aIB /3, (8) 

where a and /3 are harmonic functions, 

a f a2B a = a f a2B /3 = 0. 

If J satisfies (6), then (7) [or (8) ) defines a function J', 
which also satisfies Eq. (6). Hence J' describes a new self
dual field A '. TheBT's (7) and (8) are slight generalizations 
of the transformations found by Pohlmeyer and Prasad et 
al. 6 

It turns out that relations (7) arid (8) are satisfied if J' 
corresponds to a field generated from potentials ( 4) and (5) 
by ZSTwith 

X = 1 + [(,u - V)/(A -,u) ]P, p 2 = P, ,u,v=l=O (9) 

or 

X = 1 + [1I(A -,u) ]S, S2 = 0, ,u=l=O. ( 10) 

To show this let us consider a relation between the functions 
J and 1/'. It follows from (2), (4), and (5) that we can identi
fy 

(11 ) 

provided 1/'(A) isholomorphicatA = 0. Transformation (9) 
preserves gauge condition (5) [see (1.15)] and does not 
generate a pole of 1/" at A = 0, hence 

J' = 1/"(0)-1 =J[1 + (,uv- l 
- I)P]. (12) 

It follows from (12) that 

(,u - v)P= V(J-IJ'_1) (13) 

and 

(,u - v)P = - ,u(JI-IJ - 1). (14) 

Substituting (4), (5), and (13) [or (14)] into the relation 

A'IB = AlB - a2B [(,u - v)P], (15) 

which follows from (2), (3), and (9) [compare (1.15)], 

yields formula (7) with a = In v [or (18) with /3 = In,u ] . 
In a similar way we can show that (7) and (8) are satisfied 
when J' is generated by transformation (10). 

The occurence of a and /3 in (7) and (8) gives the equa-
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tions a richness, but it is only an apparent one, for we can 
always decompose (7) and (8) into the transformations 

I'-l aliJI' = J- I aliJJ - a'2iJ(J-II'), (16) 

I'-I aIBJ' =J- I alBJ + a2B (J,-IJ), (17) 

respectively, and the trivial transformation 

(18) 

with h = a or h = .0, respectively. Transformation (18) cor
responds to adding a solution to A ' with values in the center 
ofgl(2,C). Transformation (17) becomes (16) when Jand 
I' are interchanged, hence (17) can be considered as an in
verse transformation to (16). 

The gauge field A ' generated by ( 16) can always be ob
tained by ZST (9) or (10) combined with (18). To show 
this let us note that J - I J I, a 2 X 2 matrix, can be written in 
the form 

J-II' = V + (p, - v)P, where p 2 = P, (19) 

or 

J-II' = p, + S, whereS 2 = O. (20) 

We substituteI' calculated from (19) or (20) into (16). In 
this way we obtain equations for p"v and P (or S), which 
coincide with conditions (1.16)-( 1.20) [or their limits un
der v-->p" (p, - v)P-->S] on free parameters ofZST (9) [or 
(10)]. To complete the proof we note that (19) [or (20)] is 
equivalent to (13) (or to its limit) modulo transformation 
(18). 

Equation (19) [or (20)] is also equivalent to Eq. (14) 
(or to its limit) modulo transformation (18). Hence, if J' 
satisfies (16) then eh I' satisfies (17) for some harmonic 
function h. 

We summarize this section with the following proposi
tion. 

Proposition 1: For the gauge group GL(2,C) the follow
ing transformations generate the same set of self-dual solu
tions from a given solution: (i) the Backlund transforma
tions of type (7) and (8); (ii) the Backlund transformation 
(16) combined with (18); (iii) the Zakharov-Shabattrans
formation of type (9) and (10) combined with (18). 

Remark: If the gauge group is not a subgroup of 
GL(2,C) then transformations (i) may generate more solu
tions than transformations (iii). 

III. BACKLUND TRANSFORMATION OF CORRIGAN 
etal. 

Historically, the first BT for Eq. (6) was given by Corri
gan et al.4 (transformation .0). To describe it we assume 
det J = 1 [i.e., the gauge group is SL(2,C) rather than 
[GL(2,C)] and we writeJin thdorm 

J -I[ 1 r] = cp 2' 
-E cp -EY 

The BT is then given by the equations 

cp'=cp-I, 

1235 

aIBE' = cp -2 a2B r, 

a2B y' = cp -2 aIBE. 
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(21) 

(22) 

If J satisfies (6) then solutions cp ',E',y' of Eqs. (22)-(24) 
exist and define a new solution J' of (6). Given a self-dual 
field the corresponding function J is not uniquely defined. It 
undergoes the following "gauge" transformations: 

J-hJg, 

where 

a1iJh = a2iJg = O. 

(23) 

These transformations in general do not commute with BT 
(22). 

The action of transformation (22) on self-dual fields 
can also be described in the following way. Given a self-dual 
field A we find a gauge (not unique) such that 

AlB = {abBB. O}, A2B = [CB 
dB] . (24) 

-aB 0 -CiJ 

(For instance, we first find J and decompose it into DD - \ 
where D is lower triangular and D is upper triangular. Then 
we perform a gauge transformation to obtain 

-I - -1 - . AlB = D alBD and A2B = D a2ED.) HaVIng (24) we 
define a new field A ' by 

b· ] C: . (25) 

(26) 

where tP corresponds to (24), satisfies Eqs. (2) with poten
tials (25). Hence the field A ' is necessarily self-dual. 

The dressing function X, given by (26), can be written in 
the form 

X=g[I+(A-l)P], p 2 =p, 

where g and P do not depend on A, 

g= [~ ~], P= [~ ~]. 

(27) 

Formula (27) is characteristic for a particular class ofZST's 
[ ( 1.12) with v = 0]. One can easily check that the field (25) 
can, indeed, be generated from A using the method of Zak
harov and Shabat. 

Proposition 2: The Backlund transformation of Corrigan 
et al. is a particular case of the Zakharov-Shabat transfor
mation. 

A question arises whether ZST's different from (9), 
(10), or (27) (see the list in Ref. 1) are related to BT's 
similar to (7), (8), or (22). The main difficulty to find such 
a correspondence is the fact that these ZST's, in general, do 
not preserve condition (5). On the other hand, the problem 
may not be very interesting, since any ZST oftype (1.10)
(1.14) is a superposition of (9) or (10) withguageand (ac
tive) Lorentz transformations. Indeed, if L:M -M is a Lor
entz transformation (we could admit conformal transforma
tions in general) and A represents a self-dual field, then the 
pullback L * A is also self-dual and the corresponding wave 
functionisL *tP(A '), where A 'A = (1,A ') is proportional to 
the transformed spinor A A • Using this fact we can shift poles, 
in A, of the dressing function X. This means that the BT's we 
are looking for can be obtained from (7) or (8) with the help 
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of Lorentz and gauge transformation (in this way we can 
also obtain the BT of Corrigan et al. ) . 

IV. CONCLUDING REMARKS 

The SDYM equations admit several solution generating 
methods. Among purely local ones the Atiyah-Ward meth
od and the Zakharov-Shabat method seem to be quite suc
cessful, e.g., SU(2) magnetic monopoles were obtained by 
both of them. lO

•
ll In our previous paper) we showed that 

ZST's preserve the space of solutions generated by the 
Atiyah-Ward Ansiitze. In this paper we compared ZST's 
with the BT's4-6 related to the Yang formulation (6) ofthe 
SDYM equations. These BT's are described by nonlinear 
equations (7), (8), and (22), respectively. They seem to be 
much less practical (with the exception of the BT of Corri
gan et al.) than ZST's, for to apply ZST we have to solve only 
linear equations (2) related to an initial gauge field A. We 
showed that, for G = GL(2,C), all of these BT's can be real
ized as ZST's combined with transformations (18) corre
sponding to adding an Abelian solution to a given one 
(Propositions 1 and 2). Thus, in some sense, we do not have 
to worry about these BT's. This situation may change for 
gauge groups, which are not subgroups ofGL(2,C). 
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It is remarked that, if the gauge group is not compact, finite-time blowing-up Yang-Mills fields 
over the Minkowski spaces may exist. The example taken is G = SU(2,C). It is shown that 
blow-up can occur in an arbitrarily small time interval when the initial data of the fields are 
suitably chosen. 

I. INTRODUCTION 

The studies on the global existence of the Yang-Mills 
(YM) fields over the Minkowski spaces were initiated by 
Segall where a local existence result is established for the 
case that the gauge group G = SU (2). Since then, various 
investigations have been carried out. In particular, Glassey 
and Strauss2 discussed the global existence and long-time 
behavior of the SU(2)YM fields under the 't Hooft-Polya
kov type ansatz; Ginibre and Vel03 generalized Segal's result 
to the YM systems coupled with scalar fields and obtained 
global existence in 2 + 1 dimensions; Eardley and Moncrief 
proved global existence in 3 + 1 dimensions by using the 
"Cronstrom gauge"; and Burzlaff and O'Murchadhas im
proved the results of Ref. 4 by getting solutions with a better 
fall-off rate at spatial infinity. All of these studies were re
stricted to the case where G is a compact Lie group so that a 
natural Euclidean scalar product can be built up in the Lie 
algebra of G and it appears that not much has been said for 
the global existence problem of the YM fields in the Min
kowski spaces if G is not compact. 

Our purpose in this paper is to remark that finite-time 
blowing-up YM fields may be expected to evolve from cer
tain initial data when G fails to be compact. The simple ex
ample we take is G = SU(2,C). A class ofYM fields will be 
constructed so that their imaginary components are smooth 
and compactly supported but blow up in finite time t> O. 

II. THE SU(2,q YM EQUATIONS 

Some general mathematical issues of the SU (2,<::) gauge 
theory were first discussed by Wu and Yang.6 Here, if we 
denote by U a (a = 1,2,3) the Pauli matrices, then the matrix 
form of the SU(2,C) gauge potential may be written7 

AI' = ! uaA; = ul' + vI" 

where 

UI' =! uau;, vI' = (i/2)uav;, 

and the real functions u; = Re A ;, v; = 1m A; are called 
the real and imaginary components of the gauge potential 
A;, respectively. 

The real and imaginary components of the field strength 
tensor, say U;" and V;"' are expressed by the formulas 

.) Current address: Department of Mathematics and Statistics, University 
of New Mexico, Albuquerque, NM 87131. 

U a - a a a a + (b c be) 
1''' - I'U" - "UI' Eabc UI'U V - VI'Vv , 

V;v = a!, v~ - avV; + Eabc (U!V~ + v! U~), 

which obey the equations of motion of the SU(2,C) YM 
theory 

a "U;v = Eabc (U!"U~ - V!"V~), 

a"v~v = Eabc (U!vV~ + V!vu~). 
Take the spherically symmetric ansatz 

v~ = 0, vf = Eain x n/3(r,t) , 

(2.1 ) 

(2.2) 

where t = Xo is the time and x = (Xi) ~ = I the space variable, 
respectively, r = lxi, and a and/3 are real functions. 

From (2.2), we obtain various components ofthe field 
strength tensor: 

U~i = Eainxna" 

Uij = - 2eaija + EijnXnXa (a2 - /3 2) 

- (EainXj - EajnXi )xn (1/r)a" 

V~i = Eain x n/3" 

Vij = - 2eaij/3 + 2eijnxnxaa/3 

- (EainXj - EajnX j )xn (1/r)/3,. 

Hence, after a lengthy calculation, Eqs. (2.1) are re
duced to 

all = a" + (4Ir)a, + 3(r 2a - 1)/32 + 3a2 - r 2a\ 

/3 fJ 
2 2 2 3 (2.3 ) 

/3/1 =/3" + (4Ir) ,+ 6a - 3r a /3+ r /3 . 
In (2.3), if a further ansatz 

a(r,t) = 1/r2, /3(r,t) = (llr 2)F(r,t) (2.4) 

is taken, we obtain a real scalar wave equation 

F/I = F" + (1/r 2)F(l + F2). (2.5) 

The trivial solution F = 0 gives rise to the well-known 
Wu-Yang monopole.s In the subsequent sections, we shall 
construct a class of nontrivial solutions of Eq. (2.5) which 
blow up in finite time. 

III. LOCAL EXISTENCE 

Consider Eq. (2.5) supplemented with the initial data 

F(r,O) = Fo(r), F,(r,O) =FI(r). (3.1) 

To stay away from the singular point r = 0 ofEq. (2.5), we 
require that 

1237 J. Math. Phys. 31 (5), May 1990 0022-2488/90/051237-03$03.00 © 1990 American Institute of Physics 1237 



                                                                                                                                    

supp(Fo), supp(FI ) C [a,b], 

where ° < a < b < 00 are arbitrary. For our purpose, we also 
assume that Fo, F, are C"" and take non-negative values. 

Equations (2.5 )-( 3.1) may formally be converted into 
the following integral form: 

1 1 ir
+, 

F(r,t) =~Fo(r+t) +Fo(r-t)+- F,(s)ds 
2 2 r-' 

+_ ds t-s F(1 +F2) 11' JI 
2 ° - 1 (r + (t - S)1])2 

(r + (t - s)1],s)d1] 

=J(F) (r,t) , 
namely, the solution ofEqs. (2.5)-(3.1) is realized as a fixed 
point of the operator J. 

Let Co(R) be the space of continuous functions over R 
with compact supports and II II the usual sup norm of the 
space. For given T> 0, define 

£? = {F(r,t) IF is continuous in (r,t)ERX [O,T] 
and supp (F( ',t»C [a - t,b + t]) 

with the norm 

IIF lip" = sup IIF(' ,f) II· 
/E[O.TJ 

It is straightforward to verify that J maps £? into itself if 
T«(a-8 (0<8<a) since for FE£?, F(r+ (t-s)1],s):;fO 
implies r + (t - s)1]';?a - s';?a - T>8. 

Consider a ball in £?: 

BM = {FE£?IIIFII.7<M} with M> 11F01I· 

Then we have 

IIJ (F) 11.7 <11F011 + TIlFlll + (T2/82)M(1 +M2). 

On the other hand, for F,GEBM , there holds 

IIJ(F) -J(G)11.7«T 2/82) (1 + 3M2)IIF- G11.7· 

Therefore, if 

T . { M - 11F01l 82 I} 
<mm IlFdl + M(1 + M2)/82 ' 1 + 3M 2 ' , 

then J:B M -+ B M and is a contraction. Hence J has a unique 
fixed pont FEB M which is a smooth solution of Eqs. (2.5)
(3.1) in the time interval [0, T]. 

The above construction and the continuation method 
allow us to conclude that the solution F(r,t) exists in a 
maximal time interval [O,Tmax ) where either Tmax = a or 
0< Tmax <a and 

lim IIF(' ,f) II = 00. 
t-Tmax 

Our next goal now is to achieve this latter possibility. 

IV. A COMPARISON EQUATION 

In order to show that Eqs. (2.5 )-(3.1) have finite-time 
blowing-up solutions, it seems convenient to use the com
parison equation 

G" = Grr + (l/r2)G 3
, t>O, 

G(r,O) = Fo(r), G, (r,O) = F, (r). 
(4.1 ) 

Lemma 4.1: IfthesolutionF(r,t) ofEqs. (2.5)-(3.1) 
exists over a time interval [0,7) (7<a), so does the (unique) 
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solution G(r,f) ofEqs. (4.1). Moreover 

F(r,t),;?G(r,t), (r,t)ERX [0,7). (4.2) 

Proof' It suffices to verify that, for any fixed 7o: 
0< 70 < 7, Eqs. (4.1) have a solution G(r,t) over R X [0,70] 
and (4.2) holds for (r,t)ERX [0,70], To this aim, let us in
troduce an iterative scheme as in Caffarelli and Friedman 9 as 
follows: 

GO(r,t) =0, 

1 1 i r
+

t 

Gn(r,t) =~Fo(r+t) +Fo(r-t)+- F,(s)ds 
2 2 r-t 

+~ (' dsJ' f-s (G n- 1 )3 

2 Jo -, (r + (t - S)1])2 

(r + (t - s)1],s)d1], n = 1,2, .... 

SinceG 1 (r,t) ,;?Go(r,t),soG 2(r,t) ';?G' (r,t) . Inthisman
ner, one establishes the monotone chain 

Gn(r,t)<G n+ '(r,t), (r,t)ERX [0,70 ], 

n = 0,1,2, .... (4.3) 

On the other hand, using F(r,f),;?O and 
F(r,f) = J(F) (r,f), it is seen that 

Gn(r,f)<F(r,t), (r,t)ElRX [0,70 ], 

n = 0,1,2, .... (4.4) 

From (4.3) and (4.4) one concludes that limn _"" Gn(r,t) 
exists, say G(r,f), which is the solution of (4.1) on 
Rx [0,70] satisying G(r,t) <F(r,t),V(r,f)ERx [0,70], The 
proof of the lemma is complete. 

V. PROOF OF BLOW-UP 

With the results of Sec. IV, the blowing-up solutions can 
be constructed by taking some well-developed paths. Here 
we shall use the energy method presented in Reed and Si
mon. 1D 

Let G(r,f) be the solution ofEqs. (4.1) evolving from its 
initial data at f = 0. On the domain of existence of the solu
tion, set 

1(t) = 1"" (G(r,f»2 dr. 

The uniqueness of the solution and the fact that G(r,f) >0 
imply 1(t) > 0, t,;?O, provided Fo is not identically zero. 

Define P(t) = 1(t) - '/2. We have 

P'(t) = - 1(t)-3/21"" GGt dt, 

P"(t) = 31(t)-S/2{(1"" GGtdrY -1(t) 1"" G;dr} 

+1(t)-3/2{21"" G;dr- 1"" GG"dr} 

<1(t)-3/2{21"" G;dr-1"" GG" dr} 

=1(t) -3/2J(t), 

by virtue of the Schwarz inequality. 
Using Eqs. (4.1) and supp(G(',t»C[a-f, 

b + t] C (0,00 ), we can calculate that 
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J(t) = 1'" dr{2G; + G; - r12 G 4
} • (5.1 ) 

On the other hand, along the solution of Eqs. (4.1), the 
energy 

E(t) = J.- roo dr{G; + G; - ~ G 4
} (5.2) 

2 Jo 2r 

is a conserved quantity, namely, E(t) =E(O). Hence, substi
tuting (5.2) into (5.1), we get 

J(t) = 4E(0) - 100 

G; dr<AE(O). 

Suppose the initial data Fo, FI have been chosen in such 
a way that 

E(O) =J.- roo dr{F6.r +Fi -~F6}<;0. (5.3) 
2 Jo 2r 

Then there holds P" (t) <;1(t) -3/2J(t) <;0. Consequently 
P'(t)<;P'(O) and 

P(t)<;1(O)-1/2 + tP'(O) 

= 1(0)-3/2 (1'0 F6 dr- t 100 
FoPl dr). (5.4) 

Assume that Fo,FI are not orthogonal: SF oPl dr> O. For 
any T:O < T < a, in order to get a blowing-up solution ofEqs. 
(4.1) with Tmax < T, we need only to force the function P(t) 
vanish at some point ToE(O,n because 

pet) -1<; IIG( ',t) II (b - a + 2T) 1/2<;IIG(' ,t) II (a + b) 1/2. 

By virtue of the inequalities (5.4) andP(O) > 0, it is seen that 
this latter requirement will be met provided 

100 

F~ dr< T 100 
FoPl dr. (5.5) 

It is not difficult to verify that, with suitable choice of 
the initial states Fo, F I , (5.3) and (5.5) may be satisfied 
simultaneously. 

To see this, let ~(r) >0 be a Coo function with support in 
[a,b] but not identically zero. Put 
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Fo(r) = A 2t(r), FI (r) = A 3~(r), A> O. 

Then for sufficiently large values of the parameter A, Fo, FI 
fulfill the requirements of (5.3) and (5.5). 

Therefore, from Lemma 4.1, a solution ofEqs. (2.5)
(3.1) that blows up in finite time t = T max < T is produced. 

VI. CONCLUSIONS 

We have illustrated by the simple example 
G = SU(2,C) that, when the gauge group is not compact, 
global existence of the YM fields in the Minkowski spaces 
may fail. We have shown that the imaginary components, 
which are smooth and of compact supports, of a class of the 
SU(2,C) YM fields, blow up in an arbitrarily small finite 
time interval if the initial data are suitably chosen. 

Remark: The real components of the YM fields con
structed in this paper have a point singularity at r = 0 [see 
(2.4)]. Thus, if one insists on the global smoothness of the 
full fields, the example here should be interpreted as a con
struction of finite-time blowing-up fields in the exterior 
spatial domain Ixl>£ (£>0). Hence, the conclusion may 
be restated as follows: For the noncompact gauge group 
G = SU(2,C), a class of smooth YM fields (with finite ener
gy) over Ixl >£ can always be found that evolve from certain 
initial states and blow up in an arbitrarily short time span. 
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The Abelian representation of the string Becchi-Rouet-Stora (BRS) cohomology in terms of 
basic operators naturally forming two dual Kugo-Ojima quartets is found. Furthermore, using 
a gauge-fixing scheme, a contracting homotopy operator associated with the string BRS 
operator is constructed. This formalism gives the explicit realizations of the physical and 
unphysical subspaces. The passage between Abelian and non-Abelian quantities is realized 
geometrically through the use of the moments ofthe vertex operator, which act as vielbeins 
between infinite-dimensional algebras. The connection between the Virasoro and spectrum
generating algebras is clarified and the algebraic duality relation between them is uncovered. 

I. INTRODUCTION 

In the past few years the language and methods of differ
ential geometry have become fundamental tools in modem 
quantum field theory. In this paper we show how to evaluate 
the Becchi-Rouet-Stora (BRS) cohomology class in the 
case of strings by analyzing the associated geometrical struc
ture. 

The key geometrical features are defined in Sec. II in the 
analysis of the specific gauge-fixing procedure for the infi
nite-dimensional first-class constraint algebras. According
ly, we consider a dynamical system governed by a set 4> of 
functions {¢'a} defined on the phase space Wwith a Poisson 
bracket { . , . }. The functions ¢'a constrain the dynamics to 
the submanifold VC W defined by the conditions {¢'a = O}. 

The physical space is now identified with the gauge
equivalence classes defined by the gauge transformations 
generated by 4> on V. Since here we deal with the first-class 
constraints, 4> is closed under the Poisson bracket. Especial
ly, we have {¢'a,¢'b}jV = O. 

The above structure has to be completed by the gauge
fixing conditions (called the subsidiary constraints in Dir
ac's notation) Q a in order to enable us to choose one element 
out of a given equivalence class. This is possible if the gauge
fixing conditions intersect each equivalence class uniquely in 
one point, as ensured by the basic condition 
detll{¢'a,Qb}llw#O. 

Consequently, we are led to consider the larger set, 
which consists of the first-class constraints ¢' a and the asso
ciated gauge-fixing conditions Qa. We now introduce the 
gauge-fixing scheme, which algebraically realizes the above 
conditions in the following way: 

{¢'a,¢'b}W = O-{¢'a,¢'b} = U~b¢'c , 

detH{¢'a,Qb}lIw#O-{¢'a,Qb} = U)~ - T~cQc, 
(1.1 ) 

where U)~ is a central element and U~b' together with T~b' 
are structure constants to be determined. The first equation 
in (1.1) describes a conventional Lie algebra of first-class 
constraints, while the second equation ensures the closure of 
the resulting algebra containing ¢' a and Q a. Furthermore, 
we make the convenient choice that 

( 1.2) 

Note that Eqs. (1.1) impose the condition detllU)~ II #0. 
Consequently, this way of supplementing the first-class 

constraints by the gauge-fixing conditions leads to the larg
er, closed extended constraint algebra. In this framework 
gauge fixing leads to a simple parametrization of gauge or
bits, with gauge-fixing conditions playing the role of coordi
nates. One of the nice features of the extended constrained 
system is that it naturally admits a symplectic formulation 
with canonical coordinates. We find explicitly Abelian mo
mentum, conjugated to the gauge-fixing condition and asso
ciated with the transport along the gauge orbit. 

To establish in a transparent way a connection of origi
nal constraints to the set of Abelian operators (here we call 
this procedure Abelization) we begin our construction by 
defining the canonical pair of conjugated coordinates and 
the associated Poisson bracket structure. In this setting we 
introduce the non-Abelian structure by rotating the original 
coordinates to the "curvilinear" coordinates. Use of the lan
guage of symplectic geometry helps to give us a more trans
parent view of duality between the operator algebras en
countered in this study. 

Our geometric framework is centered around the study 
of rotations of the canonical coordinates by generalized viel
beins ef. 1.2 These vielbeins define the passage between Abe
lian and and non-Abelian quantities for infinite-dimensional 
constraint algebras and satisfy specific structure equations. 

Once the means of connecting Abelian coordinates to 
the non-Abelian structure are established we then tum in 
Sec. III to the specific example of the Virasoro algebra. In 
Sec. III we rely on our recent study2 showing how the geo
metrical interpretation of the vertex operator, in terms of the 
vielbeins satisfying the Maurer-Cartan (MC) structure 
equations connected with the Virasoro algebra, makes it pos
sible to rewrite several basis objects in string theory in the 
form of simple Abelian operators. Understanding of the ver
tex operator as the generating function for vielbeins2 has 
made possible technical progress in constructing the set of 
Abelian string variables including longitudinal and trans
verse directions and introduced enormous simplification 
into the study of their mutual relations. 

Remarkably, in the context of string theory, the connec-

1240 J. Math. Phys. 31 (5). May 1990 0022-2488/90/051240-13$03.00 @ 1990 American Institute of PhysiCS 1240 



                                                                                                                                    

tion between the Abelian and non-Abelian quantities is fully 
preserved when we gradually incorporate first transverse di
rections and then the Batalin-Fradkin-Vilkovisky (BFV)3 
ghosts and normal ordering in the passage to the complete 
quantum mechanical framework. 

This geometrical setting is then used in Sec. IV to char
acterize the string BRS cohomology in terms of Abelian 
string operators, which naturally form two mutually dual 
Kugo-Ojima (KO) quartets.4

•
5 

The Abelian structure uncovered in this study leads to 
determination of the BRS operator as the exterior derivative 
operator, with the derivative acting along the unphysical 
gauge orbits in the extended phase space of the BFV (Ref. 3 ) 
formalism. Therefore, we are led to the most transparent 
evaluation of quantum BRS cohomology in the spirit of dif
ferential geometry, which is also a motif of a recent study of 
classical BRS cohomology.6 The Abelian derivative along 
the unphysical directions and BFV ghosts are contained in 
one BRS supermultiplet and cancel each other via Parisi
Sourlas supersymmetry when embedded in the K04

•
5 quar

tet. 
We also explicitly construct a nilpotent contracting ho

motopy operator in terms of the gauge-fixing conditions. 
The cohomology calculation is then further clarified by em
bedding the homotopy operator and the BRS in a framework 
analogous to supersymmetric quantum mechanics. Conse
quently, our construction yields a simple derivation of the 
string BRS cohomology. 

The physical subspace is then determined as the trans
verse gauge-invariant directions, in agreement with the old 
no-ghost theorem. 7

,8 The zero-mode operators associated 
with the above quartets reproduce the Freeman-Olive90scil
lator number operators used in a very compact and elegant 
way by Freeman and Olive in their derivation of the string 
BRS cohomology. This geometrical construction clearly 
suggests use of fiber bundle analogies in identifying the 
gauge orbits and physical base space. 

This work represents progress in the directioin of ex
tending the presently available formalism for cohomology 
calculation in the quantized systems beyond simple Abelian 
cases. We hope that pointing out the homotopy proof hidden 
behind the KO quartet method can open a way to treat more 
complicated and interesting examples than was possible un
til now. 

Notation: The reader should be warned about a few no
tational changes with respect to Ref. 2. The fundamental 
difference is that in this paper the symbol Pi describes what 
was iiJ. in Ref. 2 and vice versa. This change is due to an 
attemp~ to achieve a more transparent look for several for
mulas and exhibit the important dual character of our oper
ational construction. 

II. GENERAL CONCEPTS OF DUAL ALGEBRAS 

A. Coordinates and canonical mapping 

Our geometrical approach to Abelization and the relat
ed issue of the gauge fixing of the constraint algebras is most 
simply discussed in terms of canonical variables. According
ly, we introduce the Abelian coordinatesXa = (Pa,Qb) and 
the associated symplectic metric 
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Wab = ( _o~~ ~). (2.1 ) 

The metric tensor (2.1) gives rise to the Poisson bracket in 
the following way: 

aG aF 
{G,F}==Wab ax a aX

b 
' (2,2) 

where G and F are arbitrary functions on the phase space. 
Consequently, the canonical coordinates satisfy the Heisen
berg algebra 

{Pa,Qb} = ~~ , (2.3) 

{Pa,Pb} = {Qa,Qb} = O. (2.4) 

As in Refs. 1 and 2, we are interested in transforming the 
coordinate Xa according to 

exp( - <I»~f Pa exp(<I» = ef iiJ a ==Pi , (2.5) 

exp( - <I»~~ Qa exp(<I» = E~ Qa==Qi, (2.6) 

where the new "derivative" iiJ a ==D ~Pb is defined in terms 
of the invertible matrix 

D! = 8~ - T!cQc. (2.7) 

Here Tb is the structure constant that dictates the form of 
the abo~~ mapping by entering the expression for the gener
ator <I> == - QaT ~c Q C P b' Furthermore, the mapping intro
duces a bridge variable connecting the a and i indices, name
ly, a vielbein ef and its inverse E ~. 

Since the above mapping is a canonical transformation, 
the quantities Pi and Q i defined on the rhsof (2.5) and (2.6) 
satisfy the same Heisenberg algebra that is satisfied by Pa 

and Q a. Therefore, {Pi ,Q 1} = 8(, {PoP) = 0, and 
{Qi,Ql} =0. 

From definition (2.7) it is easy to derive the relations 

(2.8) 

(2.9) 

If we work, as in Refs. 1 and 2, with the closed constraint 
algebra, then we must require 

{iiJa,iiJ b} = U~b iiJ c ' (2.10) 

where U~b is a structure constant antisymmetric in the low
er indices and associated with the first-class constraint alge
bra. The consistency requires that 

aiiJ b c aiiJ a c I7Jr DC __ - Db--=U b= , 
a aQc aQc a c 

(2.11 ) 

which, expanded order by order in Q a, reproduces the con
sistency relations 1.2.10 

(2.12) 

U~b = T~b - T'/,a . (2.13) 

Note that the consistency relation (2.11) can be given the 
form 

if we define 

iiJ =D b ~dQa, 
a aQb 
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(2.16 ) 

where we have associated to Q b the one-form dQ b. 

As a consequence of definition (2.14) the two-form F 
satisfies the Bianchi identity 

9I\F-FI\9=0, 

which in component form reads as 

U:b U~d + U~a U~d + u'/x U~d = 0, 

(2.17) 

(2.18 ) 

reproducing the Jacobi relation which would otherwise fol
low directly from the algebra (2.10). 

This framework allows interpretation of 9 as a non
Abelian covariant derivative, with the structure constant 
T~b playing the role similar to the connection. J This inter
pretation of T~b will be further strengthened by its appear
ance in the structure equations. 

B. Duality and the structure equations 

Since the Poisson bracket structure, as defined by (2.2), 
leads to {Pa.!} = Jf IJQa and {Pi.!} = JflJQi for any 
function f( Q) of the coordinates, the canonical mapping 
(2.5) and (2.6) can be cast in the simple form 

(2.19) 

where we wrote E ~ (Q) to indicate that the vielbein, which 
"rotates" the coordinate Q a, depends functionally on Q a 

(and the structure constant T~b ). Using the fact that ef is an 
inverse vielbein to E~ (i.e., erE~ = 6! and erE~ = 61) we 
easily obtain the dual version of Eqs. (2.19): 

Q a=ea(Q)Qj ~= JQj ~. 
J ' JQa JQa JQj 

(2.20) 

Comparing with (2.5) we find 

JQa Jea 
__ =_J_Qj+ea=ebD a , (2.21) 
JQi JQi I I b 

where the first term describes departure from the "global 
rotation," which would take place with constant ef. Insert
ing definition (2.7) of D: on the rhs of (2.21) we obtain 

(2.22) 

In this way we have derived our first structure equation. 
Since from Eqs. (2.19) and (2.21) we find that 
E~ (J IJQi) = D~ (J IJQb) the structure equation (2.22) 
can be rewritten as 

d Je; ac Db --= - Tb e·. (2.23) JQd c J 

We call this equationl.2 the MC structure equation. Quite 
analogously, we can use Eq. (2.20) to derive the correspond
ing MC equation for the inverse vielbein E ~. We first notice 
that the quantity that is inverse to e~D: is given by 
E ~ (D - J)! and, therefore, 

(2.24) 

Multiplying (2.24) on both sides by D : and using definition 
(2.7) we arrive at 
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(2.25) 

Making use of (2.20) we can rewrite (2.25) in an alternative 
way as 

(2.26) 

The ~J.C structure equations ensure consistency with the ca
nonical character of the mapping in (2.5) and (2.6); as an 
example, consider 

JQj JEj . JQa 
__ = __ b Qb + EJ __ . (2.27) 
JQi JQi a JQi 

One can easily show that the rhs of (2.27) correctly repro
duces 61 and ensures that {p;.QI} = 6~. 

The fact that the vielbein's are invertible and satisfy the 
MC equations allows us to in fact express the formalism in 
terms of the dual variables, with the Poisson brackets de
fined as 

{G F}=6!(JG JF _ JG JF). 
, I JPi JQj JQj JPi 

(2.28) 

This Poisson bracket structure follows from the rules gov
erning the way the symplectic tensor Wab transforms under 
the mapping of the canonical variables. If the coordinates 
Xa = (Pa,Qb) are mapped into Yi = ¢>i(X), where in our 
case Yi = (PoQ j), then the transformed symplectic metric 
is given by II 

JXa JXb 
wij = Wab Jy. Jy. . 

I J 

(2.29) 

The postulate (2.28) is then simply proved by the calcula
tion involving the quantity 

6a JPa JQb =6a(D- J)CE i JQb =6i 

b JPi JQ j b a C JQ j J ' 
(2.30) 

where we used relation (2.21) andPa = (D-J)~E~Pi' 
To obtain a better view of the relations between forma

lismsbasedon (Pn,Qm) and (Pi,Qj) we will now introduce 
the auxiliary quantity 

Ta = - T~bQbpc . 

In terms of Ta we can write 

9 a =Pa + Ta· 

(2.31 ) 

(2.32) 

Here Ta turns out to be very useful because it does not 
change its functional dependence on the coordinates under 
the canonical mapping (2.5) and (2.6). This can be seen by 
noticing that trivially, the generator of the canonical trans
formation <I> is invariant under (2.5). Since <I> can be written 
as 

<I> = QaTa , (2.33) 

this fixes the way Ta transforms under the canonical map
ping to 

(2.34 ) 

where on the rhs we have defined Ti, the transform of Ta. We 
can obtain the alternative derivation of Ti by inserting defin
ition (2.31) on the Ihs of (2.34) and performing separately 
the transformation of Q b and Pc (see Ref. 2): 
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(2.35) 

where T~ = ~~~J~~T~b differs from T~b only in having the 
indices (i,j,k, ... ) rather than (a,b,c, ... ). Note, also, that as a 
consequence of relations (2.20) and (2.34), we have 

<I> = QaTa = QiefE~~ = QiTi . (2.36) 

The invariance of <I> under the mapping betwen the two sets 
of Abelian variables (Pa,Qb) and (Pi,Q j) leads to a duality 
between the quantities with a and i indices. 

The fact that the operator Ta does not change its func
tional form when expressed in terms of two different para
metrizations (2.31) and (2.35) allows a totally symmetrical 
dual construction. Namely, we can start with the coordi
nates (Pi,Q j) and transform them according to 

exp(<I»~~Pi exp( <1» 

= exp(<I»~~ exp( - <I»Pb~r 

X exp(<I»exp( - <1» = Pa = E~D~Pj , 

where we have introduced an invertible matrix 
i S;:i i k D j = Vj + TjkQ 

and used the relation 

(2.37) 

(2.38) 

Pa = fiJ a - Ta = E~ (Pi - Ti ) = E~D1Pj . (2.39) 

Clearly, we can view Eq. (2.37) as identical to the second 
equation in (2.20), with 

(2.40) 

instead of (2.24). We can repeat essentially the same step as 
in (2.40) deriving the structure equations for ef, so as to 
arrive at 

(2.41) 

Similarly, we find the inverse relation to (2.40) as 

(2.42) 

leading to the dual MC structure equations in the same way 
as above: 

As we see when comparing (2.41) and (2.43) with (2.22) 
and (2.26), the vielbeins ef and E ~ interchange their roles 
under the coordinate change (Pa ,Q b) -+ (PoQ j) accompa
nied by T~b -+ - T~. 

It is useful to introduce the quantityl.2 

fiJj=e~Pa =D1~. (2.44) 

This construction is clearly analogous to the one we have 
encountered discussing fiJ a = D !Pb; in fact, we obtain for 
(Pj,Q j) the Poisson bracket relations dual to (2.8) and 
(2.9): 

{fiJi,QJ} D{, (2.45) 

{fiJj,fiJJ.}=D~afiJj - DJkafiJj - U,~fiJk' (2.46) 
aQk aQk ' 
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C. Canonical coordinates and the Darboux theorem 

Until now we have based our construction on the exis
tence of the momentum Pa conjugated to Q b. However, our 
starting point was the extended constraint algebra ( 1.1 ) and 
(1.2) written only in terms of (t/Ja,Q b); accordingly, we 
would like to find canonical coordinates without explicit 
mention of Pa • Fortunately, the MC structure equations are 
differential equations only involving Q b and we can think 
about Pa as an auxiliary quantity which serves only to make 
the construction of vielbeins and notion of duality more 
transparent. 

We will now present the explicit construction of the ca
nonical coordinates only in terms of the original constraints 
(t/Ja,Qb) and vielbeins. Define, namely, <l>j=eft/Ja' Then it 
follows from the MC equations (2.23) and (2.25) that <l>j, 
together with Q j = E ~ Q a, satisfy the Heisenberg algebra 

{<I>jJQ J} = ~ 1, {<I>o<l>J = 0 = {Q i,Q J} . (2.47) 

It is easy to see that the Poisson brackets defined as 

(2.48 ) 

will reproduce relations (1.1) and (1.2). Furthermore, we 
can define the non-Abelian quantity ¢j =D~<I>j = D{eit/Ja 
which, together with Q j, will satisfy the non-Abelian alge
bra (2.45) and (2.46) dual to (1.1) and (1.2). The passage 
back to the quantities labeled by a indices can be performed 
by acting with the matrices aQ j I aQ a as follows: 

aQi A 

aQa <l>j E~D{<I>j =E~t/Jj=<I>a' (2.49) 

It follows that <I> a defined in such a way is equal to 
(D I) !t/Ja and, together with Q a, constitutes another set of 
the canonical coordinates satisfying 

{<I>a,Qb}=~:, {<I>a,<I>b}=O={Qa,Qb}. (2.50) 

This construction can be considered as a proof of the 
Darboux theorem, valid for the case of the constraint algebra 
( 1.1) and (1.2) through an explicit construction of the ca
nonical coordinates. For the given gauge-fixing condition 
satisfying (1.1) and (1.2) we can therefore construct the 
above Abelian quantities; this construction is valid every
where the gauge-fixing condition is defined. Especially, if we 
work with the model with the globally defined gauge-fixing 
condition (free of Gribov's problem) our construction will 
yield globally defined canoncial coordinates. 

D.Summary 

We can now summarize our results about generators of 
two dual algebras in the following transparent form: 

,Q, _ Dj a _ Djp _ ap _ a a 
;;;z;.- .--- . ·-e· -e·--, 

I I aQ j I J I a I aQa (2.51) 

where we used the usual identification Pa .-. a I aQ a and 
P j .-.alaQj. 

There is also an extension of the above symplectic struc
ture to two dual canonical coordinates Xa = (<I>a,Qb) and 
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Xi = (~i,Qj), defined in terms of the original constraints 
(tPa,Qb) as 

~ - Ei A. - Ei Dj~ - (D -I)b-l. a - aY'i - a i j - a'f'b , 

~i = eftPo = efD~~b = (D -I) {(Jj . 

For the pair of dual coordinates 

Q a = efQ i , Q i = E ~ Q a , 

we found the differential equations 

aQo = ebDob = (D -I) !ea, 
aQi' '} 

aQi = (D -I)b Ei = D~Ej 
aQo a b ) a 

involving the invertible matrices 

D~ = 8~ - T~cQc, D{ = 8{ + T{kQk. 

(2.53 ) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

As a result of (2.56) and (2.57) the matrices (2.58) are 
related to each other through relations such as D{ 
=ef(D-I)~Et, D~ =E~(D-I){eJ. Equations (2.56) 

and (2.57) lead to the Me stucture equations 

aE i . aE i . DC __ b =E' __ b = TC E' 
a aQc ° aQ j ab c' 

(2.59) 

caer kaer b 
Da aQc =Ea aQk = - Tace~, (2.60) 

for the vielbeins, which have the dual counterparts 

k aEt c aEt . k 
Di aQk =ei aQc = T~kEb' (2.61) 

kaeJ caeJ kb 
Di aQk =ei aQc = - Tijek ; (2.62) 

these relations make it possible to express the matices D ~ in 
terms ofthe vielbeins and structure constants alone. For in
stance, from 

aE~ = T! Ei Ek = (D -I)c Td Ej 
aQb ,k a b b ca d (2.63) 

we find 

(D -lnT:o = T{kE~E~e1. (2.64) 

In the case of strings relations (2.63) and (2.64) will sim
plify significantly, leading to the attractive interpretation of 
the D matrices as the metric tensors. 

III. DUAL VIRASORO ALGEBRAS AND THE VERTEX 
OPERATOR 

A. Coordinates and vielbeins 

To illustrate the discussion in Sec. II we now consider 
the specific case of the Virasoro algebra. 

The generators of the Virasoro algebra in the classical 
case, which we will consider in this section, are defined in 
terms of the harmonic oscillators {a ~ ,a;;'} 
= in8 (n + m) TJ f'Vand a b = P f'IVl, with P I' the center-of
mass momentum of the string and 
TJ p.v = diag( - + + + "'). 

The convention we use in this section is that the indices 
(a,h,c, ... ) from Sec. II go over to (n,m,k, ... ), while the dual 
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indices (i,j,k, ... ) become (r,s,t, ... ). Elements of the sets 
(n,m,k, ... ) and (r,s,t, ... ) are arbitrary integers. 

We carry our construction from Sec. II to the case of 
classical strings by defining the appropriate canonical pair 
(Pn,Qm), which constitutes a Heisenberg algebra: 

{Pn,Qm}=8(n+m), {Pn,Pm}=O={Qn,Qm}. (3.1) 

Note that for the case of strings, the conventional delta func
tion 8': goes over to 8 (n + m). 

The form of the coordinates Q n in this framework has 
been found in Refs. 10--12, where Q n were recognized as the 
subsidiary constraints of the Virasoro algebra and expressed 
in terms of the modes of the Fubini-Veneziano coordinate: 

Q (z) = Vlx - i_1_p Inz 
I' I' v'2 I' 

at zn) p.n ----

Explicitly, we have 

Qn=ili.~z"k·Q'(z) 
k'p j 21T IZ 

where 

{ 

2 
-k'x 
k'p , 

= iVl k'an , 

k'p n 

ifn=O, 

otherwise, 

Q ~ (z) = Qp. (z) + (iIVl) PI' In z , 

n 
(3.2) 

(3.3 ) 

(3.4 ) 

x I' is the center-of-mass position of the string, and k I' is 
some arbitrary null vector k· k = 0 satisfying the light-cone 
condition k·p¥=O. 

We now complete the picture by defining the conjugated 
operators Pn • It is easy to construct Pn explicitly, as was done 
in Refs. 12 and 2, with the result 

(3.5) 

where p I' is another null vector, beside k 1', explicitly given 
by 

'fi"=pp.-!p2[kp.l(k·p)] , (3.6) 

with the properties 

p2 = 0, p·k = p-k ¥=O, p f'pp. = !p2 . (3.7) 

Once the canonical pair (P n ,Q m) is found for the case of 
the classical strings we can proceed as in Sec. II and con
struct the new non-Abelian structure. For this purpose we 
need to introduce the appropriate structure constants: They 
will be provided by the Virasoro algebra generated by the 
Virasoro operators, which here take the form 

L _l~ f'V n - - ~ a man - m TJp.v . 
2 m 

The classical Virasoro algebra is then given by 

{Ln,Lm} = U~mLp , 
with the structure constant 

U~m = i(n - m)8(n + m - p) 
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(3.9) 

(3.10) 
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carrying a factor of i because here we are dealing with the 
classical algebra. One finds that the unique solution to the 
Jacobi identities (2.12) and (2.13) is provided by 

T~m = - imo(n + m - p) . (3.11) 

Accordingly, we can introduce the matrix D '; as 

D'; = D(m - n) = o(n - m) - T';pQ -P 

=o(n-m) _i(n_m)Qn-m (3.12) 

and use it to construct the "non-Abelian" derivative 
!iJ n == D '; Pm. The Jacobi relations ensure that !iJ n actually 
satisfies the Virasoro algebra and, of course, also the relation 

{!iJ n,Qm} = o(n + m) - T n-;,mQ -P= D;m. (3.13) 

The explicit calculation reveals thae2 

F,)r _p TmQ-PP _ 1 '" !£ v n 
.;;z; n - n - np m - - "'-' a man - m Jlll' 

2 m 
(3.14 ) 

where 
n!£V = [lI(k'p)](k!£p v + p!£k V) (3.15) 

is a projection operator onto the longitudinal directions on 
thek - pplanesince n;kv = k!£ and n; Pv = PI£" Hence we 
recognize in !iJ n the two-dimensional Virasoro operators 
which generate diffeomorphisms on the k - P plane. This 
follows from the fact that the gauge generator !iJ n is built 
from the Abelian canonical operators (Pn,Qm) only and 
these operators are confined to the longitudinal directions. 
We can therefore alternatively denote !iJ n by 

( 3.16) 

and correspondingly, split the original Virasoro operators 
into longitudinal and transverse parts as 

Ln = L ~ong + L ~ = !iJ n + L ~ , 

where 

L tr_1", !£ v 
n -- £..a man-m€!£V' 

2 m 

( 3.17) 

(3.18 ) 

with €!£V a projection onto the directions orthogonal to the 
k - pplane: 

€!£v==1J!£V - n!£v' (3.19) 

We note that since clearly, {Ln ,Q m} = {L ~ong,Q m}, the Vir
asoro algebra can be extended to the form 

{Ln,Lm} = U~mLk , (3.20), 

{Ln,Qm} = o(n + m) - T nk mQ - k = D n- m, (3.21) 

{Qn,Qm} = O. (3.22) 

We now have all the ingredients necessary to carry the ca
nonical transformation (2.5) and (2.6) over to the case of 
strings: 

exp( - cf»O~Pn exp(cf» = e~!iJ n = e~L ~ong, (3.23) 

(3.24) 

In Ref. 2 it was pointed out that the vertex operator defined 
by 

V(rk,z) = exp(N1 rk'Q(Z») 
k'p 

=z'expC=~oo irQnz-n) = m=~oo e';'zm (3.25) 
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is a generating function for the vielbeins e~. As a conse
quence of relation (3.25) we find the Poisson bracket 

{Ln,e';'} = {L ~ng,e';'} = i(m - n)e';'- n = - T';ke~, 

(3.26) 

which reproduces the MC structure equation (2.23) in this 
new framework. Several other consequences following from 
the vertex representation of the vielbein are listed in the Ap
pendix. 

It turns out that the vertex is also the generating func
tion for the inverse vielbein E ~, which provides the follow
ing relation: 

e~ = (r/n)Er_ n . (3.27) 

This in turn ensures the second MC structure equation 
(2.25): 

{Ln,E;;,} = {L !,"ng,E;;,} = - imE',.. + n = T~mE~ . 
(3.28) 

We can use this information to find the vielbein repre
sentation of the D matrices. Our starting point is relation 
(2.58) for the inverse matrix (D -I)~ = (D -I)(n - m); 
inserting the explicit structure constants we obtain ; 

(D-I)~ = (D-1)(n-m) = (r/m)E;;;re~=e~e=';', 

(3.29) 

from which we deduce that 

D~ =D(n-m) =Er_nE;;;r. (3.30) 

Hence the D matrices are being reproduced by the standard 
geometric construction of the metric tensors from vielbeins. 2 

The D matrices satisfy the following Poisson bracket rela
tions with the Virasoro operators: 

{Ln,D~} = - T~/D~ , (3.31) 

{Ln,(D -l)~} = T~m (D -l)~ _ U~/(D -l)~ . (3.32) 

Note that for (D -l)(m) = (D -1);'Eq. (3.32) reproduces 
the familiar resule 3 

{Ln,(D -l)(m)} = - U':!(D -1)(/) 

= i(m - 2n)(D -I)(m - n) . (3.33 ) 

B. The dual operators 

As we have learned in Sec. II, given the Abelian momen
tum operator Pn we can associate to it, by multiplication 
with e~, a generator of the non-Abelian algebra in the dual 
space 

!iJ r ==Pne~ = [( p'an )/v'1] e~ . (3.34) 

It follows that Q r = Q - mE',.. is the dual coordinate which, 
together with !iJ r' satisfies 

{!iJ r,Qs} = o(s + r) + T r-;sQ -'==D r- s , (3.35) 

which defines the matrix D ~ = o(r - s) - i(s - r)Q r- S as 
the dual counterpart of D ~. The definition of the longitudi
nal vector vertex operator!iJ r (Ref. 7) is based on our gen
eral algebraic construction (2.47), which also provides an 
alternative expression in terms of the dual Abelian deriva
tive. Namely, we introducePr==e~!iJ n = e~D';Pm' which is 
conjugated to QSaccording to {p"Qs} = o(r + s). We then 
have 
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gr =D~Ps' (3.36) 

Accordingly g r satisfies an algebra dual to the original 
one, with identical structure constants (up to a sign), but 
with indices defined on the dual space. 

{gr,gJ=i(s-r)Pne~+s = - U~sgt. (3.37) 

Note that the quantities introduced above are clearly 
longitudinal. To introduce the transverse directions, we 
need the polarization vectors E~, satisfying 

d-2 

k'~ = P'Ei = 0, L E~E~ = E,.v' ~Ejv7J"v = {jij. 
i=1 

(3.38 ) 
We can then follow standard procedure and define the 

transverse DDF operators as l4 

00 

A i(r) == L Ei·ane~. (3.39) 
n = - 00 

Since Ei
. k = 0 the DDF operators commute with all the lon

gitudinal operators which are functions of the coordinate 
Q n, such as vielbeins, etc.: Their basic properties involve the 
relation 

{A i(r),A j(s)} = ir{jij{j(r + s) (3.40) 

and the fact that they commute with the Virasoro operators: 

{Ln,A i(r)} = T~mEi'ake';' - T~Ei'ame~ = O. (3.41) 

In the old dual models, property (3.41) led to the wide
spread use of DDF operators for defining physical 
states. 14.8.7 

We will now associate to the DDF operators the dual 
transverse Virasoro generators by the definition 

(3.42) 

It is a matter of simple verification to prove that i ~r in fact 
satisfies the dual Virasoro algebra 

(3.43 ) 

as a consequence of relation (3.40). It is important to note 
that one can establish the following relation between two 
mutually dual transverse Virasoro operators: 

i Ir = DSenL Ir = em(D -I)n L Ir 
r rs n r m n' (3.44 ) 

where we have used the vielbein relation2 

(3.45 ) 

which follows from the vertex representation (3.25) . We can 
rewrite expression (3.36), defining grin a new way: 

g =DSP + DSenLlr _i tr 
r ,. s rr n r 

= <I>r + T;tQ - t<I>s - ~ S=~ 00 A i(r - s)A r(s) 

(3.46) 

where we have introduced the operator 
<I>r ==Lne~ = Pr + e~L t;, analogous to <I>i defined in Sec. 
n c. Here <I> r is clearly an extension of the longitudinal op
erator Pr which also includes the transverse directions in a 
way that preserves the dual Heisenberg algebra [compare 
with Eq. (2.47)] 

{<I>"Qs}={j(r+s), {<I>r,<I>J=O={Qr,Qs} (3.47) 
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and ensures that <I> r' as well as Q s, have zero Poisson brack
ets with A i(r). 

We will now define the dual Virasoro operators by sum
ming the p'urely longitudinal operator grand the transverse 
operator L~. The obvious result from (3.46) is 

(3.48 ) 

which corresponds to ;Pi in Sec. n c. Equation (3.48) de
fines the decomposition of the dual Virasoro operator into 
longitudinal and transverse modes, analogous to the decom
position of the original modes in (3.17). One fundamental 
difference is that we group together operators satisfying the 
Poisson bracket relations (3.37) and (3.43), which differ by 
the A minus s~n. However, the relation 
{g "L ~r} = - U ~sL :r ensures consistency and leads to the 
following dual Virasoro algebra: 

(3.49) 

We note that although we recognized g r as the longitudinal 
part of the dual Virasoro operator, g r does not commute 
with the transverse part as a result of the presence of viel
beins in i~. 

There exists a relation inverse to (3.44) given by 

L Ir = D mE r i Ir = E S (D - I) r'L Ir 
n n m r n s r" (3.50) 

The proof involves the relation (Ref. 2) E :;. E ~ _ m 

= D~E~+s and 

1 00 . • 

L ~ = 2: m =~ 00 (€"am )(E"an - m) 

1 f Ai(s)Ai(r)E;;;SEn-~m' (3.51) 
2 m=-oo 

Hence the longitudinal Virasoro operator L ~ng = g n can 
be rewritten analogously to (3.46) as 

L1ong=Dmp =Dmp +DmEr i lr _Llr 
n nm nm nmr n 

(3.52) 

where we have defined [as in (2.49)] 

<I>n==Pn +E~i~r=E~(gr +i~r) =E~ir' (3.53) 

Equation (3.53) therefore leads to 

(3.54) 

which can be inverted to find an alternative expression for 
<I>m of the form <I>n = (D -I )';:Lm' Expression (3.54) is use
ful in deriving the Heisenberg algebra dual to (3.47): 

{<I>n,Qm} = (D -1)~{Lk,Qm} = {j(n + m) , (3.55) 

{<I>n,<I>m} = 0 = {Q n,Q m} , 

where we have used the bracket relations (3.21) and (3.32). 
It is also clear that <I> n has a zero Poisson bracket with the 
DDF operators A i(r). 

We conclude that <I>n = E~ir is an extension of the 
"Abelian derivative" Pn = E~g r' which includes the 
transverse directions in a way that does not change the 
bracket relations with the longitudinal quantities depending 
on Q m, but ensures commutativity with the transverse DDF 
operators. Note that exactly the same can be said about 
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<l>r = e~Ln being an extension of Pr = e;IiJ n' as well as its 
relation to the DDF operators. 

Let us now consider the Poisson brackets 

{Ln,<I>m} = {D~<I>k,<I>m} = T~m<l>k , 

{L,,<I>,} - T~s<l>t , 
which lead to the interesting results 

{Ln,<I>m o} = 0, {L,,<I>s=o} = 0 

(3.56) 

(3.57) 

(3.58 ) 

for any nand r. Substituting E ~ = 0 (r) and IiJ ,= 0 = ! p2 
we therefore find that 

<l>m=O =D-1(n)Ln Eo-r(IiJ r +L;.'") 

1 2 1 00 = - p + - I A I( - s)A I(S) (3.59) 
4 2 s 

commutes with all Virasoro operators and is in fact the clas
sical analog of the Brink-Olive operator E (here shifted by 
Lo) found in Ref. 13. Similarly, <1>,=0 can be easily recog
nized as 

(3.60) 

as a result of e~ = 0(n).2 
We can summarize the relevant formulas describing <I>'s 

operators in the following way: 
A 

<l>n = E~L, = E~D~<I>s = (D ~1)';Lm , 

<l>r = e~Ln = e~D ~<I>k = (D 1 )~Ls , 
(3.61) 

(3.62) 

which clearly correspond to relations (2.53) and (2.54) for 
the special case of the Virasoro algebra. In a sense the expres
sions L ~ng = D '; Pm and IiJ r = D ~Pr are generalized to 

L n = D ';<1> m and L r = D ~ <I> r by incorporating the trans
verse directions. As a consequence of Eqs. (3.61) and (3.62) 
we can cast the relation between <I> r and <I> n in the form 
analogous to (2.19) and (2.20): 

aQn aQr 
<l>r = - <l>n' <l>n = - <1>, . (3.63) 

aQ' aQn 

The zero modes are simply 
A 

<l>r=O =Lo, <l>m=O =Lo, (3.64) 

with <I> m = 0 commuting with all the Virasoro operators Ln. 
SinceLo = !p2 + !~~ ""A I( - s)A I(S), we note that <l>m =0 
is practically the counting operator of the transverse modes 
only. Meanwhile, <l>r=O = !p2 +! ~m#oa 1'_ ma;;, 1j J.tV 

counts all modes. This asymmetry between the above zero
modes of mutually dual operators will have an important 
consequence for the determination of the physical modes, as 
we will see in Sec. IV. 

The formalism clearly exhibits the duality, which is 
most compactly expressed by 

IV. BRS COHOMOLOGY IN TERMS OF ABELIAN 
STRING OPERATORS 

(3.65) 

In Sec. III we have seen how geometric construction 
based on the rotation of canonical coordinates by vie1beins 
has led to two mutually dual classical Virasoro operators. In 
this section we show how to extend this construction to the 
quantum case and then we turn to the investigation of its 
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physical applications. Two related technical issues have to 
be addressed in this connection; one is how to deal with the 
normal ordering and another is how to add the ghosts in 
order to take care of the anomaly terms. 

In the classical formalism all extended phase space vari
ables including ghosts enter the formalism of Sec. II on equal 
footing with the canonical coordinates (Pn ,Q m). For exam
ple, the generator of <I> of the canonical mapping can be ex
tended to <I>==Q nTn, with Tn (Refs. 1 and 10) defined in 
terms of the variables (P n ,Q n) and the BFV ghosts defined 
as Tn == - T~m (Q - mPk + 1j m9 k)' As shown in Ref. 1, 
the BFV ghosts transform as 

exp( <I»0~9 n exp(<I» = e~9 n == 9 r , 

exp( - <I»o~1jn exp(<I» E~1jn==1jr. 
(4.1 ) 

If we define an Abelian nilpotent operator as 

0A==1j-npn , (4.2) 

it therefore transforms, under the canonical mapping, as 

exp( - <I»OA exp(<I» = 1j-n(Pn - Q -mT~mPk 

-1j - mT~m 9 k) ==olong. (4.3) 

The operator (4.3) looks similar to the complete quantum 
BRS operator: 

0= :1j-n[(Ln -on,o) 1j-mT~m9k]: 

:1j-n[(L~ -0".0) +Pn Q -mT~mPk 

1j-mT~m9k]:' (4.4) 

We note that the bosonic Abelian operators (Pn,Q") asso
ciated with the longitudinal directions and the ghosts 
(1j",9 n) enter expressions (4.3) and (4.4) in a very sym
metric way. This suggests that the Parisi-Sourlas supersym
metry can be used to provide an understanding of the struc
ture of the BRS cohomology classes via a cancellation 
between the above unphysical modes. 

Our strategy will be to recover the quantum versions of 
the operators introduced in Sec. III directly from the BRS 
operator. This automatically takes care of the normal order
ing problem, as well as ensures correct incorporation of the 
ghost variables. The strong resemblance between operators 
(4.3) and (4.4) suggests that the basic ingredients of our 
geometric construction can be used to explain the structure 
of the BRS operator and analyze its action in the geometrical 
setting. As we will show below, our approach will also shed 
light on the structure of the physical subspace and the asso
ciated gauge orbits. 

Therefore, our starting point is the BRS quantization 
procedure, with the physical states defined by the BRS con
dition 

n!phys) = O. (4.5) 

From the nilpotency of 0 it follows that the physical states 
are defined up to BRS-exact states: 

Iphys) -Iphys) + Olsomething) . (4.6) 

Accordingly, physical states are represented by the cohomo
logy classes of O. 

In Ref. 5, Kato and Ogawa applied BRS symmetry to 
the study of covariant quantization of string theories. Conse-
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quently, the structure of the physical states was determined 
and identified with the purely transverse (DDF) states. l4 

Kato and Ogawa's analysis was based on the formalism in
troduced by KO (Ref. 4) in which the ghosts and unphysical 
modes form a so-called quartet and disappear effectively 
from the physical subspace in a Fock space representation. 
Note that in Ref. 5 construction of the quartet did not identi
fy uniquely the members of the quartet, as will be done here, 
but involved a mathematical induction proof based on ex
pansion in a scaling parameter defined specifically for this 
purpose. 

Further clarification of the structure of the physical 
states, which used results contained in Ref. 5, was later given 
in Ref. 15. 

There have been several other independent studies of the 
BRS cohomology associated with the string theory. A math
ematical study of the semi-infinite cohomology of the Vira
soro algebras was presented in Ref. 16. In the less formal 
development l7 the physical state, as defined by the old no
ghost theorem,8 was put in correspondence with the state 
defined by (4.5) and embedded in the enlarged Fock space. 

A different and elegant analysis of the cohomology of D. 
was presented by Freeman and Olive in Ref. 9 and based on 
the special D.-exact Hermitian operators: The crucial obser
vation here was that the physical state must be in the kernel 
of these operators. 

For more recent studies of the BRS cohomology the 
reader is referred to Refs. 18 and 19. Here we describe the 
KO quartet procedure in terms of the mutually dual Abelian 
operators and show that they define a proper conceptual 
framework for discussing the BRS cohomology of the string. 

Let us first introduce quantum versions of the funda
mental objects presented in Secs. II and III. 

We start with the gauge-fixing conditions Q n defined in 
terms of the harmonic oscillators a ~ satisfying 
[a~,a;;'] = nD(n + m)1/!'v and given by 

QO = 2i k'x, Qn = _ V2 k'an , n#O; (4.7) 
k·p n k·p 

they enter the extended Virasoro algebra, which this time 
contains an anomaly term: 

[Ln,Lm] = U~m Lp + (DI12) n3D(n + m) 

-[(D-24)/12]nD(n+m), (4.8) 

[Ln,Qm]=D(n+m)-T;;;mQ-p, [Qn,Qm] =0. 

The structure constants U ~m and T ~m are given by 

U ~m = (n - m)D (n + m - p), 

T ~m = - mD (n + m - p). 
(4.9) 

As before, the momentum operator 
Pn = (1IV2) p'an is conjugate to the Q m's: 

defined as 

[Pn,Qm] =D(n+m), [Pn,Pm] =0= [Qn,Qm]. 

(4.10) 

Moreover, the formalism introduces two bridge vari
ables between the Abelian and non-Abelian quantities: the 
vielbein e~ and its inverse E ~. Both e~ and E ~ depend only 
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on the variables Q n and the constants T ~m and turn out to be 
moments of the vertex operator. 2 The vielbeins satisfy the 
fundamental Me equations 

[Ln,e;."] = [L ~ong,e;."] = - r::ke;, 

[Ln,E;;'] = T~mE~, 
(4.11 ) 

which are essential, as we have seen, for the above transition 
from the Abelian to the non-Abelian basis. 

A. Quartet mechanism 

Our strategy will be to associate the unphysical modes 
with the KO quartet. This can be illustrated easily while 
working with the quantum theory described by the Abelian 
BRS operator D.A = 1/ - nPn from (4.2), which is clearly nil
potent and quadratic in the mode variables. The procedure 
can be performed along the lines of Refs. 5 and 6. The rel
evant quantities are described by 

[D.A,Qn] =1/n, {D.A,1/n} =0, {D.A,.9\}=Pn, 
. (4.12) 

[D.A,Pn] = 0, [D.A,a~] = 0, (i = 1, ... ,D - 2) . 

The quartet consists of the modes (Pn,Qn,1/n,9 n). Group
ing the quartet together with the transverse modes a~ in one 
multiplet <pp = (a~,Q n,Pn,1/n, 9 n) we can define the metric 
tensor 1/ pa as 

(4.13 ) 

where p and u label the D - 2 transverse directions as well as 
the unphysical gauge coordinates of the quartet. 

Explicitly, the metric tensor takes the form 

a j 
-m _Q-m P -m 1/-m 9 -m 

ai 
n DijDnm 0 0 0 0 

Qn 0 0 -Dnm 0 0 
1/p a = 

Pn 0 -Dnm 0 0 0 

1/n 0 0 0 0 Dnm 
9 n 0 0 0 Dnm 0 

(4.14) 

Note that Q n is anti-Hermitian and therefore, 
Q nt = _ Q - n. We now proceed as in Refs. 4 and 5 by intro
ducing the family of projection operators. The projection 
operator onto the subspace spanned by the physical trans
verse modes is given by 

(4.15 ) 

The remaining projection operators with n;? 1 project onto 
the nth unphysical mode sector and are defined recursively 
as 

p(n) = (lIn)( _ ptp (n- l)Qk _ Qktp(n -l)Pk 

+1/ktp(n-1)9k + 9tp(n-l)1/k). (4.16) 

Each of these projection operators (with n;? 1) is BRS exact 
as a result of 

P (n) = {D.
A 

,R (n)} , 

with 
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R (n) = - (lln)(.9tp(n-\)Qk 

+ Qk tp(n-I).9 k )· (4.18 ) 

Using the assumption of asymptotic completeness we can 
rewrite the solution of the Abelian BRS condition 
nAIt/!) =Oas 

00 

It/!) = I p(n)It/!) 
n=O 

= p(O)It/!) + i: {nA,R (n)}It/!) 
n= 1 

( 4.19) 

This decomposition is the main result of the KO quartet 
mechanism and shows how the unphysical quartet modes 
decouple from the physical component P (0) It/!) as BRS-exact 
states. Although n A is given by n A = [n':~mQ -mPm:], 
relating the cohomology of the Abelian BRS operator nAto 
the cohomology of the original BRS operator n is not sim
ple. 

Here we_will instead recover the Abelian structure in
side the BRS operator n by using the vielbeins which satisfy 
the MC equations ( 4.11). Then we will show how the Abe
lian quantities from Sec. III form two KO quartets. 

We now start the main construction of this section. We 
first introduce the two Abelian quantities2 

( 4.20) 

which are clearly self-commuting (anticommuting). We 
again need to introduce the transverse DDF operators l4 

A i(r) =~: = _ 00 ~'ane;, which have the same form as in 
(3.39). Note that since €i is orthogonal to k, normal ordering 
is unnecessary in the definition of A i(r). As before, the DDF 
operators commute with the vielbeins and the Virasoro oper
ators. One finds easily that the DDF operators satisfy the 
quantum version of the algebra (3.40) (Ref. 2): 

[A i(r),A j(s)] = roiio(r+s). (4.21) 

We will embed our first quartet construction in the dual 
space. 2 Explicitly, we form the quartet as follows: 

(4.22) 

[n,cP r ] =0, [n,Ai(r)] =0 U= 1, ... ,D-2). 

One finds that 

r(= 1]-nE~ , 

cPr = (.? n - on.O )e; + .9 n 71 - mT':"ke~ , (4.23) 

where.? n - on.o ={n,.9 n} are the modified BRS-exact 
Virasoro operators that satisfy the centerless algebra for the 
nilpotent n. It is interesting to note that the fermionic 
members 7Jr and .9 r also appear in the Abelization proce
dure ofBatalin and Fradkin20; see, also the discussion in Ref. 
2. 

We can introduce a more economical expression for cPr 
by introducing the normal ordering of the first and second 
terms in (4.23) while taking into account 
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Clearly, the constants on the rhs of Eqs. (4.24) cancel and 
we arrive at 

cPr =: «(Ln - on,o) - 71- m.9 kT~m) e;:. (4.25) 

Remarkably, (4.25) differs only by the normal ordering 
from the classical expression <I> r + 1] - s{ <I> r,.9 J for the 
"pure-gauge" Abelian operator found in Ref. 2. 

By definition, cPr is also the BRS-exact operator; fur
thermore, we have 

[cPr,cPs ] = {n,[cPr,.9 s P =0 (4.26) 

since 

[cPr,.9 s] = - T':nk e:.9 ne';' + T':nk e:.9 ne';' = 0 

as a result of the MC equations (4.11). One can also show 
easily that [cPr,7JS] = 0 and 

[cPr,QS] =o(r+s). (4.27) 

Hence the Heisenberg algebra originally introduced in Sec. 
II has maintained its form despite the incorporation of trans
verse direction in Sec. III and the incorporation of BFV 
ghosts and normal ordering in this section. 

Similarly, we can find the way to generalize the Heisen
berg algebra (3.55) or (3.10). This will amount to con
structing the dual KO quartet. Obviously, we have to start 
with the original gauge-fixing operator Q n and proceed as 
follows: 

[n,Q"] = D;; n7J - m=~", {n,~n} = 0, 

{n,.9 n}=cPn , [n,cPn ] = 0, 
( 4.28) 

where we have defined the variable conjugated to ~n as 

.9n=(D-I)~.9k' (4.29) 

Clearly, {.9 n,~m} = o(n + m). This definition of.9" leads 
to the expression 

cPn = (D-I)~(.?k -Ok,O) + T~n(D-I)71]-m.9k 
(4.30) 

Using similar considerations as in (4.24) we arrive at the 
more simple normal ordered expression 

cP" = : (D - 1 ) ~ (L k - 0 k,O) + T~" (D - 1 ) 71] - m.9 k : , 

(4.31) 

where in the first term we recognize the normal ordered ver
sion of <l>n from (3.61). Hence, again, our construction 
yields the ghost and quantum extension of the basic quanti
ties from Sec. III. 

It is straightforward to verify that 

[cPn,cPm] =0, [cPn ,.9 m] =0, [cPn,~m] =0, (4.32) 

and, of course, [cPn,Q..::'] ~ o(n + m).],heAfirst identity in 
(4.32) follows from [<I>",<I>m] = {n, [<I> n,.9 m p, which is 
a consequence of the nilpotency of n and the technical iden
tity 

U;/(D -I) ~ (D -I)~ + T~m (D -1)7(D -I) ~ 

_ TI (D -1)k(D -I) p = 0 
pn 1m' (4.33) 

For the special case n = 0 we obtain, from (4.31), 
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$m=O = : (D -1)(k)(Lk - ok,O) :, (4.34) 

which, of course, must satisfy [$n,$m =0] = 0: Together 
with the technical identity (4.33), this implies 
[Ln,$m = 0] = 0 for the nilpotent BRS operator. 

This can also be proved independently. Starting with the 
basic definition (4.34) and taking care of the normal order
ing one can prove the familiar result l3

,21 

[Ln,$o] = [(D-26)/12](n 3 -n)D- 1( -n). (4,35) 

Hence for the critical dimension the operator $0 commutes 
with all the Virasoro operators as the classical operator <1>0 in 
Sec. III. 

It is now easy to adapt the quartet mechanism using the 
operators introduced above. Clearly, our discussion suggests 
the existence of two quartets containing the modes 
($"Q ',1/', 9 ,) and ($n,Q n,~n,.9 n ). The metric tensor can 
be defined in the same fashion as above: 

(4.36) 

with the transverse DDF modes A i(r) being placed in one 
multiplet <pp = (A i(r),$"Q',1/',9 ,) or <Pp = (A i(r), 
$n,Q n,~n,9 n) with the members ofthe dual quartets. 

For the quartet in the dual space labeled by r we obtain 

Aj -s 
_Q -s P -s 1/ - s 9 -s 

Ai , roijo,s 0 0 0 0 

Q' 0 0 - D's 0 0 
1/pu = P , 0 -D's 0 0 0 

1/' 0 0 0 0 D's 

9, 0 0 0 D's 0 

(4.37) 

Now Q ' is anti-Hermitian as a result of Q nt = - Q - nand 
(e~) t = e = ~. Correspondingly, we carry the construction of 
the projection operators (4.15) and (4.16) to the dual space 
defining 

(4.38 ) 

and for r> 1, 

pr = (1/r) ( - $1 pr-1QS - Qstpr-l$s 

+1/stP,-19s + 91pr-I1/S). (4.39) 

Each of the projection operators (4.15) and (4.16) (with 
r> 1) is BRS exact as a result of 

P'= {n,R '}, 

with 

(4.40) 

R'= -(1lr)(91pr-1QS+Qstpr- 19 s )' (4.41) 

Using the expansions e~ = o(n - r) + ... and 
E: = o(n + r) + ... (Ref. 2) in Eqs. (4.38) and (4.39) we 
see that the completeness assumed above for the original set 
of projection operators carries over to the dual Fock space 
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projection operators. Hence we can rewrite the solution of 
the physical state condition nl¢') = 0 as 

I¢'> = i: prl¢') = P(O) I¢'> + i: {n,R '}I¢') 
r=O r=1 

= P(O) I¢') + nix) . ( 4.42) 

This mechanism works the same way for the quartet 
_ A A 

(<I>n,Qn,r(,9 n); the only difference is the form of the pro
jection operators: 

pn= (1/r)( _$~ pn-IQm_Qmtpn-l$m 

+~mtpn-l.9m +.9~ pn-l~m), (4.43) 

which, again, for n> 1 are BRS exact as a result of 

pn = {n,R n}, (4.44) 

with 

R n= - (1ln)(.9~ pn-IQm+Qmtpn-l.9 m). (4.45) 

The final result (4.42) can now be easily obtained along the 
same line as above. 

The above Fock space construction is based on modes 
with positive and negative frequencies. For r = 0 we have 
$,=0 =.?o - 1, which is a BRS-exact operator and van
ishes on the physical states as a result of the mass-shell condi
tion. For the special case n = 0 we take 

A 

9o=«D-l)~-ok,O)9k' where we have shifted 
(D-1)(O)-+(D-1)(O) -1 = (D-1)(k)D(k) and where 
the last quantity annihilates vacuum. This leads to the Free
man-Olive operator9

: 
A A 

E={n,9 n=O} = : (D -I)(k)(Lk - ok,O) : -.? o. 
(4.46) 

Since (4.46) is a BRS-exact operator which counts longitu
dinal states, we see that any eigenstate will automatically 
belong to the trivial cohomology classes of n. 9 

B. Homotopy construction 

It is now easy to put forward the homotopy construction 
responsible for the successful working of the quartet mecha
nism. Inspired by the discussion given by Henneaux l8 we 
now introduce, for the quartet ($"Q',1/',9,) in the dual 
space, a "conjugated" BRS charge 

nt=Q'9 _" (4.47) 

where "conjugation" is used from the point of view of sym
plectic geometry and not hermiticity. 

Clearly, nt is itself nilpotent and its anticommutator 
with n yields, according to (4.22), 

{n,nt} = Q '$ _, + 1/'9 _, 

_ . Q ,;i;. • + . 1/' /17J • - A/' -. '¥ _ r • • Y _ r • =JY , (4.48) 

where the "Hermitian" (in the sense of the above conjuga
tion) operator ff counts the modes of ghosts, as well as the 
unphysical modes associated with excitations generated by 
Q' and $ _ " In fact, ff is an extension of the conventional 
ghost number operator which includes these extra modes. 

Let us now consider the physical state I¢'>, which is also 
an eigenstate of ff with the nonzero eigenvalue n: 

nl¢'> =0, (4.49) 
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fflt/!) = nit/!) . (4.50) 

A simple calculation shows that ffn tit/!) 
= ntfflt/!) = nntlt/!}: This result leads to interpretation of 
n tit/!) as a supersymmetric partner of It/!) with the same n 
eigenvalue. Hence we have a doublet 

. It/!) (4.51 ) 

associated with each nonzero eigenvalue of ff. 
Analogy with supersymmetric quantum mechanics22 is 

at this point completely clear. The origin of this analogy is 
the supersymmetric algebra satisfied by n, n t, and ff: 

{n,n} = {nt,nt} = 0 , 

[n,JY'] = [nt,JY'] = 0, {n,nt} = ff. 
(4.52) 

Accordingly, nand nt play the role of super symmetry gen
erators and ff plays the role of the Hamiltonian. 

As elementary supersymmetric quantum mechanics 
teaches us, we will have pairing of the states corresponding 
to the nonzero eigenvalues of ff, with the exception of the 
zero eigenvalue. However, since ff is a BRS-exact operator 
it follows that 

(4.53 ) 

and for n#O the state It/!) is BRS exact. Consequently, the 
physical states must have n = O. 

Clearly, in this construction the nilpotent nt plays the 
role of the contracting homotopy operator. Therefore, we 
have understood the essence of the KO quartet mechanism 
as the construction of the contracting homotopy. This not 
only represents an abstract refinement of the existing meth
od, but more important, provides a possible conceptual ex
tension of the cohomology derivation to the quantum mod
els, which are not Abelian or not readily Abelianized along 
the path described in Secs. II and III. 

C.Comments 

One recognizes in relation (4.42) and the discussion 
around (4.53) the no-ghost theoremS in the version adopted 
to the extended Fock space. We can rewrite it compactly as 

Iphys) = IDDF) + nix) . (4.54) 

Equation (4.54) shows that any physical state can be de
composed into transverse DDF states with no ghost excita
tions and the unphysical BRS null states. Note that the pres
ence of the ghost zero mode introduces a vacuum doubling: 
For a discussion of this and, also, the case p = 0 we refer the 
reader to, for instance, Ref. 15. In the present work we clear
ly covered the case P#O only. 

We have seen that the algebra satisfied by the original 
harmonic oscillators a ~ and the ghosts decomposed into 
two separate algebras under transformation to the dual 
space. One part contains the unphysical gauge directions 
and transformed ghosts, namely the first-class constraints 
<1>" the longitudinal subsidiary constraints Q sand (7]',&' ,), 
or the multiplet (<I> n ,Q n, ~n, 9 n ). The other part consists of 
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the purely transverse second-class DDF operators A i(r). 
This suggests a fiber bundle picture of phase space,2 with the 
physical space being the base manifold and the conjugate 
pair (<I>"Q') or (<I>n ,Q n) parametrizing the gauge orbit. 

It is interesting to observe connection of our approach to 
some other earlier proofs of the no-ghost theorem. Compar
ing with Ref. 17 one sees that the change of the basis of the 
string Fock space corresponding to going from the operators 
Ln andKn = (k'plV'l)(8n,o - nQn) to <1>, andQ'essential
ly diagonalizes the Thorn matrix JI P and accordingly, sim
plifies the structure of the Fock space. Since <1>, contains the 
longitudinal vector vertex operator !iJ, = Pn e~ (Refs. 2 and 
7) one notes the connection to the proof based on the spec
trum generating algebra. 7 We note, however, that the use of 
ghosts was essential here for the identification of the null
norm states. 

It is easy to generalize the quartet mechanism to the case 
of the extended phase space encountered in the study of 
OSP ( 1, 112) symmetry. In this case the extra pairs ( 'IT,A.) and 
( fj ,~) constitute a separate quartet of unphysical modes 
which cancel each other. 
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APPENDIX: VIELBEIN-VERTEX RELATIONS 

In this Appendix, we derive a number of technical iden
tities involving the vielbein and its inverse. The basic identity 
is 

V(rk,z) = exp -' .- rk'Q(z) = L e';' z+ m. ( 
'V'l ) 00 

kp m=-oo 

(Al) 

A similar eqliation relates the inverse vielbein to the dual 
vertex operator: 

V(mk,z) =exp( -m ,=~oo Q -'z'+mlnz) 

r= - 00 

As before, Q' = E:;' Q - m. This supports our observation 
that the inverse vielbein E:;', as a function of Q', resembles 
e~ in terms of Q n. This observation is clearly supported by 
our discussion in Sec. II, which is centered around dual MC 
structure equations. 

As shown in Ref. 2, these moments are related by 

e';' = (rlm)E'_ m • (A3) 

It will be useful to note certain special cases in whieh the 
vielbeins have one index equal to zero. One finds, using (A 1 ) 
and (A2), the explicit results 

e~=8(n), e~=8(r)+rQ'=D(r) (A4) 

and 

E~ = 8(r), E~ = 8(n) - nQn = D( - n) . (A5) 
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It follows by simple complex analysis from (Al) that 

(A6) 

and similarly, from (A2), 

(A7) 

Another set of important identities involves products of 
vielbeins and inverse vielbeins: In this case we obtain 

For the special case n = 0, (A8) simplifies to 

E';"e';' = E~+s = o(r + s) , 

while setting s = 0 we obtain 

e~ rE ~ = e;;' - n = 0 (m - n) . 

(A8) 

(A9) 

(AW) 

Equations (A9) and (A4) reflect the fact that E';" is both a 
left inverse and right inverse of e';'. 

Finally, let us also list the important identities used in 
Sec. III: 

e~_ se';' = (o~ + T~sQ - S) e~ + m , (A11) 

Er E S = (Ok _ Tk Q -p)Er+s=DkE r+s (AI2) 
n - m m n np k n k . 
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The design of optimal electromagnetic fields producing selective vibrational excitation in 
molecules modeled as harmonic physical systems is shown to be equivalent to minimizing a 
quadratic cost functional balancing the energy distribution in the molecule and the ftuence of 
the input. In the control problem, two approaches are employed to insure that the final 
excitation is attained. One method uses a control strategy that employs a terminal constraint 
and in the other approach the cost functional is augmented with a terminal cost. The 
asymptotic form of the state and costate is investigated for both strategies in the limit that the 
final time approaches infinity, and some mathematical results on the form of the Lagrange 
parameter are presented for the first type of controller. These two results allow for a detailed 
discussion on the appropriate choice of practical design constants. For the example of a linear 
chain molecule, and approximation for the eigenvalues of the Hamiltonian matrix is derived 
for the limiting case where the weighting on the ftuence of the optical field in the cost 
functional increases to infinity. Also, for the linear chain it is shown that the eigenvalues are 
bounded and that this bound does not depend on the length of the chain. 

I. INTRODUCTION 

Recently, control theory has been applied to model se
lective vibrational excitation in molecules by means of opti
cal fields. 1.2 If the atomic motion is not far from equilibrium, 
the effective interaction potential becomes approximately 
harmonic so that the quantal averages behave as a classical 
harmonic system. The optical field is taken to couple to the 
bonds through a linear dipole,2 and the objective is to design 
a laser pulse in a given time interval such that the target bond 
in the molecule attains a certain degree of excitation at the 
end of the interval while the energy distribution throughout 
the remainder of the molecule is minimal over the entire 
interval. Simultaneously, the optical field used to control the 
molecule should have the smallest possible ftuence, the time 
integral of the intensity of the field. To balance the signifi
cant internal energy of the molecule and the ftuence of the 
optical field, this paper proposes a cost functional containing 
a quadratic cost of the state (average positions and mo
menta) and the ftuence. The optical field will be called opti
mal if it minimizes this cost functional while producing the 
desired excitation. To insure this excitation at the final time, 
it is possible to use a controlling strategy specifying the final 
state exactly or a final term may be added to the cost func
tional specifying the penalty for not attaining the required 
excitation. Both approaches lead to LQ (linear quadratic) 
optimal control methods that are well known in the litera
ture.3- 5 

The reduction of the design of a laser pldse for generat
ing selective vibrational excitations in a molecule to a linear 
optimal control problem is the main contribution of this pa
per. Though the techniques used here are known in the con
trolliterature, this application gives rise to mathematically 
interesting limiting procedures and design problems. A re-

cent study used the harmonic approximation of the molecule 
but introduced a cost functional that was not quadratic. 2 As 
a result, they were unable to make use of the large quantity of 
analytical results known for linear optimal control. The cost 
functional introduced in this paper is a modification of the 
one employed in Ref. 2 and recent numerical results suggest 
that the qualitative difference in the optimal fields derived 
from both cost functionals is negligible6 under appropriate 
circumstances. Other studies in the mathematics literature 
that are useful in this context concentrate on quantum con
trol in general,7 and recently quantum control of a molecule 
by means of optical fields was attempted. 1 Although a spe
cial case, the calculations in the present paper can also be 
viewed as fully quantal through the use of Ehrenfest's 
theorem. 2 

In Sec. II, the appropriate cost functionals are intro
duced and the optimal field is expressed in terms of the solu
tion to the Hamiltonian equations under the assumption of 
controllability of the state (average positions and momenta) 
of the individual atoms. Since these functionals are quadrat
ic, it is formally possible to establish a relationship between 
the optimal electromagnetic field and the state of the molec
ular system using the solution to the matrix Ricatti equa
tion.5 However, the rapidity of the molecular motion does 
not allow sufficient time to measure the molecular state and 
use this information to determine the optimal field. In other 
words, the extremely short vibrational time scales make a 
physical feedback mechanism impossible; hence, the con
struction of the optimal electromagnetic field is an open loop 
control strategy. Another practical aspect is that the intensi
ty of the required optimal field tends to be very high and, to 
alleviate this problem, the weighting of the ftuence in the 
cost functional may be increased. Therefore, in Sec. III, the 
behavior of the optimal field and the associated position and 
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momenta is investigated in the limit that this weighting ap
proaches infinity. The eigenvalues of the Hamiltonian ma
trix can then be approximated, which is illustrated for the 
case of a model linear homogeneous chain molecule. This 
section also shows a bound for the eigenvalues of the linear 
chain that is independent of the size of the chain. In Sec. IV, 
the asymptotic form for the state and optical field of the 
harmonic system in the limit that the final time approaches 
infinity is derived, which shows that the choice of an appro
priate time interval is tightly connected with the question of 
the weighting. These asymptotic expansions contain a La
grange parameter that depends on a negative definite matrix 
satisfying a Riccati equation, and in this section it will be 
shown that this matrix is well defined and approaches a limit 
as the final time increases to infinity. A discussion on the 
appropriate choice of design parameters concludes this sec
tion. Finally, in Sec. V, our conclusions will be presented and 
some future research indicated. 

II. FORMULATION 

If the motion of the individual atoms in a molecule is not 
far from equilibrium, the effective interaction potential is 
approximately quadratic,S in which case the quantal aver
ages of the system can be represented as a classical harmonic 
mass-spring system.2 In this section, two different control 
strategies are introduced for the selective vibrational excita
tion in a molecule based on quadratic cost functionals bal
ancing the energy of the system and the fluence of the optical 
field. The homogeneous linear chain introduced in this sec
tion serves as the canonical example. 

More specifically, let the average bond-length displace
ment coordinates q and their associated momentum p be de
noted by qT = (ql(t), ... ,qn (t» and pT = (PI (t)'''·,Pn (t», 
respectively; then the molecular Hamiltonian H for this sys
tem is given by2 

H=1jJTGp+!qTFq-u(t)b'{q, (2.1) 

where Fij = (jijk j , k j being the force constant of the jth 
bond. Due to the use of bond-length coordinates, the mass 
tensor G becomes a tridiagonal matrix 

Gij = (jij (/1-j+ I + /1-j) - (jj (j + 1 )/1-j - (jj(j- 1)/1-;+ I = Gjj> 
(2.2) 

with /1-; = 11m;, m; being the mass of the jth atom. 2 The 
external optical field u(t) couples to the bond q in the form 
of a linear dipole with b l being the dipole derivative vector 
associated with the molecule. Using (2.1), the equations of 
motion for the state x(t) T = (q(t) T ,p(t) T) become 

~x(t) = ~ [q(t)] = [0 G] [q(t)] + [0 ]u(t) 
dt dt p(t) - F ° p(t) bl 

= Ax(t) + bu(t), (2.3) 

which is the familiar form of a linear system with system 
maxtrix A, input matrix bT = (O,b ,{), and input u(t). Ref
erence to b as an input matrix in the present molecular con
trol context is done to keep within standard control nomen
clature. 

The objective is to design a minimum fluence optical 
field u(t) that directs the system in such a fashion that, at 
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some final time T, a specific excitation of one or more target 
bonds is produced while a minimum of energy is deposited in 
the remaining bonds throughout the time interval. Quantify
ing the simultaneous costs of this control strategy, we pro
pose a cost functional consisting of a quadratic measure of 
the excitation of the whole system and a quadratic measure 
of the fluence of the optical field. Hence, the following cost 
functional <P(x,u) is adopted: 

1 iT <P(x,U) = - [X(t)TQX(t) + ru(t)2]dt, 
2 0 , 

(2.4 ) 

where Q is a diagonal matrix of size 2n with constant rl on 
the upper left-hand block and r2 on the lower right-hand 
block. For more physical intuition on this functional, see 
Ref. 2. The second integral in (2.4) is referred to as the 
fluence of the field, and the design constant r determines the 
ratio between the two contributions to the cost of guiding the 
system to its desired final excitation. One way to guarantee 
the specified vibrational excitation at time T is to require 
that x( T) satisfies a terminal condition; another possibility 
is to add a quadratic 'terminal cost to <I> (x,u) that depends on 
the difference between x( n and the desired excitation. 
Finding an optimal electromagnetic field therefore reduces 
to one of the following optimal control problems. 

(i) Minimize <I>(x,u) with respect to the otpical field u 
(input) subject to the equations of motion (2.3) and the 
final conditon Hx (n = X. Appropriate choices for H and X 
then correspond to the desired excitation. For the sake of 
simplicity, it will be assumed that H is a vector since the 
generalization to multiple constraints on x ( n is straightfor
ward. 

(ii) Minimize the cost functional <P(x,u) + 
Hx( n - tV Sf(x( n - t) with respect to u subject to the 
equations of motion (2.3). The matrix Sf in the final cost 
should be chosen such that designated entries of x( n are 
close to the corresponding entries in the target state t. 
Whereas the advantage of the terminal constraint controller 
(i) is that at the final time T the exact target state is reached, 
the cost functional in (ii) has the advantage that it can readi
ly be generalized to the associated stochastic optimal control 
problem. Since, the real molecules in the presence of colli
sions, the equations of motion (2.3) are a simplification, this 
generalization is important. 

For the terminal constraint controller it is well known 
that the optimal field can be obtained by introducing the 2n
dimensional Lagrangian functionA(s) (the costate) and the 
Lagrange parameter 1] such that 3-5 

+ 1][Hx(n - X)· 

The minimum of (2.4) is then obtained from the saddle 
point of (2.5), with can be determined from the requirement 
that the first variations of x ( t), u (t) , A (t), and 1] vanish. The 
optimal input then equals (u(t) = - r-Ib T A(t), where 
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d [X(t)] [A 
dt A(t) = - Q 

- br-Ib l [X(t)] 
_AT A(t)' 

(2.6) 

with A (n = HT 1] and x( 0) = xo' Hence, the calculation of 
the optimal field reduces to solving this two-point boundary
value problem. In the case of the second controller (ii), it is 
found that the state x(t) and costate A(t) also satisfy Eq. 
(2.6), but then the final condition for the costate is given by 
A (T) = SAx (n - 5) (Ref. 5). In accordance with control 
theory practice, the matrix in (2.6) will be referred to as the 
Hamiltonian matrix, which should not be confused with the 
molecular Hamiltonian H in (2.1 ). 

It is well known that an eigenvalue A of the Hamiltonian 
matrix in (2.6) is accompanied by an eigenvalue - A, which 
follows from the analytical form of its determinant. 5 For the 
present choice of Q, a theorem by Kucera9 implies that all 
eigenvalues of this matrix must have a nonzero real part if 
the pair (A,b) is controllable, and that purely imaginary 
eigenvalues correspond to uncontrollable modes of the sys
tem (2.3).9 The system (2.3) is defined as controllable if its 
state xU) is able to reach any point in Rn, which is 
equivalent to the requirement that the matrix 
[b Ab A 2b' .. A 2n - I b] has rank 2n. In the remainder ofthe 
paper we assume controllability for the pair (A,b); hence, 
the Hamiltonian matrix in (2.6) can be decomposed as fol
lows: 

(2.7) 

where the matrix composed of the Wij submatrices contains 
the 4n eigenvectors. The diagonal of the matrix 
diag(A, - A) on the right-hand side contains the eigenval
ues Aj of the Hamiltonian matrix that have nonzero real 
parts due to the assumption of controllability of (A,b). 
Moreover, it will be assumed that the eigenvalues on the 
diagonal of A have positive real parts and, if some of these 
coincide, then the matrix A is in Jordan form. This decompo
sition is used in the following section while the remainder of 
this section will concern itself with the eigenvalues of the 
Hamiltonian matrix. 

The characteristic polynomial a(s) of the Hamiltonian 
matrix is determined as follow·s5

•
9: 

[
(SI-A) 

a(s) = det Q 
br-Ib T ] 

(sl + AT) 

= det(sl - A) 'det[(sI + AT) 

_ Q(sl -A)-Ibr-Ib T] 

= det(sl - A) 'det(sl + AT) 

Xdet[1 - Q(sI -A)-Ibr-Ib T(sl +A T)-I] 

= det(sI - A) 'det(sl +A T) [1 _ r-Ib T 

X (sl +A T)-IQ(sl -A)-Ib], 

and additional calculations show that, in terms of the matri
ces Fand Gin (2.3), a(s) can be evaluated as 
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a(s) = b T(~1 + GF)-I 

X( -rIG2+r2~)(~I+FG)-lbl' (2.9) 

Since this is a polynomial in terms of ~, the roots of a(s) 
must occur in pairs as remarked earlier. 

Expressing the input vector b I in (2.9) in terms of the 
eigenvectors of the matrix A yields further information on 
a (s) since A has certain properties due to its physical origin. 
Consider the eigenvectors eJ = (vJ,wJ) of A with corre
sponding eigenvalues Pj, 

Aej = [0 G] [Vj ] = Pj [Vj ] = pjEj , j = 1, ... ,n, 
-F 0 Wj Wj 

GFvj = - pJvj = UjVj , FGwj = - pJwj = ujwj> 

j= 1, ... ,n. (2.10) 

The eigenvalues uj of the matrices FG and GF are real be
cause the matrices F and G are simultaneously diagonaliza
blelO and they must be positive corresponding to the oscilla
tory modes of the original system. Zero or negative 
eigenvalues correspond to translational or unstable modes, 
respectively, which are not consistent with the known oscil
latory motion of a molecule. If all eignvalues of GF are dif
ferent, then the eigenvectors vj,j = 1, ... ,n, are the perpen
dicular principal axes of the oscillations and wj,j= 1, ... ,n, 
are the left eigenvectors of GF.8

,1O Notice that they are not 
simultaneously normalizable. 1O Now let uj , j = 1, ... ,n, be 
the positive real eigenvalues of GF; then the eigenvalues of A 

become Pj = i-JU;, PH n = - Pj, i = 1, ... ,n, with the asso
ciated eigenvectors eJ = «Gwj)T,pjWJ», j= 1, ... ,2n. As
sume that {wj}j = I.n is normalized and that the vector b l in b 
in (2.3) can be expanded in the form b l = l:aj wj ; then sub
stitution into (2.9) yields 

n 

a(s) = II (S2 + Uj )2 
j=1 

X [1 + r-Ikin 
ai{rloi(v[vd -/2~}], 

k=1 (~+Uk) 
(2.11 ) 

If some of the eigenvalues of GF coincide, then the sets of 
eigenvectors {vj}j = I,n and {wj}j = I,n are not orthogonal, in 
which case (2.11) would become a more complicated sum
mation. 

Expression (2.11) shows that, if a p = 0 for some index 
p, then one of the roots of a(s) is given by ~ = - uP' imply
ing that a purely imaginary eigenvalue of A coincides with an 
eigenvalue of the Hamiltonian matrix. From the theorem by 
Kucera,9 it follows then that this eigenvalue corresponds to 
an uncontrollable mode, which in tum implies that (A,b) is 
not controllable contrary to our assumption. Hence, all coef
ficients a j are nonzero. Conversely, if a j #0 for all j, then 
substituting s = i/3 (/3 being real) into (2.11) shows that 
a(i/3) > 0, so indeed none of the eigenvalues of the Hamilto
nian matrix resides on the imaginary axis. 

An important example treated in detail in the next sec
tion is provided by the case where the system reduces to a 
linear homogeneous chain (mj = m = 1/p., kj = 8, 
j= 1, ... ,n). Then,F=81and 
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2 -1 
- 1 2-1 

- 1 2-1 

- 1 2 
(2.12) 

The eigenvalues uj become uj = 80j , where 
OJ = 4f.,l sin [j17/2(n + 1)] 2, j = 1, ... ,n, are the eigenvalues 
of G. Some calculation shows that (2.11) now reduces to 

n 

6.(s) = IT (? + 80j )2 
j= I 

X [1 + r- I kin a~{ r2~~ - r<}] 
k=1 (s +80k ) 

= a(s) + r-Id(s), (2.13) 

where 
n 

a(s) = IT (? + 80j )2, 
j=1 

des) = :~~ a~ (riO ~ - rk?) {JJI (? + 80j )2} . 
Nk 

(2.14) 

Notice that 0 < uj = 80j < 48f.,l, independent of the size of the 
chain. 

The following section will be concerned entirely with 
the properties of the eigenvalues of the Hamiltonian matrix 
associated with the optimal control problem of the linear 
homogeneous chain. 

III. THE LINEAR CHAIN 

The roots of the characteristic polynomial (2.13) can
not be determined analytically, but certain approximations 
can be made. In this section the behavior of the roots of 
(2.13) will be investigated in the limit as r approaches zero, 
and for the physically interesting limit as r becomes large, a 
perturbation expression for the real part of the eigenvalues of 
(2.13) will be obtained. Moreover, an upper bound to the 
moduli of the roots of a(s) + r-Id(s) will be derived, which 
is independent of the size of the linear chain. 

First consider the limit that r becomes small. Since 
aj #0, it is true that 6.(s) = 0 is equivalent to 

jIn a 2{ r 10J - r2?} = _ r (3.1) 
j= I J (? + 80j )2 

or 

des) = - ra(s). (3.2) 

As r decreases, the solutions to Eq. (3.2) typically fall into 
two categories. A set of 4n - 2 solutions approaches the 
roots of the polynomial des) and the remaining two solu
tions have moduli that tend to infinity in Butterworth pat
terns.4

•
5 In the present case, the latter can be found by assum

ing that s is large and using the asymptotic expansion of the 
left-hand side of (3.1). This yields 

(3.3 ) 

where Ib l 1
2 is the magnitude of the vector b l in b given by 
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Ib l 1
2 = ~aJ. For small r, optical fields of almost arbitrary 

. intensity are allowed so that x (t) will be very rapidly direct
ed from its initial condition Xo to the zero state (no cost), and 
then close to the final time the system will be equally rapidly 
sent to its desired final condition. Equation (3.2) implies 
that in this limit only one particular oscillatory mode of the 
physical system is damped severely while the remaining 
modes approach the transfer zeros [the roots of d (s) ] of the 
system.4 

Numerical simulations show that, for the two control 
strategies above, the intensity of the optimal electromagnetic 
field is generally considerable. 1.2.6 This problem may be alle
viated by increasing the parameter r and thereby placing 
more of a penalty on the fluence of the optical field, which in 
turn will reduce the required intensity. Now, in the limit of r 
approaching infinity, the roots A.j of a(s) + r-Id(s) coin
cide with the roots of a(s) so that, to first order, Aj = Vj' 

j= 1, ... ,2n, where Vj =i-JU; =i.J88; = -vn+ j , 
j = 1, ... ,n, which provides 2n eigenvalues. For large but fi-
nite r, the Vj will have a small perturbation 6.vj , which can be 
calculated as follows. Let 

a( Vj + 6.vj ) + (l/r)d( Vj + 6.vj ) = 0, j = 1, ... ,2n, 
(3.4 ) 

which, expanded in a Taylor series, is equivalent to 

a(vj ) + a' (v) 6.Vj + !a"(v)(6.vj )2 + (l/r)d(v) 

+ (llr)6.vjd'(vj ) + ... =0, (3.5) 

for all j. [Here, a' ( ) indicates the derivative of the function 
a ( ).] Since a ( vj ) = a' ( vj ) = 0, this equation becomes to 
leading order in r- 1/2: 

!a"(vj )(6.Vj )2 + r-Id(vj ) =0, j= 1, ... ,2n, 

6.vj = ±~[-2d(vj)]I[ra"(v)], j=l, ... ,n, (3.6) 

and further calculation shows that this equals 

6.vj = ±~lajl~(rIIOjl +8r2)lr, j= 1, ... ,n, (3.7) 

where 

OJ = 4f.,l sin [j17/2(n + 1 )]2, aj = b ; Wj' j = 1, ... ,n. 

Noticethat6.vj isentirelyrealandthattheset ± Vj ± l6.vj !, 
j = 1, ... ,n, provides 4n different (approximate) eigenvalues 
for the Hamiltonian matrix. The first-order perturbation 
6.Vj also depends linearly on the coefficients aj = b ; Wj and 

vanishes as aj -- O. It is true in general that Aj -- ± i.J88; if aj 
vanishes, which implies that further terms in the perturba
tion expansion also depend on aj • In the present case, all aj 

are nonzero because of the controllability of (A,b), so that 
6.Vj #0, j = 1, ... ,n. 

One more fact can be shown about the spectrum of the 
Hamiltonian matrix of the linear chain, which can be sur
mised from the form of Eq. (3.1). Since 0 < uj = 80j < 48f.,l 
or 0 < OJ < 4f.,l, for all j, and because the function on the left
hand side in (3.1) is inversely proportional to S2, it is to be 
expected that no solutions to (3.1) exist if s is large enough. 
This approach proves correct and is formalized in the fol
lowing theorem. 

Theorem 3.1: Let 0 < OJ < 4f.,l = C and I b l 1
2 = ~aJ, then 

the eigenvalues Aj of the Hamiltonian matrix, 6. (A.j ) = 0, 
are such that 
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IAj 12..;;c5C + (1/2r) Ibl1
2Y2 + (1I2r) IbI! 

x~lbl12rl + 4r(YIC2 + Y2c5C) . (3.8) 

The proof will be presented after this simple lemma: 
Lemma 1: For all real and positive OJ it is true that 

(
YIO] - Yi

2
)..;; YIO] + Y2c50j + Y2 (3.9) 

(.r + c50j )2 (lsl2 - c50j )2 1(ls12 - c50j )1 

Proof 

(
YIO] - y~) = I YIO] + Y2c50j Y2 I 
(.r + c5oj ) 2 (.r + c50j ) 2 (.r + c5oj ) 

..;;( YIO] + yljOj ) + ( Y2 ). (3.10) 
(.r+c50)2 (.r+ c50j ) 

Since OJ is real and positive, we have that 

I (S2 + c50j )21 = I (.r + c50) 12 

= Isl4 + 2c50j Re(.r) + c520] 

> Isl4 - 2c50j Isl2 + c520] 

= (lsI2 -c50j )2, (3.11) 

where Re(.r) > - Isl2 was utilized. Hence, I (.r + c50j ) I-I 
..;;1 ( Isl2 - c50j )1- 1

, which can be substituted into (3.9). This 
yields inequality (3.9) and proves the lemma. 

Proof of Theorem 3.1: The polynomiala(s) in (2.13) 
cannot have any roots in the domain of the argument s where 
both Isl 2 > c5Cso that la(s) I =r60, and where simultaneously s 
satisfies the inequality 

I 
-I j~n 2{ YIO] - y2.r} I 1 r L a, 2 2 <, 

j=1 (s +c50j ) 
( 3.12) 

which is obvious from (3.1). Ifwe let Isl2 > c5C, then the left
hand side of (3.11) can be majorized as follows: 

-ljI=n 2{YIO]+Y2c50j Y2} ..;;r a· + --::-'-~-
j= I ' (lsl 2 - c5C)2 (lsl 2 - c5C) 

_I j~n 2{ YIC2 + Y2c5C + Y2 } 
..;;r /~I a j (lsl 2 _ c5C)2 (lsl 2 _ c5C) 

= r-Ilb 12 y IC
2 
+ Y21s1

2 
=f(lsl), 

I (lsl2 _ c5C)2 
(3.13) 

since I (lsl2 - c50j ) 1-2..;;1 (lsl2 - c5C) 1-2 for Isl 2 > c5C. For the 
second inequality, the lemma was employed. It is easy to see 
that the function f( lsi) in (3.12) is monotonically decreas
ing if Isl 2 > c5C so that the domain where a(s) cannot have 
any roots is given by F = {siR lsi) < 1, Isl 2 > c5C}. Since the 
solution to f(s") = 1 has one positive solution that equals 
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s" = c5C + (1I2r) Ib l1
2Y2 + (1I2r) Ibll 

X~lbl12rl + 4r(y1C
2 + Y2c5C) 

= nC,r), (3.14) 

and since r(C,r»c5C, it is clear that the domain Freduces 
toF = {sllsl2 > n C,r)}. As a result, IAj 12..;;r(C,r) for all j, 
which proves the theorem. 

Since, for the linear chain 0 < OJ < 4J-L = C for all n, the 
right-hand side in (3.8) does not depend on the size of the 
chain and therefore also IAj I ..;;r( C,r) for all j and n. Physi
cally, this result puts a bound on the rapidity at which a 
molecule can respond to external fields. Note that this bound 
depends on the field as well as on the molecule . 

The next section returns to the general case and investi
gates the asymptotic behavior of x (t) and A (t) in the opti
mally controlled harmonic system as the final time T be
comes large. Some applications to the linear chain model will 
be presented. 

IV. INFINITE HORIZON CONTROL 

To determine the asymptotic behavior of the optimal 
field and the associated state as the final time increases, the 
eigenvector decomposition of the Hamiltonian matrix (2.7) 
is employed. The state x(t) and costate A(t) can then be 
expressed in terms of positive and negative exponentials of 
the matrix A, which has nonzero real diagonal entries due to 
the controllability of (A,b). As a result, in passing to the 
limit T -+ 00, the negative exponentials vanish. This tech
nique has been used to determine the behavior of the infinite 
horizon optimal controller for other types of cost function
als.5 The remainder of the section is devoted to showing that 
the asymptotic form of the Lagrange parameter 71 in the ter
minal constraint controller is well defined. 

Consider first the terminal constraint controller and in
troduce ZI (t) and Z2(t) such that 

[ZI(t)]=[WII WI2]-I[X(t)]. (4.1) 
Z2(t) W21 W22 A(t) 

Then, from (2.6) and (2.7), it is clear that 

d[ZI(t)] [A O][ZI(t)] (4.2) 
dt Z2(t) = 0 - A Z2(t) , 

which has solutions ZI (t) = eA1zI (0) and 
Z2 (t) = e - AIZ2 (0). The initial conditions Z I (0) and Z2 (0) 
can be evaluated from the final conditions Hx( T) = X' 
A (T) = H T 71, and x(O) = Xo. Specifically, using (4.1), 

x(O) = Xo = WIIZI (0) + WI2z2(0), (4.3a) 

Hx(T) =x=HWlleATzl(O) + HWI2e- ATz2(0), (4.3b) 

A(T) =H T7J= W2IZI (T) + W22Z2(T) 

= W2IeATzl(0) + W22e- ATz2(0). 

Solvingforz2(0) using (4.3a) and (4.3c) yields 

Z2(0) = [W2IeATWI1IWI2 - W22e- AT ]-1 

(4.3c) 

X [ - H T7J + W2leATWlllxo], (4.4) 

so thatz l (0) can be determined from (4.3a). Notice that the 
matrices Wi; are all invertible, which can be seen from the 
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representation of the (unique) positive definite and negative 
definite solution of the algebraic Ricatti equation in terms of 
the Wij matrices. Moreover, in (4.4) the inverse of the ma
trix combination on the right-hand side is well defined since 
for large enough T the second term in the combination van
ishes, leaving the first term, which is invertible. For large T 
the determinant of the matrix combination is therefore non
zero and, since it is an analytical function, it must be almost 
everywhere nonzero. 

As Tbecomes large, the matrix term e AT in (4.4) be
comes small so that Zl (0) and Z2 (0) reduce to 

Z2(0) = W I2
1XO - WI2IWlle-ATWiIIHT71+0(e-2At), 

ZI(O) = e- ATW il1HT71 + O(e- ZAT), (4.5) 

where O( ) indicates matrix combinations containing 
e ZAT. This can be shown from expanding the inverse ma
trix combination in (4.4) in terms of matrices containing 
e AT. Substituting (4.5) into (4.3b), the parameter 71 can 
now be determined: 

X = HWlleATzl (0) + HW12e - ATZ2 (0) 

(4.6) 

or 

(4.7) 

so that 71 approaches a constant as T increases. Notice that 
here the assumption of Hbeing a,vectorwas utilized. Finally, 
substituting Z I (0), Z2 (0). and 71 into (4.1) yields 

x(t) = WlleA(t-nW Z1 IH
T. (XIHWIl W 21 IHT) 

+ Wl2e-AIWI2Ixo+O(e-AT), 

u(t) = - (l!r)b TW2Ie
A(t - n W 211H T 

X (XIHWIIW211HT) 

- (l!2r)b TW22e AtW 12 Ixo + O(e- AT). 

(4.8) 

This result shows that the behavior of the input u (t) and the 
state T 0- I = minj Re(lLj ), where the ILj are the eigenvalues 
of the Hamiltonian matrix in A, and let c' be a constant such 
that e - c' is physically negligible. Then, in the region where 
O..;;t..;;c'To, the first terms in Eq. (4.8) for x(t) and IL (t) van
ish while, in the region where 0..;; ( T - t) ..;;e' To. it is found 
that the first terms dominate and the second terms become 
negligible. In the intermediate interval, both xU) and u(t) 
are essentially zero. The input u(t) in the time interval 
[O,c'ToJ is designed to take the initial condition Xo and re
duce it to the null statex(t) :::::0, thereby extracting all ener
gy from the physical system. In the region where 
O";;T - t..;;c'To, the reverse process occurs and the input 
transfers the system from x(T - e'To):::::O to a state x(T) 
such thatHx(T) = X. Notice that thefinaltime Tmustbeof 
order T:::::2e'To for the asymptotic approximation (4.8) to 
be valid. 

A similar asymptotic limit can be obtained for the state 
and the optimal field in the case of the cost functional (ii) of 
Sec. II. Then 
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x(t)= 

+ W 12e A'W 12 Ixo + O(e- AT), 

u(l) = - (l!r)bTW2IeA(t-n(W21 M oWIl )-IM05 
(l12r)bTW22e-A'WI2IxO+O(e AT). (4.9) 

The asymptotic form displays the same behavior as in the 
case of the terminal constraint controller and again the same 
three time domains can be identified. In this regard as in 
other aspects, the behavior of the two controlling strategies 
is very similar. Notice that as Mo becomes large, x( T) ap
proaches the target state 5. 

Returning to the terminal constraint controller, it is 
seen that the relative length of the three time regions charac
terizedbythebehaviorofx(t) andlL(t) in (4.8) depends on 
the real part of the eigenvalue matrix A. In the limit that r is 
large, the real parts of the eigenvalues of the Hamiltonian 
matrix are approximately given by Eq. (3.7), so in that case 
we have 

To:::::min [~Iajl~ (YIOj + c5Y2)/r]. (4.10) 
J 

Since To is inversely proportional to r- I
/
2

, it is clear that 
increasing r means that the length of the intervals [O,e'ToJ 
and [T - e'To,T] increasesasr- 1/2 so thatthephysical pro
cess takes a longer time to progress from state Xo to x(t)::::::O 
and back to the final state x( T). If r becomes so large that 
2e' To ~ T, then the distinction between the three regions dis
appears and the cost of the functional increases. A more 
thorough discussion on this will be presented below. Even 
though (4.10) holds for linear chains, this perturbation 
analysis is applicable to all harmonic physical systems so 
that it is true in general that To 0:: r-l/2. The precise constant 
of proportionality will of course depend on the physical sys
tem under consideration and has to be determined numeri
cally. 

More information on the asymptotic solution for the 
Lagrange parameter 71 for the terminal constraint controller 
can be derived from the full solution to Eq. (2.6) with the 
appropriate final conditions. Using the transition matrix, the 
state x(t) and costate A (t) can be determined as follows: 

with final conditions 

A 

Q 
br-Ib 1] [X(O)] 
_AT A(O) 

(4.11 ) 

Hx( T) = X = Hrpl1 (T,O)xo + Hrpl2(T,O)A(O), 
(4. 12a) 

in terms of the partition matrices of the transition matrix. At 
this point we will assume that rp22(t,0) is invertible so 
that it can be shown from ( 4.12b) that 
A(O) = rp22( T,O) -I [H T71 - rp12( T,O)xo] , which substitut
ed into (4.12a) yields 
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HifJl2( T,0)ifJ22 ( T,O) -IH T1/ 

= X + {ifJ22(T,0) -lifJI2(T,0) - HifJl1( T,O)}xo' 

_ x+ [ifJ22(T,0)-lifJl2(T,0) -HifJl1(T,O)]XO 

1/ - HifJl2(T,0)ifJ22(T,D)-IH T (4.13) 

_ X + Z(T)xo 
- HK(T)H T ' 

with obvious notation. 
Now the following can be shown. 
Theorem 4.1: Assume that ifJ22 ( T,O) is invertible and let 

K( T) = ifJl2( T,O)ifJ22 ( T,D) -I be the matrix in the denomi
nator of the expression for the Lagrange parameter 1/ in 
(4.13); then K(T) is strictly negative definite, K(T) <0, 
and HK( T)H T!HWl1 W 211H T as Tapproaches infinity. 

Proof The arguments for the proof make use of the Ric
cati equation and are based on techniques in Ref. 5. Since the 
transition matrix of the Hamiltonian matrix in (4.11) satis
fies the equation 

d [ifJl1 (t,D) ifJl2 (t,0)] 
dt ifJ21 (t,0) ifJ22 (t,D) 

the partition matrices ifJ 12 (t,0) , ifJ22 (t,o) satisfy 

.!!...ifJI2(t,0) = AifJl2(t,O) - br-Ib TifJ22(t,0) , 
dt 

.!!...ifJ22(t,0) = - QifJ12(t,O) -A TifJ22(t,0), 
dt 

from which it is established that 

.!!...ifJ22(t,0) -I = ifJ22(t,0) -IQifJi2(t,0)ifJ22(t,D) 
dt 

(4.15 ) 

(4.16) 

This is now used to show that the matrix K(t) satisfies the 
following Ricatti equation: 

.!!... K(t) = .!!...ifJ12 (T,0)ifJ22( T,D)-I 
dt dt 

+ ifJ12(T,O).!!...ifJ22(T,O)-1 
dt 

= AK(t) + K(t)A T + K(t)QK(t) _ br-Ib T, 

( 4.17) 

with K(O) = 0 since ifJ12(O,O) = o. We now introduce the 
vector (v(t) T,y(t) 1)T satisfying Eq. (2.6) with the two-point 
boundary conditions v(O) = 0, y( T) = H T, and let 
v(t) = K(t)y(t). Then it is found that 

-HK(T)HT 

- HifJ12(T,0)ifJ22( T,O) -IH T 

- ( .!!... {y(t) TK(t)y(t) }dt 
Jo dt 

- iT {[ - Qv(t) - A Ty(t) VK(t)y(t) }dt 

- iT {y(t) TK(t) [ - Qv(t) - A Ty(t)] 
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- iT y(t) T [AK(t) + K(t)A T 

+ K(t)QK(t) - br-Ib T]y(t)} 

= iT {V(t)TQv(t) + y(t)Tbr-lb Ty(t)}dt 

= iT {V(t)TQv(t) + r-I[b Ty(t) P}dt> 0, 

(4.18 ) 

which holds for all final conditions y( T) = H T and all times 
T. The last term is strictly positive since the only solution 
rendering this integral zero is (v(t) T,y(t) TV = (0,0) for all 
t, but this solution does not satisfy the boundary conditions. 
Since (v(t) T,y(t) TV satisfies Eq. (2.6) and (A,b) is control
lable, the last integral in (4.18) is bounded from above and 
increases as T increases. Obviously then this integral ap
proaches a finite limit, so indeed 

( 4.19) 

The fact that K ( (0) = WI I W 211 can be shown from the 
analytical solution for K(t) in terms of the eigenvectors and 
eigenvalues (with nonzero real parts) of the Hamiltonian 
matrix and the fact that in the limit as T --+ 00 the negative 
exponentials vanish . 

This result can be used to determine the behavior of x (t) 
and ..1,( t) in the various limits of the design constants T and 
r. From (4.11), (4.13), and the expression for ..1,(0), it is 
clear that x(t) and A (t) are proportional to 1/, which in tum 
is inversely proportional to K(T). For fixed r, the theorem 
above shows that IK( T) I increases if T increases; hence, 
from (4.8),. it follows that the excursions of x(t) and the 
peak intensity of the optical field decrease. Once T:::::: 2e' To, 
the behavior of x(t) and A(t) can be divided into the three 
regions introduced before and, for even larger T, both x(t) 
and ..1,( t) remain unchanged except that the middle time re
gion where x(t)::::::O and A(t)::::::O increases. For such large 
final time we have that K( T) ::::::K( (0) and the shape of x(t) 
and A (t) hardly changes, so that the total cost of this optimal 
field for such large times remains constant. If, on the other 
hand, no, then K( T)::::::O so that 1Jf 00 and obviously then, 
also, max, lu(t) I too. In a very short time interval only an 
extremely intense input could send the system from the ini
tial state to the desired final state. Conversely, if T is fixed 
and r is small enough that T::::::2e'To, then the asymptotic 
approximation (4.8) holds for x(t) and A (t) and changes in 
r effect only the coefficients of the matrix A. As r increases 
this does not hold anymore and, in fact, for very large r we 
have that K( T) a: r- I so that 1/ a: r, while further investiga
tion reveals that in this case generally max, I u (t) I too. This 
property for the matrix K( T) can be shown from a first
order perturbation analysis of the partition matrix ifJ12( T,O) 
or more directly from the behavior of the solution of the 
Riccati equation (4.17) for large r. The intensity of the re
quired field under these circumstances must increase be
cause the coupling ofthe state x (t) with A (t) decreases, yet 
the final condition x( T) must be attained. The minimal cost 
strategy therefore suggests that for a fixed parameter r the 
final time T:::::: 2e' To is chosen, since then the minimal intensi-
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ty is required for the optical field. If a low peak intensity is 
still difficult to realize, in practice the design parameter r 
must be increased and the T chosen accordingly. In the case 
that the parameter r is large, the critical time To can be esti
mated from (4.10); otherwise numerical determination of 
the eigenvalues of the Hamiltonian matrix will be needed. 

v. CONCLUSIONS 

This paper presents two different optimal control strate
gies to generate selective vibrational excitations in a mole
cule modeled as a classical harmonic system, or equivalently 
a quantum harmonic system taken with Ehrenfest's 
theorem. Both employ a cost functional balancing the 
ftuence of the optical field with the internal energy of the 
harmonic system, but one strategy requires that the target 
bond attains the desired excitation exactly (a terminal con
straint controller) while the other introduces a final cost for 
not reaching the desired final state. The behavior of the two 
controllers was shown to be very similar, which may not be 
surprising since they were based on the solution to the same 
Hamiltonian equation. In this paper it is assumed that the 
positions and momenta of the physical system are controlla
ble by the optical field. In practice, however, molecules gen
erally show many symmetries and the coupling to the optical 
field is usually such that it does not allow for all possible 
oscillations. Controllability in that case may not hold but the 
system is still stabilizable so that most arguments in this 
paper remain valid. 

Some mathematically interesting problems were en
countered due to the physical nature of the application. 
Since the required field intensity tends to be high, the limit of 
large r in the control strategies becomes important in Sec. III 
an approximation for the eigenvalues of the Hamiltonian 
matrix was obtained for this case. To first order, the eigen
values are the imaginary eigenvalues of the classical system 
corresponding to the vibrational frequencies in the infrared 
spectrum and a real part proportional to r- I12, which indi
cates the time scale needed to provide a satisfactory excita
tion at the final time. From the asymptotic expressions for 
the state and costate in Sec. IV for large final time, it is seen 
that the optimal final time increases with rllZ while the asso
ciated optimal electromagnetic field decreases as r- I. In the 
design of actual experiments, one strategy may be to choose 
the parameter r so large that the optical field is sufficiently 
weak with the final time being selected accordingly. These 
large time approximations are especially useful for numeri
cal purposes as well, since the exact solution to the Hamilto
nian equations on long time intervals requires a treatment on 
several different time scales. The numerical solutions are 
particularly difficult to obtain if the eigenValues of the Ham
iltonian vary considerably in magnitude. Another math
ematical result in Sec. III includes a bound on the eigenval
ues of the Hamiltonian matrix for the case where the 
harmonic system is a linear chain. This bound turns out to be 
independent of the length of the chain. In the terminal con
straint controller in Sec. IV, the Lagrange parameter enforc
ing the final condition on the state depends on a particular 
matrix combination that was shown to be negative definite 
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by relating it to the Riccati equation of an entirely different 
control problem. Stabilizability insures the existence of the 
Lagrange parameter and using well-known arguments it was 
shown that this matrix combination approached a limit as 
the final time increased to infinity. 

Approximating a molecule as a harmonic system is only 
valid if the motion of the individual atoms is not too vigorous 
so that the interaction potential between the atoms is ap
proximately quadratic. The motion of a real molecule, how
ever, is ruled by the laws of quantum mechanics involving 
nonlinear potentials where the presence of electrons may 
also need to be taken into account if the fields become suffi
ciently intense. The uncertainty in the interaction potential 
as well as external disturbances may be modeled as a noise 
term in the equations of motion of the atoms, which suggests 
generalizing the controlling strategy above to a stochastic 
linear optimal control problem. Another possibility to com
pensate for the uncertainty in the equations of motion is to 
augment the cost functional with an expression depending 
on the sensitivity of the model. The second controller strate
gy introduced in this paper can be easily generalized to the 
stochastic case and may yield useful insight into the feasibil
ity of constructing optimal electromagnetic fields in the 
presence of uncertainties. A further possibility is to intro
duce a nonlinear interaction potential in the determinisitic 
model above rendering the optimal control problem also 
nonlinear, but many analytical results are known for this 
case. One aspect concerning the time scale of the control 
process is that, for large r and correspondingly large T, the 
collisions of molecules cannot always be excluded. This will 
introduce impulses to the system in time intervals governed 
by an exponential law, which turns the control problem into 
a stochastic one containing Poisson noise, but little is known 
about this type of linear optimal control. Finally, it would 
also be interesting to consider the distributed system limit of 
this problem, where the chain of atoms is so large that it can 
be adequately modeled as a continuous string. 
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In this work, the closed forms of the angular distributions in quadrupole and two-photon 
photodissociation of molecules are obtained. These are applicable to the angular factors of 
other second-order, nonlinear, or quadratic processes. 

I. INTRODUCTION 

The angular distribution of molecular photodissociated 
fragments has been of interest experimentally and theoreti
cally for a long time. I

-
15 For a one-photon electric-dipole 

transition process the general formula for the cross section of 
the observed fragments is 

1(0) = (/0/41T)[ 1 + ,8P2(COS 0)], (1) 

where 0 is the polar angle between the electric polarization 
direction of the incident light (taken to be the Z axis) and 
the observation direction K (Fig. I). For rotating molecules, 
10 and ,8 contain not only rovibronic transition matrix ele
ments but also the angular dependence of the fragmentation 
direction versus the dipole excitation direction. 

In obtaining the rotational matrix elements, one not 
only has to integrate the dipole transition moment over rota
tion matrices that make up the wave functions for symmetric 
top or linear molecules (or over spherical harmonics for rig
id rotors), but also has to sum over the magnetic quantum 
number M. Even for a dipole transition for a diatomic mole
cule such integrations and summations can be difficult and 
tedious. Recently the present authors devised a general 
method 16 to perform these integrations and summations be
yond the dipole operator. In the present work we propose to 
apply our general method to derive the angular distribution 
for the electric quadrupole and nonresonant two-photon 
transition processes in photodissociation, which may con
tain azimuthal (CP) dependence besides the polar (0) de
pendence. 15 We shall apply our method not only to diatomic 
and linear molecules but also to symmetric top molecules of 
a specific symmetry (D3h ) for which the electronic selection 
rule over the angular momentum projections on the molecu
lar axis, K (or A), will also be considered. In the process of 
deriving the above-mentioned angular factors, we have ob
tained many additional formulas for the integration of rota
tion matrices over tensor operators (beyond the first rank) 
and summations of various rotational products over M. We 
give these in Appendices A-D. These general integrations 
and summations will be useful in other angular dependence 
studies, for example, in the extension of angular distribution 
of the electric-dipole excited photoelectrons17

•
18 to electric-

a) Taken in part from a dissertation to be submitted by Shan-Tao Lai in 
partial fulfillment of the Ph.D. degree at the Catholic University of Amer
ica. 

b) To whom requests for reprints should be addressed. 

quadrupole and two-photon excited photoionizations and in 
otb.er second-order angular correlation studies. 

II. CLASSICAL TREATMENT OF ELECTRIC
QUADRUPOLE AND TWO-PHOTON 
PHOTOFRAGMENTATION OF DIATOMIC MOLECULES 

We define the coordinate system for photodissociation 
in Fig. 1. All of the vector directions and their designations 
are the same as Chiu's. 15 We assume that a molecule's center 
of mass is at the origin, XYZ stand for the laboratory frame, 
Z is the electric polarization direction of the incident light in 
a dipole transition process (but is taken to be the light propa
gation direction in quadrupole transition processes), .... is the 
molecular principal z axis (and may also be considered to be 
the molecular transition dipole moment direction when a 
parallel transition occurs), fd is the relative motion vector 
for the two dissociated fragments, and K is the direction of 
observation of the fragments. We summarize all of the above 
definitions as follows: 

cos {fll =./1/z, 
cos {fj =.p,·rd , 

cos {f=,Z'rd , 

cos {f' =.K-rd , 

cos0='K-Z, 

where a caret designates a unit vector. 

z 

K. 

(2) 

FIG. I. Coordinate system for photodissociation. Here. Z is the electric 
polarization direction of light, 1.1. is the molecular principal (z) axis (1.1. may 
be considered the molecular transition moment direction if the latter is 
along the molecular z axis), rd is the relative motional vector for the two 
dissociated fragments, II: is the direction of observation of the fragments. 
Thl: relationship between different axis systems is comprised of three Euler 
angles. Thus 0" is part of n = (9'" 0I'XI')' The arrow directions indicate 
the sign of rotational angles. Self-consistent use ofthesc; directional conven
tions is important. 

1261 J. Math. Phys. 31 (5). May 1990 0022-2488/90/051261-13$03.00 © 1990 American Institute of Physics 1261 



                                                                                                                                    

We shall formulate the fragment angular distribution of 
the photodissociation by a beam of circularly polarized light 
propagating along Z. This amounts to combination oflinear
ly polarized light with polarization along X and Ybut with a 
90· phase difference. This discussion will be limited to a one
photon electric-quadrupole transition. The angular factors 
will be analogous to a two-photon process without a reso
nant intermediate state. The Euler angles (q:;,.. {},..X,..) de
scribe the molecule-fixed frame relative to the laboratory
fixed frame. The electric vector E of the light beam has been 
chosen as along the Z axis of the lab-fixed frame. The angle 
{}j between the molecular principal axis and fd is a very im
portant angle, which contains the dynamical information of 
the dissociation process. Without loss of generality we can 
consider that a molecule absorbs a photon in one of the lin
early polarized quadrupole mode l9 XZ and dissociates into 
two fragments by an internal quadrupole dz' transition oper
ator in molecular coordinates. (This is in contrast to disso
ciation by the dipole z transition operator.) The probability 
of absorption is proportional to I (XZ) 12. For a two-photon 
process this may correspond to two beams polarized along X 
and Z, respectively. For convenience we define 

(3a) 

where H' is an operator for left circularly polarized light 
defined in terms of the space frame. Also, H' can be ex
pressed in terms of the molecular frame: 

H' = r ID;I (- n,..)y~:1 = r IDi!(n,..)y~:I. 
,.. ,.. 

(3b) 

We denote W(0<1» as the final recoil distribution (or 
differential cross section) of the fragments in the laboratory 
fixed frame. It may be expanded in the complete set of 
spherical harmonics as follows: 

W(0,<I» =} Blq Ylq (0,<I», (4) 
t.: 

where 

Blq = (Y~(0,<I») 

=«2/+ 1)/41T}1I2 

x I (D ~s (q:;j{}jXj)D!q' (q:;,.. {},..x,..) 
q',s 

(5) 

Here we have expanded the spherical harmonics in terms of 
three rotation matrices. Let 1(0<1» denote the angular dis
tribution of the fragments observed in the laboratory-fixed 
frame. A particular molecule oriented at the origin with 
Euler angles (q:;,.. {} pX,.. ) will make a contribution 
IH '1 2 W( 0<1» to 1( 0<1», and the total fragment angular dis
tribution is given by integrating over all molecular orienta
tions: 

1(0,<1» = f Ir ~Di!(n,..)Y~:f·W(0'<I»dn,... 
(6) 

Here the spherical harmonics in molecular coordinates will 
be understood to represent molecular transition moments. 
Using the properties ofWigner rotation matrix elements, we 
obtain 

1(0,<1» = ID1T I (21 + 1) 112. I ( - 1) -p' (D ~ (q:;j{}jXi)D 1_,.., + p,O (q:;'{) 'X'» 
I,q ,..,,..' 

.(~ 2 I) (2 
1 1 0 \ri 

2 ~ ) Ylq (0,<1» 
- f.l + f.l 
2 L )(2 2 

f.l' f.l - f.l' 0 0 
L) ymol o L,,..-,..' , (7) 

We take f.l = f.l' = 0 for molecular dissociation with the dz' internal transition moment. Therefore we obtain the total fragment 
angular distribution for electronic-quadrupole transition by using left circularly polarized light as follows: 

1(0,<1» =10{1 + J4ii I (D~(q:;j{}jXj)D~(q:;'{}'X'»Y2q(0,<I» 
7 q 

-~ J4ii I (D:O (q:;j{}jXj)D60 (q:;'{}'x'»Y4Q (0,<I»}, 
7 5 q 

(8) 

where 

10= -{1T~~(2L+l)1/2(~ ~ ~rn:gl, (9) 

Here the angle {}' contains dynamical information on the 
dissociation process and the second and fourth Legendre 
moments may be calculated by the Monte Carlo method or 
other statistical methods. The angle {}j is determined by the 
nature of the dissociative electronic transition. In the fast 
dissociation limit, the molecule dissociates before it has time 
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to rotate significantly, i.e., cos {}' = lor, geometrically, the 
fragment recoil angle is equal to zero with respect to the f d 

axis. 
Equation (8) is a general electronic-quadrupole transi

tion angular distribution that shows noncylindrical symme
try. The azimuthal <I> dependence in addition to the polar 0 
angle dependence arises from quadrupole (or two differently 
polarized photons) absorption. Of course, the molecular 
quadrupole transition operator is not limited to dz' 
= (41T/5) 1/2 Y20.1t will be shown in later quantum mechan-
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ical treatments that different molecular quadrupole transi
tions will have different vibronic selection rules and different 
angular dependences. 

III. QUANTUM MECHANICAL TREATMENT OF 
ELECTRIC·QUADRUPOLE AND TWO·PHOTON 
PHOTOFRAGMENTATION OF DIATOMIC MOLECULES 

A. Wave functions and quadrupole elements 

We use H' to denote the interaction potential between 
the molecule and the radiation field in the quadrupole mode. 
Thus for light propagating along Z the interaction can be 
written as in Eq. (3) for left circularly polarized light. 

Let a photon beam hv impinge on a target of a randomly 
oriented molecule (or atom). The molecule is excited from a 
lower bound state '1'; to a higher-lying repUlsive sate '1'1' The 
differential cross section 1( 0<1» for the dissociative transi
tion i -+ f is proportional to the square of transition quadru
pole matrix element, 

(10) 

where (O<1» are polar and azimuthal angles referred to the 
laboratory frame (Fig. I). According to the Born-Oppen
heimer approximation, for the bound state, the total wave 
function can be written as a product 7 

1'1';) = ¢~eJ(rji;R)XvJ(R)(~; I )1/2D~K(CP"'{}"'0). 
(11) 

Here '1'7 is the electronic wave function that depends on elec
tronic coordinates rj and on the internuclear separation R, 
X vJ (R) is the wave function for the vibrational state v, and 
D ~K denotes a rotational part that expresses the orientation 
of the diatomic (or linear) molecule. The results of using a 
single rotation matrix D ~K will be the same as using a 

( 1/.J2) normalized linear combination of two rotation ma
trices for lambda doubling states. Angles (cp,. {},. 0) specify 
the orientation of the molecular figure axis along 11. Here J is 
the total angular momentum. Its projection along the Z axis 
of the space-fixed frame (chosen to lie along 1) is M and its 
projection along the figure z axis (11) in the body-fixed frame 
is K (K = 0 for ~ states, + I for II states, etc.). 

For the repulsive state wave function chosen to satisfy 
the proper boundary conditions, we have the expression 7 

{'I'I \ = L (U' + l)iJ ' exp( - iop )'I'}"J(r};R) 
P,M' 

J'. J' XXp (kR)D M'A' (cp,.,{},."O)D M'A (<1>,O,0), 
(12) 

where the angles (cp,.{},.O) and (<1>00) have the same mean
ing as before. We now substitute Eqs. (12), (11), and (3) 
into Eq. (10). The differential cross section may be written 
in the form 

1(O,<1» = I L H',1'ApD~'A(<I>,0,Q)12, 
J',M' 

(13) 

where 

H',1, = f' exp( - iop )' (¢}"J(r};R)xp (KR) 

X I y~:I'rl¢feJ(rj;R)XvJ(R» (14) 

and 

~ J) 
1M 

(15) 

Equation (13) is the angular distribution of the fragments 
that arises from one (J,M) initial sublevel. Since the molecu
lar ensemble is randomly oriented, we assume that the mag
netic levels are equally populated; then the angular distribu
tion of the fragments is obtained by averaging over the M of 
the initial state. From Eq. (13), 

1(O,<1» = L I L H',1,' (U' + 1) 
M P,M' 

( J' 
X W ' 

2 
1 ~)(~ 

1

2 
J' XD M'A (<1>,O,0) . 

2 

Ji 

B. 1; .... 1; transition due to electric quadrupole 

(16) 

For the ~ -+ ~ transition, J-l = 0 and A = K = 0; in this 
case, Eq.(16) becomes 

1(0,<1» = L I L H',1,' (U' + 1) 
M J',M' 

(
J' 

X Af' 
2 

I 

(17) 

For H' given in Eq. (3) the selection rules are AJ = 0, ± 2, 
and M' = M - 1; therefore we obtained the closed form of 
Eq. (17) as follows (for details, see Appendix B): 

1(O,<1» = lo( 1 + bl sin2 ° + b2 sin4 O), 

where 

(18) 

10 = Hal + 4(J - I)(J + 1)a2 + 4J(J + 2)a3 + 2a4 + 2a5 + 4a6 ], (19) 

and 

1263 

b
l 

= (4J2 + 4J - 9)a, - 12(J - 2)a2 + 12(J + 3)a3 - 2(U - 7)a4 + 2(U + 9)a5 - 4Oa6 , 

2a l + 8(J - 1)(J + l)a2 + 8J(J + 2)a3 + 4a4 + 405 + 8a6 

- 3(J -1)(J + 2)a l - 3(J - 2)(J - 3)a2 - 3(J + 3)(J + 4)a3 + 5(J - 2)a4 - 5(J + 3)a5 + 35a6 b2=--~~--~~~~--~--~~--~~--~--------~~------~--------~----~ 
2a l + 8(J - 1) (J + 1 )a2 + 8J(J + 2)a3 + 404 + 4a5 + 8a6 
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a 9(J+1)2 IH'ftI2 a2= J(J-2) IH'ft 12 
1= (2J _ 1)2(J _ 1)2(2J _ 3)2 vJ' (2J + 1)2(2J _ 1)2 v,J-2' 

(J + I)(J + 3) IH'ft 12 
a3 = (2J + 3)2(2J + 1)2 v,J+2' 

= 3[J(J+ I)(J-l)(J-2)]1/2 [H'ft·H'ft +H'ft H'ft· ] 
a4 (2J + 3)(2J + 1)(2J _1)2 v,J v,J-2 v,J v,J-2 , (22) 

_3[J(J+l)(J+2)(J+3)p/2 [H'ft·H'ft +H'ftH'ft· ] 
as - (2J + 3)2(2J _ 1)(2J + 1) vJ v,J+2 vJ v,J+2 , 

a =J(J+ 1)[(J-l)(J-2)(J+2)(J+3)]1/2 [H'Ji* H'ft +H'ft H'Ji* ]. 
6 (2J _ 1)(2J + 3)(2J + 1)2 vJ-2 vJ+2 v,J-2 v,J+2 

c. Z-polarlzed light two-photon transition 

For Z-polarized light propagating along X or Y, the 
two-photon interaction operator is 

21 'ft 12 ao=12'(J-l)(2J-l)(2J-3)(2J+3) H v,J-2' 

417' 
ZZ=- YIO'YIO 

3 

= 417')C 2(11l'OOO)Y .( 3'3 )112. 
3 "'t ' 10 417'(21 + 1) 

(23a) 

Without loss of generality, we shall omit the scalar constant 
term and consider the angular factors due to 1 = 2: 

H' = rY;f>ace 

= rID 6; (u,u ) y~:I, (23b) 
,u 

Similarly, we obtain the angular distribution of the frag
ments produced by this two-photon transition by Z-polar
ized light absorbed by a diatomic molecule: 

1(8,<1» = I I I H'!." '(2J' + 1) 
M J',M' 

(:!.. . .' 2 J) (-!.:. 2 
X M' ° M A ji 

1

2 
J' xD ,u'A (<1>,8,0) , (24) 

where H '!." has the same form as in Eq. (14). For the ~ -+ ~ 
two-photon transition, J.1. = ° and A = K = 0. Therefore Eq. 
(24) is reduced to 

1(8,<1» = I I I H'!." '(2J' + 1) 
M J',M' 

f!...' 2 J)(J' 
X W ' ° M ° 

1

2 
J' xD M'O (<1>,8,0) . (25) 

For this, the selection rules for ~ -+ ~ two-photon transition 
are aJ = 0, ± 2 and M' = M. With the help of Eqs. (24) 
and (32) of Ref. 16, we obtained the closed form ofEq. (25): 

1(8,<1» = 10 [1 + /3P2(COS 8) + rP4(COS 8)], (26) 

where 
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bo = 5· (J + 1)( 2J + 1)( 2J - 3)( J 2 + J + 6) IH;!,'J 12, 
(27) 

Co = 12' (J - 1)(2J + 5 )(2J - 1)(2J + 3)2IH;!,'J+ 21 2, 

do = [40(2J + 1)(2J - 1)2(2J + 3)2(2J - 3)] -I; 

/3= ~ (a l +b l +cI +d l +el ) , 

7 (ao + bo + co) 

a l = 3(J + I)(J - 1)(2J + 3)2(2J - 3)H'/_2,J' 

bl = 18(J + I)(J + 2)(2J - 1)2(2J - 3)H'/+2,J' 

ci = 3(J - I)(J - 2)(2J - 3)(2J + 3)2IH;!,'J_212, 

dl = - (J + 1)(2J + 1)(2J - 3) 

X(4J 2+4J-15)IH;!,'JI2, 

el = 3(J - 1)(2J + 5)(2J + 3)(J + 3) 

I 'ft 1
2• X(2J-1) H v,J+2 , 

18 (a2 + b2 + C2 + d2 + e2 + Iz) 
r= 7(2J+ 1) (ao+bo+c~) 
a2= lO(J+ I)(J-l)(J-2)(2J+ 1)(2J-3) 

X (2J + 3)H '/_ 2,J' 

b2 = 4O(J + I)(J + 2)(J + 3)(2J + 1)(2J - 1) 

'ft X (2J - 3)H J+2,J' 

C2 = 35(J + I)(J -1)(J + 2)(2J -1)(2J - 3) 

X (2J + 3)H'/+2,J_2' 

d2 = 3(J - I)(J - 2)(J - 3)(2J - 3) 

21 'ft 12 X (2J + 3) H v,J _ 2 , 

e2 = 12(J + I)(J - I)(J + 2)(2J - 3) 

X(2J+ 1)2IH;!,'JI2, 

12 = 3(J - I)(J + 3)(J + 4)(2J - 1)(2J + 5) 

r 'ft 12 X (2J + 3) H v,J+ 2 ; 

and 

'ft - 'Ji* . 'ft 'ft. 'Ji* H J-2,J=H v,J-2 H v,J +H v,J-2 H v,J' 
'ft - 'Ji* . 'ft ,ft. 'A· H J+ 2,J=Hv,J+2 H v,J+Hv,J+2 Hv,J' 
'ft - 'ft· . 'ft 'ft. 'Ji* H J+2,J-2 =H v,J+2 H v,J-2 + H v,J+ 2 H v,J-2' 
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In this section we have elucidated the general rotational 
dependence of the one-photon quadrupole and two-photon 
photofragmentation in terms of molecular vibronic matrix 
elements of diatomic and linear molecules. In the next sec
tion we shall give the angular distribution for photofragmen
tation of symmetric top molecules by the above mechanism. 

IV. ELECTRIC-QUADRUPOLE AND ONE- AND TWO
PHOTON PHOTOFRAGMENTS OF ROTATING LINEAR 
AND SYMMETRIC TOP MOLECULES OF D3h 

SYMMETRY 

We still use the same coordinate system as in Fig. 1. The 
linear and nonlinear polyatomic molecules are located at the 
origin. All of the vectors have been defined in Sec. II. The 
total cross section (TL (r y) or the probability of the observa
tion is proportional to 

(TiNl(r,,) = _1_. _1_ L If (FIIMiN)IJ,i)dnl' 12 
8r 2J+ 1 M 

=_1 . _l-L If (FIJ)'[M~)]dnl' 12 
8r 2J + 1 M 

(31) 

where N = 1 or 2 denotes a one- or two-photon process, re
spectively, L stands for the 2L multipole transition, and r y is 
the irreducible symmetry of the transition density. [M (N)] 

is the vibronic transition matrix element. IS f and i are the 
final and initial vibronic states, respectively, IJ) represents 
the rotational wave functions of the rotating parent mole
cule, and the magnetic quantum number M represents the 
substate of the rotating parent molecule. 

A. One-photon electric-dipole fragmentation 

For review and comparison with existing work, we first 
consider a one-photon electric-dipole process. But we pro
ceed beyond existing work to obtain closed forms and results 

for symmetric top molecules. The transition moments for Z 
polarization is given bylS 

Ml 1
) =KP)(Z) =Kl1)(R IO ) =Kll)(T~~(r». (32) 

For the bound state the rotational wave function can be writ
ten as follows for a linear or diatomic molecule: 

(33) 

[As an approximation for polyatomic molecules we may 
also use the same rotational wave function. This approxima
tion is forgivable if the symmetric top molecule in the initial 
state is assumed to have no internal rotation (K = 0 in 
D~K); more exactly, we need to use Wigner rotational ma
trix elements as the wave functions of symmetric top mole
cules. But the calculation process becomes more tedious and 
will be considered in future work with specific examples.] 
The plane wave approximation will be used for the relative 
motion of the two dissociated fragments. If we use r d to 
represent the relative motional vector for the two fragments, 
the "normalized" plane wave amplitude along the observa
tion direction K isIS 

(FI = (l1J41i)e
itt

'
rd 

= _1_ i jl(2/ + 1 )jl (krd )P1 (cos {J') 
J41i 1=0 

= J41i L L RKI (rd ) Yr"., ({J,IP) Y1m, (E>,eI», (34) 
I m' 

where R kl (r d) = iJI (kr d) and we have used the rotational 
transformation to show the relationship between the angles 
(Fig. 1). We noted that (E>eI» are the angles of the observa
tion vector K with respect to the polarization axis Z. The 
total angular distribution of the fragments is given in the 
laboratory coordinate system. Here ({JIP) are the angles for 
the orientation of the dissociation vector r d with respect to 
the polarization z axis. They may be related to the molecular 
orientation angles nl' and molecular internal rotational an
gles ({JilPi) later. 

From Eqs. (33) and (34), we obtain 

(F jJ) = (2J + 1) 1/2 L RKI (r
d

)( - 1)m' L [(2/ + 1)(2J + 1)] 1/2 'C(/JL; - m',M, - m' + M) 
I,m' L 41T(2L + 1) 

(35) 
q 

Here we have used the coupling of the spherical harmonics and we have transformed YL , _ m' + m ({J,IP) to show its relationship 
(Fig. 1) to the molecular orientation nl' and ({JilPi)' We also need to transform the electric dipole transition moment for Z 
polarization from the lab frame to the molecular frame, i,e., 

MP) =KP) LD~;(nl')(T~'?~r»' (36) 
q' 

Substituting Eqs. (36) and (35) into Eq. (31), 

I (J' J 01) (J_" J 1) 12 (TiN)(ry ) =v1T(2J+ 1)[KlI)r~ .fRKJ'(rd )'(2J' + 1)1/2 0 0 ill M 0 YJ'M(E>,eI» 

XL ( - 1 )q' L (2L + 1) 1/2(1!, L,) (1 1 LO) YL,q- q' ({JilPi) (T~OI(r) )·(T~OI(r», (37) 
q,q' L q q -q+q 0 0 

where / = J ± 1, with the help ofEqs. (24) and (24c) of Ref. 16 and the formula ofthe Clebsch-Gordan coefficients.2o We 
finally obtain, for a one-photon electric-dipole transition, 
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uiN)(r r) = (lI41T)Aou~1) [1 + PP2(COS ®)], 

where 

U~I) = [lI(U + 1) J[ (J + 1) IRK,J+ I (rd W + J IRK,J- I (rd W], 

(38) 

(39) 

Ao = ~ ~ [K jll]2(U + l){[ # +.J+ Y20«({J/Jj ) ]1(T~OI(r)W +.J+ [1<T~OI(r)W + I(T;'T°I(r»12] 

. [ Y oo( t1j>({Jj) - ~ Y20 ( t1 j({Jj) ] - .Jf [Y22 (t1j({Jj) (T~OI(r) )*(T;'T°I(r» 

P = (J + l)(J + 2)IRK,J+ I )(rdW + J(J - 1)IRK,J_l (rdW + 3J(J + 1) 

X [R !,J+ I (rd )RK,J_l (rd ) + RK,J+ I (rd)R !,J- I (rd)]I 

(U + 1) [(J + 1)IRK,J+ I (rd )1 2 + JIRK,J_I (rd )1 2] . 

(40) 

(41) 

For D3h symmetry molecular photodissociation, T lO(r) CA ", TI ± I (r) CE '15
• Therefore for one-photon electric-dipole 

excitation the angular dependences of the cross section for the observation of photo fragments from a rotating parent molecule 
of D3h point group symmetry are given by 

ujlJ(A; ..... E ' ) 

(42) 

and 

ujll(A; ..... An =_1_ (2J + 1) [KPl]2uo [1 +PP2(COS ®)] [Yoo (t1j({Jj) +~ Y2o(t1j({Jj)]·I(T~OI(r)>J2. (43) 
3~ ~. 

Other allowed dipole transitions can be obtained from Eqs. (38 )-( 41). 

B. For one-photon quadrupole transition (left-circular polarized light) 

The transition moments for X polarization (or Z polarization) with Z propagation (or X propagation) is given byl5 

M~ll = K ~Il( (xz + zx» = K ~ll«TW)(r» - (T~at(r») = K ~I) L [Df;' (np) - Df;, (np )] (T~:t(r». (44) 
q' 

To simplify the derivation, we consider only left circularly polarized light, which is a normalized combination of linearly 
polarized light: 

Mil) =Ki\) LDi;,(np)(T~,?I(r». (45) 
q' 

Substituting Eqs. (45) and (35) into Eq. (31), we obtain 

uil)(rr)=[?T(2J+1)[Kil)]2~I~RKJ,(rd)(2J'+1)1/2Cw:'~1 ~ ~)(~' ~ ~)'YJ'M_d®,<I»12 

XLL(-1)q'(2L+1)I/2(~ 2, q:q')(~ ~ ~)(T~OI(r»"'(T~I(r»YL'Hq'(t1j({Jj)' (46) 
q,q'L q q 

where the closed forms ofthe angular part are exactly the same as in Eq. (17) except that we have changed H 'ft into RKJ' (r d)' 

Equation (46) can be calculated further. The total cross section of one-photon quadrupole transition with left circularly 
polarized light has the form 
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(Ti'l(r 1') = fo (U + 1) [K i'l]2 ~ I ~ RKJ' (rd )(U' + 1) 1/2 ~J~ 1 ~ ~) (~' ~ ~) YJ'M- I (O,<1» 12 

X {f q~21(T~OI(r)WYOO(!1;ffJ;) + +S-[21(T~oOI(r»12 + I(T~t(r»12 
+ I(T~OI(r»12 - 21(T~OI(r»12 - 21(T~t(r)W] Y20(tJ;ffJ;) 

- 3
1
5 [2«T~OI(r»(T~OI(r»* + (T~OI(r» (Tig'°ll(r» + ~(T~,OI(r) )*(T'{!rl(r» ] Y22 (!1;ffJ;) 

- 3
1
5 [2«T~O'(r»*(T~O'(r» + (T~OI(r»*(T~O'(r») + ~(T';r(r»*(T~O'(r»] Y22 (!1;ffJ;) 

+ ~ fi[ fI(TmO'(r) )*(T",-Ol(r» _ ~(TmOI(r) )*(T",-Ol(r» + _1_(TmOl(r) )*(Tm01(r»] Y - (!1_m_) 
7 V 5 V 6 20 22 3 21 21 ~ 22 20 42 ITI 

+ ~V+[~(T~OI(r»*(T~OI(r» - ~ (T~OI(r»(T~OI(r» + ~ (T~OI(r»*(T~OI(r» ]Y42 (!1;ffJ;) 

+ ~ fI [(T~ol(r) )*(T~ol(r» Y44 (!1;ffJ;) + c.c.]}. (47) 
3V 35 

For special cases, we consider the example of molecules of the D3h point group symmetry under one-photon quadrupole 
transition and fragmentation. The transition operators in this group have symmetryl4 as follows: 

T20(r)CA;, T2±I(r)CE", T2±2(r)CE'. (48) 

Let us assume an initial molecular state Ii) CA ;, E', or E". The final state could belong toA ;, E', or E". Therefore the total 
angular dependence of the cross section for the observation of photofragments from a rotating parent molecule of the D3h 

point group symmetry for one-photon electric-quadrupole excitation is given by 

= fo(U + 1) [Ki'lP I II RKJ , (rd) (U' + 1)l/l_
J

' 
M J' W+l 

J ~1)(JO' J 2) 12 MOO YJ'M-I (O,<1» 

X {H Yoo (!1;ffJ) + ,Y20(!1;ffJ;) + ,Y40(t?-;ffJj)] I (T~O'(r» 12 

+ H Y oo( t?-jffJj) - ~Y20( t?-jffJ;) + tJ Y40 ( t?-;ffJj) ] [ 1 (T~O'(r» 12 + 1 (T~OI(r) W] 
- is [(I (T~OI(r» (T~OI(r»* + (T~OI(r) )*(T~OI(r) »Y22 (t?-;ffJ;) + c.c.] 

+ ~ [«T~OI(r) )*(T~OI(r)} + (T~OI(r) )*(T~OI(r) »Y42 (t?-;ffJj) + c.c.] 
7v15 

+~ fI [(T~ol(r»*(T~OI(r»Y«(t?-jffJj) +c.c.]}, (49) 
3 V 35 

(Til)(A;---E")=fo(U+1)[Kill]2~I~RKJ,(rd)(U'+1)1/2~J~1 ~ ~)(~' ~ ~)YJ'M_I(0,<I»12 

X {H Yo,o (t?-jffJ;) + ,Y20 ( t?-jffJj) - n Y40 ( t?-iffJi) ] [I (T~OI(r» 12 + I (T~O'(r) W] 

-1H (T~OI(r)} *( T~OI(r» Y22 (t?-iffJi) + (T~O'(r»* (T~,O'(r» Y22 (t?-i,ffJi)] 

-~ fi [(T~OI(r»*(T~ol(r»Y42(t?-iffJi) + (T~t(r»*(T~OI(r»Y42(t?-iffJi)]}' (50) 21V 5 

(I) , r= [(I l 2 ~ 1 ~ , I/l J' J 2)(J' J 2) 12 (T2 (A;---E )=v1T(U+l) K2 ] 7t ~RKJ'(rd)(U +1) W+l M I 0 0 0 YJ'M-.<0,<I» 

X {H Y oo( t?-jffJi) - ,Y20 ( t?-iffJ;) + tJ Y40( t?-iffJi)][ I (T~OI(r) W + I (T~OI(r) W] 

+~ fI. [(T~ol(r»*(T~ol(r»Y«(t?-jffJj) + (T~OI(r»*(T~OI(r»Y44(t?-iffJj>]}' (51) 
3V 35 
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u~l)(A; -A;) = ..[ii(U + 1) [K~I)]2 L I)' RKJ' (rd )(U' + 1)1/2t _J' J 
M 7' W+ 1 M 

:1) (J
O
' J 2) 12 o a YJ'M-I (0c1» 

x {n YOO (11iif'i) + ,Y20 (11i if'i) + ,Y40( 11/if'i)] I (T~OI(r) W, (52) 

I
t J' J 2)(J' J 2) 12 u~I)(E'_E")=..[ii(U+1)[K~I)]2~ ~RKJ(rd)(U'+I)1/2W+l M I 0 0 0 YJ'M_d0c1» 

x {n Y OO(11{if'i) + ~Y20(11iif'i) - n Y40(11iif'i)] [I (T~OI(r) W + I (TfiOI(r) W] 

(53) 

The other allowed one-photon electric-quadrupole transitions for other molecules with different symmetries can be obtained 
from Eq. (47) similarly. 

C. Two-photon electric-dipole transition 

For two photons with parallel polarization, the transition moment in the lab-fixed frame is l5 

M(2) =K?)(RloRlO) =K\2){ - (1/~)(T~(rr» +.J+ (n't(rr»}. (54) 

In the molecular-fixed frame the transition moment can be written in the form 

M\2) =K\2){ - ~ ~Dg:(nlL)(T~~I(rr» +.J+ ~D~:(nlL)(T;';I(rr»}. (55) 

Substituting Eqs. (55) and (35) into Eq. (31), we obtain the angular distribution ofa two-photon nonresonant process in the 
form 

u\2)(ry)=21T[K\2)]2f; 1- ~ ~RKJ'(rd)~ ~ ~)(~' ~ ~)YJ'M(0,ct» 

X(T~OI(rr»Yoo(11iif'i) + fI LRKJ' (rd) YJ'M(0,ct» \j 15 J' 

fJ' J 2)(J' J 2) 12 
Xw M a a a 0 ~ (T;'t(rr»Y2q (11iif';) . 

This equation can be reduced to the general form 

u\2)(ry ) =uo{1 +f3cos20+rcos40}, 

where 

[K (2)]2 
0;' = 1 IR (r )121(TmOI(rr»12·1Y. (11.m·)12 o 6(U + I) vJ d 00 00 ITI , 

ao = 1 + [(IIJ 2 + I1J - 8)a l + (3J 2 + 5J + 4)a2 + (3J 2 +J + 2)a3 ]A 

+ a4B + a5C + aff) - (J - 5)a7E - (J + 6)agF + 3a9G, 

J(J+I)IRK.J(rd)1
2 

J(J+l) {a J+l J-l}41 12 
a l = = RKJ(rd) , 

8.,fii(U + 3)2(U - 1)2'bo 8..[iibo a J - 1 J + 1 . 

bo = IRKJ(rd) 121 (Too(rr» 121 Yoo (11iif'i) 1
2

, 

a
2
= 9(J+ I)(J+2)IRK.J+2(rdW = 9(J+ I)(J+2) .{O J+2 

32.j1i(U + 5)(U + 3)2(U + l)bo 32.j1ibo(U + 3)2 a J 

9J(J-1)IRK.J_2(rd)12 9J(J-l) {O 
a

3 = 32..[ii(U + I)(U _ 1)2(U _ 3)' bo = 32.,fiibo(U _ 1)2 0 J - 2 

J 
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_ J(J+l)IRK,J(rd )12 
_J(J+l) {O J+l J-l}2IR ( )1 2 a4 - - KJ rd , 

2>12ii('lJ + 3)(2J - 1) 'bo 2>12iibo 0 J - 1 J + 1 ' 

3(J+l)(J+2) 3(J+1)(J+2) {o J+2 J} 

a
s

= 4V21T(2J+3)(2J+5)1/2(2J+1)1/2'bo =4V21T(2J+3)'bo ° J J+2' 

3J(J - 1) 3J(J - 1) {o J J - 2} 
a

6
= 4V21T(2J-l)(2J+l)1/2(2J-3)1/2'bo = 4V21T(2J-l)'bo 0 J-2 J ' 

3J(J + l)(J + 2) 3J(J + 1)(J + 2) {o 
a

7 = 16[ii(2J + 3 )2(2J + 1) 1/2(2J - 1)(2J + 5) 1/2'bo = 16[ii(2J + 3 )2(2J - 1) 'bo . ° 
3J(J - 1)(J + 1) 3J(J - 1)(J + 1) {o 

a
g 

= 16[ii(2J + 3)(2J + 1)1/2(2J _ 3)1/2(2J _ 1)2'bo = 16[ii(2J + 3)(2J _ 1)2'bo . 0 

~= __________ 9_'_J~(J_+~1~)(~J_-~1)~(J~+_2~) ________ __ 

32..[ii-(2J + 5)1/2(2J + 3)(2J + 1)(2J - 1)(2J - 3)1/2'bo 

9J(J + l)(J -l)(J + 2) {O J + 2 J - 2} 

= 32..[ii-'bo'(2J+3)(2J+l)(2J-l) 0 J-2 J+2 ' 

A=L[_l (: 2, 00)Yoo (t1ilPi )- fI(: 2, 2,)Y2Q,_q(t1;lPi) 
Q,q' .J5 q q \j 7 q q q - q 

-3-J'fs- (~ ;, q~q,)Y4q,-q(t1ilPi) ](T2q (rr»*(T2q'(rr», 

1 
B = - L ( - 1)q[ (T oo(rr) )*(T2q (rr» + (T oo(rr» (T2q (rr»*] Y2q (t1;lPi)' 

.J5q 

(65) 

(66) 

(67) 

J+2 J~2} , (68) 
J 

J J-2} (69) 
J-2 J ' 

(70) 

(71) 

(72) 

C = ~ L ( - 1)q[ R !,J(rd )RK,J+ 2 (rd) (T oo(rr) )*(T2q (rr» + RKJ(rd)R !,J+ 2 (rd ) (T oo(rr» (T2q (rr) )*] Y 2q (t1;lPi)' 
,/5 q 

(73) 

D = ~ L ( - 1)q[ R !,J(rd )RK,J_ 2 (rd) (T oo(rr) )*(T2q (rr» + RK,J(rd)R !,J- 2 (rd) (T oo(rr» (T2q (rr»*] Y2q (t1ilP;), 
,/5 q 

E = L [( T2q (rr»* (T2if (rr»R !,J (rd )RK,J + 2 (rd ) + (T2q (rr» (T2q' (rr» * RK,J (rd)R !,J + 2 (rd ) ] 
q,q' 

F = L [( T2q (rr»* (T2q, (rr»R !,J (rd )RK,J _ 2 (rd ) + (T2q (rr» (T2q, (rr» * RK,J (rd)R !,J _ 2 (rd >] 
q,q' 

x [~ (~ ;, ~)Yoo(t1;lPi) -~ (~ ;, q' ~ q)Y2q - Q (t1ilPi) 

+3 IT(2 ~, ,4 )Y4q_Q(t1ilPi)] , \j 35 q q q-q 

G = L [ (T2q (rr) ) * (T2q, (rr»R !,J+ 2 (rd )RK,J _ 2 (rd ) + (T2q (rr» (T2q, (rr) )*RK,J+ 2 (rd)R !,J- 2 (rd)] 
q,q' 

x[~ (~ : ~)Yoo(t1ilPj)-~e ;, q'~q)Y2q-q'(t1jlPi) 

+ 3-J'fs- (~ ;, q' ~ q)Y4q -q' (t1ilPi) ] , 

f3 = (1/ao)[ {- 6(5J 2 + 5J - 12)a l + 2(J + 3)(J - 4)a2 + 2(J - 2)(J + 5)a3}A - 3a4B 

- 3asC - 3a~ - 6(J + 7)a7E - 6(J - 6)agF - 30a9G], 
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r = (l/llo)[ {27(J - I)(J + 2)a l + 3(J + 3)(J + 4)al + 3(J - 2)(J - 3)a3}A + 15(J + 3)a7E 

+ 15(J - 2)agF + 35a9G]. (79) 

Here, we have omitted the superscript "mol" for each Tij (rr) and used some of the formulas of Appendix B and the formulas 
of 3j symbols.lo The applications to some specific point group symmetry ofthis formula will be found in another paper.21 

APPENDIX A: THE SUMMATIONS OF FINITE ROTATION MATRIX ELEMENTS 
With the help of Eqs. (21), (23), (31), and (32) of Ref. 16, we obtain the following summations: 

L mid ~'.m+ I (P>l l = m' cosP- 1, (AI) 
m 

L mid ~'.m-I (P>l
l = m' cosP + 1, (A2) 

m 

L m 21d ~'.m + I ( P> 12 = [(j/2) (j + I)sin l p + 1] + m'[ (m'/2)(3 cosl p - I) - 2 cos P ] , (A3) 
m 

(A4) 
m 

(AS) 
m 

L m 3 1d ~'.m+ I (P) 12 = [ - V(j + I) sin l p - 1 ] + m'{(3 + m,l)cosP - ~m'(3 cosl p - I) 
m 

+ H3j(j + I) - 5m,2 - l]sin2 pcosp} , (A6) 

L m4
1d ~'.m + 1 (P) 12 = [~/(j + 1)2 sin4 p + lJ(j + I)sin2 P(3 COS

2 P - 1) + 3j(j + I)sin2 P + 1 ] 
m 

+ (m,2/8)sin2 P(5 COS
2 P - 1 )(6/ + 6j - 5) + (m,4/8)(35 COS4 P - 30 cos2 P + 3) - m' 

X [4(m,2 + I)cosP-3m'(3cos2 P-1) +2(3/+3j-5m'2-1)sin2pcosp]. (A7) 

We know 

d j - 2(P) 
cos2 P d j 

m (13) = .. I'~ , {(/- m 2)(/_ J.1.2)[ (j - 1)2 _ m 2][ (j _ 1)2 _ J.1.2]}1/2 
I-' J{j - 1)(2J - 1)(2J + 1) 

d j - I(p) 
+. . I'm 2J.1.m[ (/_ m2)(/_ J.1.2)] 1/2 

J(2]+1)(/-I) 

+ d~m(P> [6J.1.
2
m2 +(2/+2j -l)-2(m2 +J.1.2)] 

(2j-l)(2j+3) j(j+ 1) 

d j + 1(P> 
+.. I-'.m • 2J.1.m{[ (j + 1)2 _ m 2][ (j + 1)2 _ J.1.2]}1/2 

J{j + I) (j + 2)(2J + 1) 

d H2 (f.1) + I-'m fJ {[ (. 1) 2 2][ (. 1) 2 2] 
(j + 1) (j + 2)( 2j + 1)( 2j + 3) J + - J.1. J + - m 

X [(j + 2)2 - J.1.2] [(j + 2)2 _ m 2]}I12, (A8a) 

sinp cosp d~m (P> 

= ±.. d~~2(P>. [(/-m2)(/-J.1.2)(j+J.1.-1)(j-J.1.-1)(j+m-l)(j+m-2)]I12 
J{j - 1)(2) + 1)(2} - 1) 

d j - 1 (13) + I-'m±l 'J.1. [(j+m)(}'+m-l)(}'2-/J2)]1/2(}'+2m+l) 
j(f - 1)(2j + 1) r-_ 

+ d~m±1 (P> 3J.1.2 -j(j+ 1) (2m + 1)[(j+m)(j+ m + 1)]1/2 
(2j - 1) (2j + 3) j(j + 1) - -

dH I (P>' 
+ I'm ± I J.1. [ (j _ J.1. + 1) (j + J.1. + 1) (j + m + 1)( j + m + 2) ] 1/2 (j + 2m) 

j(j+l)(2j+1)(j+2) --
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d~!.; 1 (fJ) {[ . + 1)2 2] [(" 2 2 2J 
=+ (j+I)(j+2)(2j+I)(2j+3) {J -p, 1+)-P, 

X [(j + 1)2 - m2] (j ± m + 2) (j ± m + 3)}1/2. 

Using Eqs. (ASa) and (ASb) and lettingp, = 0, with the help of the above equations we obtain 

2:(2m - l)(j + m)[ (j + m - 1) (j + m - 2)(j m)(j - m + 1) 11/2db;'=- d{3)dbm_ I ({3) 
m 

=J....j(j+ l)U-l)( -5U-2)sin4{3+2(2j-7)sin2 {3+41, 
4 

2:(2m-1)(j-m+ l)[U+m+ l)(j+m)(j m+3)(j m+2)]1/2db;!:/ d{3)dbm-d{3) 
m 

2: m[ (j + m)(j - m + 1)] 1/2dbm ({3)dbm-t ({3) 
m 

2:[ (j + m)(j - m + 1) ]1/2dbm ({3)dbm_ d{3) = 0, 
m 

2:(l- m2)(i+ m 1) (j + m - 2) Idb;'=- I ({3)1 2 

m 

J....j(j + 1) sin {3 cos {3, 
2 

1 .( . 
=gll I) [ - 3U - 2) U - 3)sin4 {3 - 12U - 2)sin2 {3 + 8U - l)(j + 1)], 

2: (j - m + 2) (j - m + 5) (j - m + 1) (j + m + 1) Id b;!; =- I ({3) 12 
m 

= J....U + l)(j + 2)[ 3U + 3)(j + 4)sin4 {3 + 12U + 3)sin2 {3 + Sj(j + 2)], 
8 

(ASb) 

(A9) 

(AW) 

(All) 

(AI2) 

(A14) 

(At5) 

2: [ (l- m2
) (j + m - 1) (j + m - 2) (j - m + 2) (j - m + 3) (j + m + 1) (j - m + 1)] 1/2d b;' =- 1 (fJ)d b;!; =- I ({3) 

m 

= LU + 1)( j 1) U+ 2)[35 sin4 {3 - 40 sin2 {3 + 8] 
8 

=jU+ l)U-l)U+2)P4(COSfJ). (AI6) 

From Eq. (24a) of Ref. 16, by changingjtoj 1, we obtain 

2:[(j + m)(j + m 1) U - m)(j - m - 1) jl /2d{,,'m ({3)d{"-:,;(fJ) 
m 

= UU-l) -m'(m' -l)]UU-l) -m'(m' + 1)1 (3cos2{3-I). 
2[ U + m')(j + m' - 1) U - m')(j m' - 1) p/2 

Changingj to j + 2 for the above equation, we obtain 

2:[ U + m + 2) U + m + 1) U - m + 2) U m + 1)] 1/2d j
m-t:,;({3)d{"'m ({3) 

m 

= [U+l)(j+2)-m'(m'-1)J[U+l)(j+2) m'(m'+l)] (3cos2 {3-I). 
2 [ (j + m' + 2)( j + m' + 1)( j - m' + 2)( j - m' + 1)] 1/2 

Since20 

(AI7) 

(AI8) 

(A19) 

all of the above equations (after setting m' = 0) may be converted to summations over m with respect to spherical harmonics. 
All of the above equations are useful for derivations of the closed forms of quadrupole transitions. 

1271 J. Math. Phys., Vol. 31, No.5, May 1990 S. La! and Y. Chiu 1271 



                                                                                                                                    

APPENDIX B: THE PROOF OF EQS. (18H22) 

For the ~ ..... ~ electric-quadrupole transition, Il = 0 and A = K = O. Then Eq. (16) reduces to 

I
"" lfi I (J ' 2 J)(J

I 

2.l\ I' t:::\ 12 
I(0,<P) = ~ J~' H vI' (2J + 1) X W' T MOO OlD M'O (<P,¢,O) . 

Since 

D~o(<P,0,0) = (- I)M(417"/(2J + 1 W12 YJ,M(0,<P), 

Eq. (17) becomes 

I(0,<P)=~I~H'~1'(41T)1/2(2J'+l)1/2~J~1 ~ ~)(~' ~ ~YJ"M_d0,<P)12 

=411' ""IHlfi (2J+l)1/i_J 2 J)(J 2.l\ 7:t vJ W + 1 I MOO O)YJM - I (0,<P) 

+H'fi (2J_3)1/2('-.-2 
'V,J-2 W + 1 

+H'fi (2J+5)lli'-.+
2 

v,J+l W+l 
Using some of the formulas of Appendix A and the formulas of3j symbols of Ref. 20, we obtain Eqs. (18)-(22). 

APPENDIX C: ANGULAR DISTRIBUTION OF THE PHOTOFRAGMENTS OF RIGID ROTORS: QUADRUPOLE 
TRANSITION 

We follow Zare's22 arguments for the quadrupole transition. The total distribution of rigid rotor axes is 

PJ({}) LI (J"M ",20IJM) 121 YJM({}rp) 12
, 

M" 

(17) 

(Cl) 

where IJ II Mil) is the initial state of the rotor, and the selection rules are t:J = 0, ± 2, that is, J J II - 2 for the 0 branch, 
J = J II for the Q branch, and J = J It + 2 for the S branch. 
For Q branch absorption, 

9M"4 + J It 2(JII + 1)2 - 6M"2JIt(JIt + 1) 
PJ" ({}) = "" I YJ"M" ({},m) 12 it- J"(J" + 1)(2J" - 1)(2J" + 3) T 

= (2J" + 1)(J"
2
+J+6) [1 

321T(2J" - 1)(2J" + 3) 

8(4]112 + 4]" - 15) P (cos {}) + 216(JII - l)(JII + 2) P (cos {})]. 
7(J" 2 +J" +6) 2 35(1"2+1"+6) 4 

(C2) 

For the 0 branch, 

p"_ ({}) = 2J" - 3[1 + lO(J" - 2) P (cos{}) + 9(1" - 2)(JII - 3) P (cos {})]. 
J 2 2011' 7(2J1I -1) 2 14(2J" + 1)(2J1I _ 1) 4 

(C3) 

For the S branch, 

p" ({}) = 2J" + 5[1 lO(JII + 3) p (cos {}) + 9(J" + 3)(JII + 4) P (cos (J)] 
J +2 2011' + 7(2J1I + 3) 2 14(2JII + 1)(2JII + 3) 4 , 

(C4) 

where we have used Eqs. (24) and (32) of Ref. 16 (let m' = 0, and then use the relationship between spherical harmonics and 
the rotation matrix). 

APPENDIX D: INTEGRATIONS OF FINITE ROTATION MATRIX ELEMENTS 
Since20 

if we let Il 1 112 = Il' we then obtain 

d~m, (fJ)d~m, (fJ) = .t ( - 1)1"- m'(2j3 + 1)~ 
Also, 

d~(fJ) = (_l)m[(j+m)!/(j-m)!]1/ 2Pj-mCcosfJ). 
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Using Eq. (D3), we convert Eq. (D2) into the following form: 

d j , ({J)d j, ({J)=~(_1)I'-m'(2j +1)01 j~ j3)(jl j-: j3 )[(~3+m3)!]1I2pj--:m.(cos{J). (D4) 
I'm, I'm, t 3 \p, fL 0 \ml m2 m3 (13 - m3)! 

Multiplying the above equation by sinn - 1 {J d{J and integrating from 0 to 1T with respect to {J on both sides of Eq. (D4), we 
obtain 

(1T d~m, ({J)sinn - 1 f3 d~m, (f3)d{J = ( _ 1)1' - m, L (2j3 + 1) [ (~3 + m3)! ] 112(jl j~ j3)(j1 j-: j3) 
Jo j, (13 - m3)! \;t fL 0 \m 1 m2 m3 

Here, we have used the identity23 

X 2 - m •• 1T • rc! n + ! m3 )' rq n - ! m3 ) 

rq +! n + !j3)' rq n - !j3)' rq m3 + U3 +!). rq m3 - !j3 +!) 
[R(n ± m3 ) >0]. 

i1T 2 - m"1T' rq n +! m3 )' rq n -! m3 ) (sin {J) n - 1 P j- m, (cos f3 )d{J = --------:-----""-----"--""------' ...... - _---"'-_ --"-_____ _ 
0' rq +! n + !j3)·rq n - !j3)·rq m3 + !j3 + 1)·r(! m3 - !j3 +!) 

[R(n ± m3 ) > 0], 

where the r(k),s are gamma functions. 
In the following we consider two special cases. 
Case 1: Letjl = j2 = j, m2 = A, mJ = - A, and n = 2. Then Eq. (D5) reduces to 

i 1T 2j [ (. 2A)' ]1I2( d~A (f3)d~A ({J)sin {J d{J = ( - 1)1'- A L (2j3 + 1) ~3 + . .( 
o j, = even (13 - 2A)! f.l 

2 - 2A. 1T• r(l + A)' r(1 - A) 
X------------'-~~----'--~------

rq + U3)·r(1- !j3)·r(A + !j3 + 1)'rcA - !j3 +!) 

It is very hard to get a closed form for this integration. 

(D5) 

(D6) 

(D7) 

Case 2: Let m J = m2 = 0 and n = 3. Equation (D5) becomes (we changedfL to m, jJ to j, j2 to j', j3 to J, for conven
tion 

I
J 

(l_X2)1/2pm(x)pm(X)dx=(_1)m[(j+m)!(j'+m)!]112 L (2J+1)(j j' .1\(j lO" .1\0 
-I J J (j _ m)!(j' - m)! J=even \m m 0)\0 0) 

X r [ 4 rc 2 + ! J) . r (~ - ! J) . r (l + ! J) . r q -! J) ] - 1, (D8) 

where x = cos{J, and Pj(x) are the associated Legendre polynomials. This way, we obtained the values of the matrix 
elements (~. m I sin {J Iljm ) . 

The method is different from and appears to be more general than that of Lin and Koizumi.6 
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Evaluations of distribution functions for flexible macromolecules 
by the saddle-point method 
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The method of steepest descents has been applied to the evaluation of distribution functions for 
flexible macromolecules of arbitrary complexity with the effective potential of the mean force 
being a quadratic form. Approximate evaluations of the distribution functions of the radius of 
gyration and the two-dimensional shape distribution functions over the entire variable domains 
are shown to be both feasible and effective. The asymptotics of the distribution functions are 
also studied, and a simple asymptotic formula is obtained that is valid for flexible 
macromolecules confined to a plane and of any structure such that the smallest eigenvalue of 
the Kirchhoff matrix has odd degeneracy. 

I. INTRODUCTION 

During the past two decades, much progress has been 
made on the study of equilibrium statistical mechanics of 
macromolecules with the advent of powerful mathematical 
tools such as integrals over Stiefel manifolds. I

-
3 As a first

order approximation to a generally complicated many-body 
interaction potential for a macromolecular system, a qua
dratic potential has proved adequate for many applications 
in the field of configuration statistics of macromolecules. 
This has cqme to be known as the Gaussian model. In this 
paper, we evaluate distribution functions for the Gaussian 
model of flexible macromolecules with the use of a steepest
descents technique. 

The distribution functions of interest invariably involve 
integrals of the form 1-5 

J w(x) 11 + ix-A -11- 0 etr(iSdhxh')dh dx, 

where a is a positive number, k is the dimensionality 
of the space in which the molecules are imbedded, n 
denotes the number of vertices of the molecular graph 
with the mean-square distance between two neighboring 
vertices being (t2)O' A = diag(A I,l2, ... ,A n _ I) and Sd 
= diag(3\,Si, ... ,Sk) with ;S:;Aj = nyS/"j = nk~A/2<t'2)o' 

i.e., Sj = yS/na andAj = na + IAj , a being a constant prop
erly chosen for a given type of molecules and taking the value 
1 for many relatively simple structures such as linear chains, 
circular chains, double rings, and stars. The Aj are the non
zero eigenvalues of the Kirchhoff matrix of the graph, the Sj 
are the principal components of the gyration tensor S for the 
molecule, heSO(k) spans the special orthogonal group, h' is 
the transpose ofh, d h is the unnormalized invariant measure 
on SOCk), x = diag(xl,x2' ... 'xk ) with - 00 "';Xk 

"';Xk _ I ...;·· ·<xl<oo,dx = n~= I dx j , and the function w(x) 
is defined as 

{
I, 

w(x) = k 
na<p IXa - xp I, 

for k = 1, 

for k> 1. 

For convenience, let K be the diagonal matrix of all distinct 
Xj each with degeneracy (J)j' i.e., K = diag(KI ,K2, ... ,Kp ) with 
Kj < Kj + I . In what follows, we first concentrate on the evalu-

ations of distribution functions of the radius of gyration, and 
then treat shape distribution functions in two dimensions. In 
both cases, only the saddle-point method is employed and 
the asymptotic behavior of these functions is also investigat
ed. We will deal with the 3-D shape distribution functions in 
a separate paper. 

II. DISTRIBUTION FUNCTIONS OF RADIUS OF 
GYRATION 

In the framework of the Gaussian model, the probabili
ty distribution of the radius of gyration s'l, s'l = tr(S), for 
flexible macromolecules was first studied by Fixman in 
1961. He obtained simple expressions for the distribution 
function for infinitely long linear chains at very large and 
very small values of the arguments by use of the method of 
steepest descents.6 Since then, the distribution functions 
have been evaluated both approximately and exactly by var
ious techniques for a number of different forms of their rep
resentations (see Ref. 2 for a review on this subject). Here 
we present a method, based on the steepest-descents tech
nique, for approximately evaluating these functions in com
plete generality. In the following, we start with the case 
where the eigenvalues or the density functions of the eigen
values of the Kirchhoffmatrix are known, and then work on 
another case where only the coefficients of the eigenpolyno
mial of the matrix are needed. Finally, we give a special treat
ment for linear and circular chains, obtaining independently 
analytic expressions for the second and fourth moments of 
the distributions as well as carrying out the steepest-descents 
calculations of the distribution functions. 

The most useful form of the distribution functions of the 
radius of gyration is I 

P(s'l)ds'l = - exp(i{3s'l) II 1 + i- d{3, (dS2)f"" n-I( {3 )-0 
21T - 00 j= I ynAj (1) 

where a = k /2 with k denoting the dimensionality of the 
space. In terms of the dimensionless quantity SZ, the reduced 
radius of gyration, Eq. (1) becomes 

P(s'l)ds'l = (dSZ)fOO exp(i ;SZx>.n (1 + i~) -O"'j dx. (2) 
21T -00 J=I Kj 
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We now evaluate the integral in Eq. (2) by the method of 
steepest descents along the lines of the calculation of Berlin 
and Kac in their treatment of the spherical model of a ferro
magnet. 7 Let 

g(x) = i~x - a jtl OJj In (1 + ~). (3) 

and Xs be the saddle point corresponding to a given~. The 
existence and uniqueness of such a normal saddle point for 
any '52 in the general case considered here will be discussed 
shortly. A steepest-descent calculation yields 

P(s2)ds2 = (a?lfiii)eg(X,) [ - g" (Xs)] -1/2, (4) 

where the saddle point Xs for a given ~ is governed by the 
equation 

p OJ· 
~=aL 1., 

j= I (Kj + IXs ) 
(5) 

and by the inequality 

p OJ· 
g"(xs ) = -a L 1. 2 <0, 

j= I (Kj + IXs ) 
(6) 

where g" (x) is the second derivative of g(x) with respect to 
x. From the above two conditions, one immediately sees that 
Xs must lie on the imaginary axis. Letys = ixs' We then have 
Ys = - KI and 00 corresponding to ~ = 00 and 0, respec
tively (see also Ref. 8). For Ys = 0, one gets 
~ = a~}= IOJ/Kj = (~)O, the second moment of the distri
bution.2

,9 Furthermore, the condition that In (1 + y sf K j ) be 
real for allj requires that Ys be greater than - K I . It then 
follows that there exists a unique saddle point Xs for a given 
~E[O,oo]. From Eq. (4), we have 

P(~)d~ = (a?/~21Ta )e".rD(ys) [FI (Ys)] -1/2, (7) 

where D(x) and FI (x) are defined as 

D(x) = fI (1 +~)-awj 
j= I K j 

(8) 

and 

p OJ· 
FI(x) = L } 2' (9) 

j=! (Kj +x) 

respectively. For ~ = 0, (~)O, and 00, it is not difficult to 
show that P(O) = P( (0) = 0 and 

P( (~)o)d~= (a?lfiii) «'54)0 - ('52)~) -liZ, (10) 

where the equality ('54)0 - (~)~ = a ~}= IOJ/Kj has been 
used.Z

,9 To see how good the approximation is, let us consid
er a simple case: A linear chain of two beads connected by a 
Hookean spring and imbedded in k-dimensional space. The 
distribution function for these dumbbell molecules is readily 
found to be given exactly by 

P(~)d~ = a? [x1 Ir(a) ]~(a-l)e-K'S', (11) 

while the steepest-descent calculation gives 

P(~)d~=a? [x1 Ir(a) ] C1 (aOJ1)~(a-l)e-K'S', (12) 

where C1 (x) is defined as 

C)(x) = (21T)-1/2X-(x+IIZ'X!~, (13) 

which goes to 1 as x -+ 00 • One thus sees that the two results 
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become identical for infinitely large a, In a sample calcula
tion made for linear chains with eleven beads in one dimen
sion, good agreement between the exact and the approxi
mate results based on Eqs. (7)-(9) was found. 

To obtain asymptotic expressions for the distribution 
functions, we make use of the fact that the saddle point ap
proaches Ys = - KI for large values of the radius of gyra
tion. 8

,10 Let Ys = - K) + c, where c is a small and positive 
quantity. Equation (5) then yields 

c=aOJI/'52, 

for large~. We thus have 

FI (Ys) =OJI/~ 

and 

D(ys) = (KI) aw, .fI(l- KI) -awj, 
C }=Z Kj 

Substitution ofEqs. (14)-(16) into Eq. (7) gives 

p(~)dS2_a? B~C2(aOJI)~(aw, -I)e-K,S', 

where C2 (x) is given by 

C2(x) = (21T)-1/2X -x+ IIZex, 

and Bj is defined as 

P ( K.) w, 
Bj =K? II 1-....:!.... . 

(h K{ 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Comparing Eq. (17) with the leading terms in the exact 
asymptotic expansions of the distribution functions as given 
by9 

P(~)d~-a?[ B~/r(aOJI) ]~(aw, -l)e- K ,S', (20) 

we see that they differ in that l/r (aOJ I) stands in place of 
Cz(aOJ I ) as a constant factor in Eq. (20). It is of interest to 
note that r(x) approaches l/C2 (x) as x -+ 00, implying that 
the larger k is, the better approximation is the steepest-de
scents calculation. 

When the product in Eq. (1) is expressed in terms of the 
eigenpolynomial P G (2 - A) of the molecular graph G with 
A= - i{3lyn (Ref. 11), i.e., 

n-l n 

PG (2-A)=-AII(Aj -A)= LajAn-j, (21) 
j= I j=O 

where the a j are the coefficients of the eigenpolynomial, we 
have 

P(~)d~= da. (+ioo e- a (1-Z'[P
n
(z)]-adz, (22) 

2m JI - ioo 

where a=2yn~=2n2~, and the function Pn (z) is given by 
1 n-I 

Pn(z) =-- L a j [2(1-z)]n- j -l, (23) 
an-I j=O 

which may also be expressed in terms of Chebyshev polyno
mials in z (Refs. 2, 11). As in the previous case, let Zs be the 
saddle point at which the phase of the contour of integration 
takes the value 1T12. The steepest-descents calculation on the 
integral in Eq. (22) then yields 

P(~)d~ = (a?~21Ta) [Pn (zs)] -ae - a(1-zs' 

[ 
dZ ]-112 

X - lim ~ In Pn (z) , 
Z-Zs dz-

(24) 
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where z. satisfies the equation 

a = a lim !!...In Pn (z), 
z-z, dz 

under the constraints 

d 2 

lim -;:2 In Pn (z) < 0 
z-z, dz-

and 

Pn (z.) >0. 

(25) 

(26) 

(27) 

It is to be noticed that in this case the saddle points all lie to 
the left of z. = 1 on the real axis with Zs = 1 corresponding 
to 'f- = ( - a/n2)(an_2/an_I)' which is simply ('f-)o 
(Refs. 9, 11). At ~ = (~) 0' one therefore has 

P«~)o)d~=Qs2~ [(an_2 )2 -2 a n_ 3 ]-112 
~211'a an - I an - I 

(28) 

Comparison ofEq. (28) with Eq. (10) shows that 

(S4)O _ ('f-)~ = a
4 

[ (a n
_

2 )2 _ 2 an _3 ] , (29) 
n an_I an_I 

which reduces to the result obtained by Yang and Yu for 
k = 3 (Ref. 11). 

In the case of linear chains,2,8.11 one finds the alternative 
representation 

(30) 

where Un (x) is the Chebyshev polynomial of the second 
kind of order n. Equation (24) then becomes 

P(~)d~=~ [ Un_I (zs) ] -ae -a(1-z,) [A(zs)] -1/2, 

~211'a n 

(31) 

where Zs is the solution of the equation 

f3= .!!... = _n_ [n + 1 z. _ Un (z. ) ], (32) 
a 1 - ~ n Un _ I (zs) 

with the constraints 

Un_I (zs) >0 

and 

n2 
- 1 - 3f3z 

A (z. ) =f3 2 + s > O. 
1-~ 

(33) 

(34) 

Note that Un (x) = c ~ (x), where c~ (x) is the ultraspheri
cal polynomial with the following properties l2

: 

~ CA. (x) = 2k r(A + k) CA. + k(X) (35) 
dxk n rCA) n-k , 

and 

(36) 

Then, with the limit z. -> 1 taken on the right-hand side of 
Eq. (32), one has 

('f-)o = (a/6) (1 - 1/n2), (37a) 

or 

(37b) 
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Similarly, by first evaluating Eq. (31) for Zs = 1 and then 
comparing the result obtained with Eq. (10), we obtain 

(S4)O - ('f-)~ = (a/180)(2 + 5n- 2 - 7n-4). (38) 

Equations (37) and (38) recover the earlier results for k = 3 
(Refs. 2, 9, 11). For circular chains/· ll one has 

Pn(x) = [Un_dy)/n]2, (39) 

where r = (1 - x) /2. It then follows that 

P(~)d~=~23/2[ Un_l(zs) ]-2a 
~211'a n 

xe-2a(I-~) [B(z.)] -1/2, (40) 

where Zs is governed by the equality 

f3= 2a = n [ n + 1 Zs _ _ U_n_(Z_s_)_], (41) 
a Zs (1 - ~) n Un _ I (zs) 

and by the following two inequalities: 

Un_dzs»O (42) 

and 

_f32 n
2 

- 1 + f3(1 - 4~) 
B(zs)= + >0. (43) 

~(l-~) 

As in the case of linear chains, we find that for circular 
chains, 

(44) 

and 
(S4)O - ('f-)~ = (a/720)( 1 + lOn-2 - 11n-4), (45) 

which also reproduce the results for k = 3 obtained by other 
analytic techniques. 2,9, I I 

III. SHAPE DISTRIBUTION FUNCTIONS IN TWO 
DIMENSIONS 

Distribution functions for the principal components of 
the gyration tensor for flexible macromolecules confined to a 

v 
plane were first investigated by Solc and Gobush,13 with the 
results expressed in the form of a Bessel-Fourier series. A 
different approach to the solution of the above problem was 
later taken by one of us, and the distribution function for 
circular chains was obtained as a double sum of simple inte
grals.3 Numerical evaluations of the distribution functions 
for both linear and circular chains in two dimensions have 
been reported.4 In what follows, we first carry out the steep
est-descents calculations of the general distribution func
tions over the entire variable domains, and then apply a two
dimensional saddle-point method to obtain asymptotic 
expressions for the distribution functions. 

The general shape distribution functions in two dimen
sions take the form3 

P(SI,S2)dSI dSI dS2 

= dSI dS2 ~J f3_ ei/3+s' Jo(!:43-) 
211' - 00 <fJ,<fJ,<oo 

X Ii [ (1 + iA..) (1 + i.P:L) ] -adf31 df32' 
J= I ynAj ynAj 

(46) 

where a = 1/2, 6. = SI - S2' f3 ± = (f31 ± f32)/2, and 
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Jo{x) is the Bessel function of the first kind of zero order. 
Under a linear transformation of the integration variables, 3 

Eq. (46) can be rewritten as 

P{StoS2)dSI dS2 

= dSI dS2(AI1T) IKI2a i"" x_Jo{lv,- )F{x_ )dx_ 

where IKI = IIj'= IK;i and 

F{x_) = L"""" e;§lx+ ill [x~ 
(48) 

We now evaluateF(x_) by the method of steepest descents. 
On inspection of the integrand in Eq. (48), one immediately 
sees that any saddle point, denoted by x'+ ' must lie on the 
imaginary axis and that x'+ is an even function of x_ for a 
given r-. Letys = ix'+ . We then have 

F(x_) = (1Tla) 1/2D(x_,ys )e",.s'[ F2{x_,ys)] -1/2, (49) 

where D(x,y) is given by 
p 

D(x,y) = IT [X2 + (Kj + y)2] -a(,\ 
j= I 

and Ys satisfies the equation 
p 

(50) 

r-=2a LWj(Kj+Ys)/[x2_ + (Kj+Ys)2], (51) 
j= I 

withys> - KI and subject to the additional condition that 

F2(x_,ys) 
p 

== L Wj [{Kj + Ys)2 - x2_ ]![x~ + (Kj + Ys)Z]2>0. 
j=1 

(52) 

It must be noted that under these conditions lx_I can never 
go to 00 for r- > O. We therefore conclude that there exists a 
unique upper limit for lx_I beyond which no saddle points 
can be found. As a result, the semi-infinite integral in Eq. 
( 47) needs only to be evaluated for a finite upper integration 
limit, say, xc' The existence and uniqueness of such a limit 
for any given positive r- were seen in a sample calculation for 
circular chains with five beads and will also be noticed in an 
example to follow. 

We further note the integral identity 

i"" dx_ x_Jo{lv,-)F{x_) 

= i-"" dx_ x_Jo{'3.J,-)F{x_), (53) 

which indicates that the contribution to the semi-infinite in-

For the special case of circular chains with n = 3, one 
hasw l = 2 and KI = 27. Let a = r-{KI + Ys) andfJ = r-x_. 
Equation (51) then becomes 

(55) 

where a = 1/2 has been used. Similarly, one has from Eq. 
(52), 

F2{x_,ys) = 2{r-)2{a2 _fJ2)/(a2 +fJ Z)2. (56) 

The solution of Eq. (55) with the contraints a>O and 
a 2 > fJ Z is then shown to be 

(57) 

with IfJ I..;; 1, i.e., Xc = Iff. Substitution of the above results 
into Eq. (52) gives 

P{SI,S2)dSI dS2 
- - . .2 - - - 1/2 :;l =dSI dSz "i Il.{SISZ)- e- K

, C3 {r), 

where r = 'AIr- and C3 {x) is given by 

C
3
(x) = 1T-IIZ(1_X2)IIZ 

(58) 

X f Jo{xfJ) ea [ (alfJ) 2 
- 1 ] -liZ dfJ. (59) 

A comparison of Eq. (58) with the exact result obtained 
elsewhere3

•
13 indicates that the relative error resulting from 

the steepest-descent calculation is IC3(r) - 11 =E(r). In 
Fig. 1, we plot both C3 (r) andE{r) as functions ofl'E[O,I].1t 
can be seen from these figures that very good approxima
tions are achieved for a wide range of values of the argu
ments, with a minimum relative error of 1.2 X 10-5 at 
r = 0.31 and that the approximation is especially good in the 
asymptotic region of the distribution function, as expected. 
As r- 1, i.e., Sz-O, the error is large because the boundary 

I. 25 

I. 00 

0.75 

0.50 

tegral includes two parts: One resulting from the steepest- 0.25 

descent calculation of F{ x _) for x _ E [ 0, 00] and the other 
for x _ E [ - 00,0]. Since the saddle points are even functions 
of x _, one thus need only multiply the semi-infinite integral 0. 00 

over x _ E [ 0, 00] by a factor of 2. The resulting expressions 0. 0 0.2 11.4 11.6 II.B 1.11 
for the distribution functions then take the form 

P{SI,S2)dSI dS2 

=dSI dS2{2IfiiQ) IKI2a~ iXC dx_ x_Jo(~_) 

XD{x...:.,ys )eIY,.s'[ F2(x_,ys)] -1/2. 
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(54) 

FIG. I. Plots of C3(r) and E(r) as functions of r with r = AI 
SZ = (S, - S2)/(S, + S2)' wherethe.5j are the principal components of the 
gyration tensor for flexible macromolecules. The function E( r) is defined as 
IC3 (r) -II and C3 (r) is calculated according to Eq. (59). As r-I, the 
molecules become linear. 
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of the domain of the definition ofS is reached. In the limiting 
case where S2 = 0, the integral in Eq. (46) becomes irrele
vant as a zero probability density results from the vanishing 
measure for such a set of configurations. 3 The 100% relative 
error for the r = 1 case is thus traceable to the discontinuity 
of the measure on the boundary, and is not a matter of con
cern. 

We now turn our attention to the asymptotics of the 
distribution functions by applying the saddle-point method 
to the double integral in Eq. (46) or (47). Our approach 
follows closely that commonly adopted for obtaining the 
asymptotic expressions of certain integrals over the orthogo
nal group with real integrands. '4 Define 

!(x+,x_) = i'Rx+ + In[x_ Jo(Ex_) 1 
p 

- a L Wj In [X2_ + (Kj + iX+)2], (60) 
j=l 

and let the saddle point, ifany, be denoted by x'= (x'+ ,x'_ ). 
Application of the saddle-point method to the double inte
gral in Eq. (47) then gives 

P(S"S2)dSI dS2 

=d5\ dS2 2iKi2aKe/(x'+,x'-) [ - H(x'+ ,x'_ )] -'/2, (61) 

where H(x'+ ,x'_ ) is the Hessian of!(x+,x_) evaluated at 
x', that is, 

H(x'+ ,x'-- ) = ! + + (x'+ ,x'_ )! __ (x'+ ,x'_ ) 

- !+_(x'+ ,x'_ )!_+(x'+ ,x'_ ), (62) 

with! + _ = a 2 ! I ax + ax _, etc. and x' satisfies the system of 
equations 

!+ (x'+ ,x'_ ) = 0, 

!_ (x'+ ,x'_ ) = 0, 

under the conditions that 

H(x'+ ,x'_ ) < 0, 

(63) 

(64) 

and that exp [!(x'+ ,x'_ )] be real. By inspection, we see 
that x'+ and x'_ are likely to be imaginary numbers. We 
thereforeletxs = ix'+ andys = ix'-- . Ifxs andys are real for 
some values ofS, and S2' it follows from Eq. (61) that 

- - 2 - S'x 
P(SI,S2)dSI dS2=dSI dS2iKi aMo(t)e ' 

X [G(x"ys)] a [ F(xs'ys)] -1/2, 

(65) 

where t = Kys' In (x) is the Bessel function of the second 
kind of order n, andxs andys are the solutions of the system 
of equations 

P 
S2 = 2a LWj(Kj + xs) [(Kj + xs)2 - y;)-" 

j=l 

p 

1 + tIl (t) 110 (t) = 2ay; L Wj [y; - (Kj + Xs )2] -I, 
j=l 

(66) 

with the constraints 

1278 

p 

G(xs'ys)=( _.r.)ll2a IT [(Kj +Xs)2_y;] -"'j>O, 
j=l 

(67) 
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and 

F( ) = f . { t 2 +,8(1 -,8) - 1 
xs,ys -a L.J w] 2 

j=' 4ys 

X[(Kj ;Z+)2 + (Kj ;Z_)2] 
(68) 

a P Wk } + 2 L 2 >0, 
(Kj +Z+) k=' (Kk +Z_) 

wherez± =Xs ±Ys,and,8= 1 +tII(t)IIo(t)=,8(t). We 
note that,8(x) is an even function of x, greater than or equal 
to 1 and going to x as x becomes infinitely large. As a result, 
one can never have both z+ > - K, andz_ > - K, for'R >0. 
This is equivalent to saying that the existence and unique
ness of Xs and Ys are not guaranteed. In fact, it is not difficult 
to show that there is no saddle point lying on the imaginary 
axis for circular chains with n = 3. However, the fact thatz+ 
and z _ cannot both be greater than - K, turns out to be 
exactly what we need to obtain the asymptotic expressions 
for the distribution functions, as will be seen shortly. 

With a = 1/2 imposed explicitly, let us first look at the 
ranges of values of'R and K that correspond to the saddle 
points: z+ = - K, + E+ and z_ = - K2 + E_, where E+ 
and E + are small and positive quantities. Substitution of 
these equalities into Eq. (66) gives 

S2=!(w IIE+ + w2/c), 
,8 (69) 
-=!(WIIE+ -w2/E_). 
Ys 

We thus see that 'R must be large. Noting that,8 Iys =K for 
large K, we may solve the above system of equations for E + 

and E_, with the results 

E + =W 1/2SI , 

E _ = w2/2S2 , 
(70) 

which are consistent with the assumption that E + and E _ be 
small. We have therefore located the ranges of z + and z _, or, 
equivalently Xs andy" which correspond to the asymptotic 
regions of the distribution functions. Making use of these 
results, we find 

G(xs'ys) = -BJY;B2/~~, (71) 

which is positive for odd w, as seen from the definition for Bj 

in Eq. (19), and 

F(x"ys)=w,w2/4(E+E_)2. (72) 

Noting also that Io(x) - (21TX) -'/2 exp(x) for large x, we 
finally have from Eq. (65), 

P(S,,s2)dS, dS2-dS, dS2CS ~"" - 1)
/2S i"" - 1)/2 

X (S 2-' - S ,-')'/2e -K,S,-K,s" (73) 

for large 'R and K. Here, C is a constant given by 
C = 2 ("" + 0),)12 - 21T- 1I2WP - 0), )/2Wi 1- «>.,)/2 

Xe(O),+",,)I2[B,(KI -K2)B21'/2. (74) 

Whether or not the exponential factor in C needs to be in
cluded depends upon the order of accuracy ofEq. (70). It is 
gratifying to see that Eq. (73) recovers the asymptotic for
mula obtained earlier for linear chains by a different ap-
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proach.3
•
14 In the case of circular chains with odd n greater 

than 4, for which (tJ1 = 2, an asymptotic expression for the 
distribution function has been obtained elsewhere.4 Here, 
the significance of the above result lies in the extension of the 
types of structures of molecules for which Eq. (73) holds 
beyond linear and circular chains. 
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The problem of gravity-gyroscopic waves, which are excited by the 
oscillations of a curve 
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The problem of the oscillations of an ideal stratified rotating fluid, which are excited by a curve 
in the case where the distribution of pressure on both sides of the curve is prescribed, is 
considered. The solution to the problem is obtained, as well as results about symmetry 
properties of the operators used for the solution of such problems. The question of the 
uniqueness of the solution is also considered. 

I. INTRODUCTION 

This paper continues research started in Refs. 1-5 and is 
connected with problems relating to the excitation of oscilla
tions in stratified rotating fluids by oscillating curves. These 
works presented solutions to these problems. Such problems 
are connected with some questions in cryogenic fluid tech
nology and oceanography. 

In this paper, we present the case where the distribution 
of pressure on both sides of a curve is prescribed. In this case, 
uncommon boundary conditions have appeared, which in
clude time derivatives. The solution is obtained by using two 
potentials, which were developed in Ref. 3. 

II. THE DEFINITION OF "PROBLEM W" 

We shall consider flat movements of an ideal rotating 
stratified fluid as in Refs. 1-5. The consideration of such 
problems leads to the equation of gravity-gyroscopic waves 
in two-dimensional space (see, for example, Ref. 2): 

aZ 
"Z 2 2 

-2 V U + (j)oU x x + a Ux x = 0, at ' , 2 , 

(2.1) 

where V2 is the Laplace operator in two-dimensional space 
with variables Xl and x 2, (j)~ is the square of the Wasjal
Brant frequency,5 and a is the Coriolis parameter. We note 
that in this paper we shall not discuss physical aspects ofEq. 
(2.1), suggesting, instead, that the reader see Ref. 6. We only 
remark that the values (j)o and a are given constants and 
Wo=Fa. Thefunctionu(x,t) [x = (XI'X2)] is a flow function, 
and the components of the velocity vector vof the fluid parti
cles can be represented by this function in the following ex
pressions: 

Let us consider the curve 

r=={(xl,xz): XI = xl(s), X2 = x 2(s), se[O,l]}, 

in a fluid whose dynamics are described by Eq. (2.1), and 
orient the curve r by setting its sides r+ and r- in the 
following way. We denote the tangent vector at a point 
xes) = (XI (S),x2(s»er of the curve rby Ts, and the normal 
vectoratx(s)erofthecurve rby ns. IfwerotateTs for 17/2 
counterclockwise we obtain n •. We shall call the side of the 
curve r that we see by looking toward the vector ns r+ and 
the opposite side of the curve r-. 

We assume that before time t = 0 there were no move
ments of fluid and curve r. After time t = 0, the pressure 
distributions on the two sides of the curve r are, in general, 
different. Mathematically it is equivalent to the prescription, 
on both sides r ±, of boundary conditions of the following 
kind for the function u(x,t): 

(ff,x U (x,t) I x = x(s)er ± 

(
aZ au ... au 

== -2 - + (j)o cos(nsx l )-
at ans aXI 

+a2cos(nsx2) aU)1 =cp± (x,t). (2.2) 
aX2 x = X(S)EJ ± 

Our assumptions require that the function U (x,t) satisfy 
the following initial conditions: 

u(x,O) = u,(x,O) = O. (2.3) 

To select the unique solution to the problem we have to 
set, as in Ref. 5, the following conditions of regularity at 
infinity for the function u(x,t): 

ID 7uI <Ak (t)/Ixl, ID 7Dxul <Ak (t)/Ixlz, (2.4) 
J 

for Ixl = (xi + xD I/Z_ + 00, where 

ak 

D~u==-u, k= 1,2; 
atk 

a 
Dx.u==-u, j= 1,2; 

J ax) 

and A k (t) and A k (t) are continuous non-negative functions 
oft. 

Since the geometry of the field has singular points at the 
ends of curve r, we naturally assume that the function 
u (x,t) or its gradient may have singularities in the neighbor
hoods of the end points of curve r. We obtain the following 
conditions in the neighborhoodS of the ends of curve r (as, 
for instance, in Ref. 1) by considering more closely the possi
bIe character of these singularities. The function u(x,t) and 
its derivative u, (x,t) are bounded in the neighborhoods of 
the end points of curve r. Other kinds of derivatives of this 
function Dxu(x,t), D;Dxu(x,t) behave like 

J J 
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(2.5) III. THE CLASSICAL SOLUTION TO PROBLEM W 

To find the classical solution to problem W we need 
several important helpful results. 

wherej = 1,2 and r l ,2 is the distance to the ends of curve r. 
Summarizing, we may exactly define "problem W." 
Problem w.. Find the continuous function u(x,t) in the 

space for t> 0, which has continuous derivative u, (x,t) and 
satisfies Eq. (2.1) in the classical sense, in the space R 2" r 
with initial conditions (2.3), boundary conditions (2.2) on 
the sides of curve r, and conditions of regularity at infinity 
(2.4). Moreover, the function U (x,t) must satisfy conditions 
(2.5) in the neighborhoods of the end points of curve r. 

Let us give the following definitions. We say that a func
tion v(s) belongs to the C\~ih)(r), which is given on the 
curve r, if the function des) 'V(S)EC (O,hl (r), where des) 
== Ix(s) - x(O) 11/2 X Ix(s) - x(l) 11/2

, x(O) = (XI (0), 
x 2(0», and x(/) = (XI (l),x2(/»' The points x(O) and x(/) 
are end points of the curve r, and Ix(s) - x(O) I and 
Ix(s) - xU) I are distances from the point 
xes) = (x l (S),X2(s» to the end points of the curve r. We 
denote the sets of functions 

C (0) [O,T;C (O,h) (r)] =={.u(S,t)EC (0) [O,T;C (O.h) (r)]: J.l(s,O) = J.l, (s,O) = o}, 

C62) [O,T;C\~ih)(r)] =={.u(S,t)EC(2) [O,T;C\~ih)(r)]: J~ I J.l(u,t)du = 0, VtE[O,Tn. 

Let us consider the dynamic logarithmic potential and the angle potential for Eq. (2.1),3 

V [J.l ](x,t) = f J.l(s,t) In Ix - yes) Ids + f' f J.l(s,t - 1') J.- [1 - cos [Ix - yes) I. 1']] ds d1', 
Jr Jo Jr l' Ix - yes) I 

T[v](x,t) = L v(s,t)'I1(x,s)ds- fL v(s,t-1')<I>['I1(x,s);1']dsd1', 

where Ixl = (xf +x~), Ixl. = (a2xf +(u~X~)1/2,y=(yI(S)'Y2(S»Er, 

<I>(s,t) = f' ({U~ sin2 0 + a 2 cos2 0) 1/2 sin{ ({U~ sin2 0 + a 2 cos2 0) 1/2t } dO, 

and '11 (x,s) is the kernel ofthe angle potential, which is defined in the following way7: 

cos '11 (x,s) = XI - YI (s), sin 'I1(x,s) = [x2 - Yz(s) Jllx - yes) I. 
Ix - yes) I 

To assure single-valuedness of the function (3.2) we shall require, as in Ref. 3, 

J~ I v(s,t)ds = O. 

(3.1) 

(3.2) 

We assume that the curve rEA (1.'<), 0 <A < 1 (Ref. 8). We may easily prove the following lemma by using results of the 
theory of dynamic potentials for Eq. (2.1) developed in Ref. 30. 

Lemma 1: If rEA (1.'<), v(s,t),J.l(S,t)EC 62
) [0, 00 ;C\~ih)(r)], then we have the following. 

(1) The potentials T[v] (x,t) and V[,u] (x,t) satisfy Eq. (2.1) in a fieldR 2"r, the initial conditions (2.3), the conditions 
of regularity at infinity (2.4), and the conditions (2.5) in the neighborhood of the end points of the curve r, and are 
continuous in R 2"r (the potential V[P] (x,t) is continuous in R 2). 

(2) If a point xes) is not the end point ofthe curve r, then 

lim ff,xT [,u] (x,t) = ~ V [J.l] (x,t) 
X_X(S)Er ± as 

= f J.l(u,t) sinO(s,U) du+ (a2-{U~) f' f J.l(u,t-1')cos'l1(s,u) 
Jr Ix(s) - y(u) I Jo Jr 
x sin 'I1(s,u) sin{r[ (U~ sin2 '11 (s,u) + a 2 co~ '11 (s,u) r/2} cos O(s,u) dud1', 

Ix(s) - y(u) I 
where V[J.l] (x,t) is the value of the potential V[J.l] on the curve r, O(s,u) is the angle measured counterclockwise between 
the vectors its and x(s)y(u), to the point 

Ix(s) - y(u) I sin O(s,u) = - 1's·x(s)y(u), 

and 

P(s,t) = l' (t - 1')J.l(s,1')d1'; v(s,t) = f (t - 1') ·v(s,1')d1'. 

Later we shall need one more result, which we formulate in a kind of lemma. 
Lemma 2: If rEA (1.'<), V(S,t)EC62)[0,00;C\~ih)(r)], and a pointx(s) is not the end point ofthecurve r, then 
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lim Stx V [v](x,t) = - lim ~ T[v](x,t) = ± 1r(E - waS.,.t.)(E - aSat. )v(s,t) + D [v](s,t) , 
x-x(.)er± x_x(.)er± iYrs 

where 

D [v] (s,t) = r v(u,t) cos O(s,u) dO' 
Jr Ix(s) - y(u) I 

i t i -( ) Ix(s) - y(u) I. . ( Ix(s) - y(u) I.) cos O(s,U) d d 
- v u,t - T SIn T 0' T, 

o r Ix(s) - y(u) 1 Ix(s) - y(u) 1 Ix(s) - y(u) 1 

ii(s,t) = (:t: + w~) (:t: + a 2
) f (t - T) v(s,T)dT, 

(E - /3Spt.) is the operator defined by expressions 

S(/3t) = iPt 
J 1 (t) dt, (E - /3SPt. )v(t) 

o t 
= v(t) - /3 f S(f3,(t - T»"V( T)dT, (3.3) 

where J1 (t) is the Bessel function of first order. 
Proof Let us consider the system of equations 

(:t
22 + w~) ,ux, = - vx" (:t

22 + a 2
) ,ux, = vx,' 

(3.4 ) 

This system was used in Ref. 3 for the construction of the 
dynamic angle potential and plays the same role for Eq. 
(2.1) as the Cauchy-Riemann system does for the Laplace 
equation. One can show by direct calculation that the func
tions 

v = V [v] (x,t), U = T [vo] (x,t), 

{V(S,t) eCb2
) [O,oo;q~h)(r)], 

vo(s,t) = f (t - T)V(S,T)dT}, 

satisfy the system of equations (3.4) in R 2\r. It can be 
shown by using this fact that, for arbitrary xeR 2\r, 

Stx V [v](x,t) = - ~ T[v](x,t). 
aTs 

It is important for later consideration that 

ii(s,t) eC (Ol [0, 00 ;C(O,h) (r)]. 

We use this and the results of Ref. 3 to obtain the formula 

lim Stx V[v](x,t) 
x-x(s)er± 

= - lim ~ T[v](x,t) 
x-x(s)er ± aTs 

= ± 1r(E - woI. t.)(E - aJ t. )v(s,t) 
"'0, a 

+ D [v ](s,t). 

One can show by using a Laplace transformation with re
spect to t that 

+ 1r(E - woI. .) (E - aJ • )v(s,t) - lJJoI at 

= ± 1r(E - waS.,.t.)(E - aSat. )v(s,t), 

where the operator (E - /3SPt.) is defined by formula (3.3). 
The lemma has thus been proved. 
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Lemmas 1 and 2 show some symmetry properties of the 
operators V(x,t) and T(x,t). 

Let us make several remarks. From now on, we shall 
assume that reA (2,A) and the functions rp ± (s,t) in the 
boundary conditions (2.2) belong to C(Ol[O,oo;C(O,h>(r)] 
and satisfy the following condition of the correspondence: 

L [rp+(s,t) -rp_(s,t)]ds=O, 'Vt>O. (3.5) 

We shall look for a solution to problem W of the kind 

u(x,t) = V [v](x,t) + T[,u](x,t), (3.6) 

where v(s,t), ,u(s,t)eCb2l [O,oo;C\~ih)(r)]. According to 
Lemma 1, the function u(x,t) satisfies all the conditions of 
problem W except the boundary conditions (2.2). We ob
tain the following system of integral equations for functions 
,u and v by using Lemmas 1 and 2: 

a-
- V [,u] (s,t) + 1r(E - waS t.)(E - as t. )v(s,t) as "'0, a 

+D[v](s,t) =rp+(s,t), (3.7) 

a-- V [,u](s,t) -1r(E-waS t.)(E-aS t.)v(s,t) as .,. a 

+D[v](s,t) =rp_(s,t). 

By adding and subtracting Eqs. (3.7), we may obtain 

(E - waS.,.t.) (E - aSat. )v(s,t) 

= (l/21T)(rp+(S,t) - rp_(s,t», (3.8) 

i. V [,u] (s,t) as 
= Hrp+(s,t) +rp_(S,t)] -D[v](s,t). (3.9) 

We can find the explicit solution to Eq. (3.8). It is 

v(s,t) = (l/21T)(E - woI. .)(E - aJ .) w.t at 

X(rp+(s,t) -rp_(s,t». 

This solution belongs to C b2
) [O,oo;C I~i'") (r) ], because the 

functions rp± (s,t)eC(Ol[O,oo;C(O,h)(r)]; therefore the 
function 

v(s,t)eC(Ol[O, oo;C (O,a)(r)]. 

One can show by using the earlier representation of the oper-
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ator D[ v] and the fact that reA (2,A) that, for arbitrary func
tions, 

7](S,t)EC(Ol [0, oo;C(O,h) (r)], 

D [7]] (S,t)EC(Ol[O,oo;C (O,A) (r) ], 

Thus we reduce the problem of classical solvability to 
the problem of the solvability of Eq. (3.9), which has the 
right side from C(Ol[O,oo;c(o,r)(r)], r = min [a,A] , in the 
set of functions C f/) [0, 00 ;Cl~ih) (r)]. This equation was 
carefully considered in Ref. 4. Therefore we shall not repeat 
this work, but we shall formulate the final result. 

Lemma 3: Equation (3.9) has the unique solution from 
the set of functions C ~2) [O,oo;C l~ih) (r)] for an arbitrary 
right side chosen from the set of functions 
C(Ol[O, oo;C (O,r)(r)]. 

In summary, as a result of all the lemmas we obtain the 
following. 

Theorem 1: Problem W has the classic solution (3.6), 
where 

V(s,t) = (1/217') «E - OJ~ *) (E - aJ *) ldt,r at 

X ['P+(s,t) -'P_(s,t)], 

and ",(s,t) is the solution of Eq. (3.9) from the set of 
functions C~2) [O,oo;Cl~ih)(r)] for arbitrary 
'P ± (S,t)EC(Ol[O, oo;C (O,a) (r)], which satisfy the conditions 
of correspondence (3.5). 

Let us consider the question of uniqueness of the solu
tion (3.6). We may obtain the energetic relation for Eq. 
(2.1) by the product ofEq. (2.1) and Ut and by carrying out 
the integration on some compact field D in R 2, which has the 
smooth boundary 2D: 

:t {! II VUtllt(D) + OJ; lIux,lIt(D) + ~2I1Ux2I1t(D) } 
= r (JVtx 'u)u t d(aD), JaD 

where it in the expression for JV IX is the external normal 
vector to the boundary of the field D. 

Following Ref. 4, we obtain the next theorem. 
Theorem 2: Solution (3.6) to problem W is the unique 

solution. 

IV. ANALYSIS OF THE RESULTS 

We should note that we have considered the general 
form of the curve r. If some scientists or engineers use the 
results of this paper and consider the specific forms of the 
curve, then problem W can be solved more easily. 

For example, if we replace the curve r by the line 
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r O={(XI,x2): XI = S cos 'P, X 2 = s sin 'P, - l<s<I,}, 

qJE[0,1T12] , 

where'P is angle between the axis ° XI and the line r o, and 
then the second equation of the system (3.8) and (3.9) may 
be written in the following form: 

fl ",(CT,t) dCT= ['P+(s,t) +'P_(S,t)].( -~). 
-I CT-S 2 

(4.1 ) 

This equation was studied in Refs. 1 and 2 and has the explic
it unique solution in the set of the functions 
C~2) [O,oo;Cl~ih)(r)], 

",(s,t) = _1_ (1 _~) -1/2 fl (1 - S2) 1/2 

217' -I S - S 

X ['P+ (s,t) + 'P- (s,t)] dS. (4.2) 

One can prove the following theorem by using our remark, 
Theorem 1, and Theorem 2. 

Theorem 3: In the case when the curve r is replaced by 
the line r 0' problem W has the explicit unique solution de
fined by the expression 

U(X,t) = V [ii](x,t) + T [,u](x,t), 

where 

v(s,t) = (1/21T)(E - OJ~ t*)(E - aJ *) 
Cd() at 

X ['P_(s,t) -'P+(s,t)]'(-1) 

(4.3) 

and ",(s,t) is defined by expression (4.2), for arbitrary 
'P ± (S,t)EC(Ol[O, oo;C (O,k) (r)]. 
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The Ginzburg-Landau equations for superconducting films 
and the Meissner effect 
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The existence ofthe solutions at the lowest energy level to the Ginzburg-Landau equations 
describing superconducting films under the influence of an external magnetic field is proved. 
The condition obtained for maintaining superconducting states does not involve the Ginzburg
Landau parameter, and, more surprisingly, in this condition both the external magnetic field 
and the thickness of the film play equal parts. The asymptotic behavior of these solutions for 
small or large values ofthe external field is also studied, which qualitatively verifies the 
Meissner effect and quantitatively reproduces the solution found from the classical London 
theory. 

I. INTRODUCTION 

In the Ginzburg-Landau theory of superconductivity, 
the free energy density of a superconductor in the absence of 
a magnetic field is given in normalized units by the function 

1&'0 = !IVtPI2+ (A./8)(ltPI2-1)2, (1) 

where A. > 0 is a dimensionless coupling constant with A. < 1 
and A. > 1 describing the type I and type II superconductors, 
respectively. The complex scalar field tP is an order param
eter so that ItPI2 gives the relative density of the supercon
ducting electron pairs, called the Cooper pairs, which be
have like charged bosonic particles, and the normal and pure 
superconducting states are characterized accordingly by 
ItPI2 = 0 and ItPI2 = 1. To enlarge the global U(1) symmetry 
of ( 1) to a local one, a gauge photon field A has to be intro
duced and the full free energy density is defined by 

I&' =!Icurl A 12 + !IDAtPI2 + (A. 18)( ItPI2 - 1 )2, (2) 

where DAtP = VtP - iAtP. In this model the electric field is 
absent and the magnetic field is determined through 
F=curlA. 

The equations of motion of (2) are 

D~tP+ (A.I2)(1-ltPI 2)tP=0 (3) 

and 

curl2 A + (i12)(tP*DAtP - tP(DAtP)*) = 0; (4) 

these are the famous Ginzburg-Landau equations. 
Equations (3) and (4) were first introduced by Ginz

burg and Landau 1 in 1950 in their phenomenological ap
proach to superconductivity close to the transition tempera
ture and later deduced by Gorkov2 theoretically from his 
formulation of the Bardeen-Cooper-Schrieffer theory. 

The Meissner effect in a superconductor cooled below 
the transition temperature is characteized by a complete or 
partial expulsion of the magnetic flux from this supercon
ductor when the external magnetic field is weak; however, 
the normal state will resume when the external magnetic 
field is sufficiently strong. The following is a physicist's 
proof of the celebrated Meissner effect. 

a) Current address: Dept. of Mathematics and Statistics, University of New 
Mexico, Albuquerque. NM 87131. 

The energy density of a superconductor in the presence 
of a constant external magnetic field H ext is given by 

g> = I&' - (curl A) . Hex! 

= <! I curl A 12 - (curl A ) . Hex! ) 

+ !ID A tPI2 + (A. 18)( ItPI2 - 1 )2. (5) 

From (5), the equations of motion have two apparent 
solutions: 

and 

( a) tP = 0, curl A = Hex!' 

(b) tP=eiO
", BoERl, A=O. 

For the solution (a), we find the energy density 

g> a = - !(IHext 12 - (A. 14», 

and for (b), we find g> b = o. Therefore if IHex! 12 < (A. 14) 
then g> a > g> b' so the solution (b) is energetically favorable 
and we are in a superconducting state; while if 
IHext 12> (A. 14) then g> a < g> b' so the solution (a) is energe
tically favorable and we are in the normal state. Hence the 
Meissner effect follows. 

There is a serious gap in the above stated proof: if the 
solutions (a) and (b) are not energetically stable, they are 
physically unacceptable. On the other hand, however, a 
mathematically rigorous proof of the Meissner effect has 
never appeared so far in the literature. The difficulty lies in 
the fact that the existence result for energy minimizing solu
tions of the Ginzburg-Landau equations under the influence 
of an external magnetic field h has not been established if h is 
not sufficiently small. For example, Carroll and Glick3 

proved an existence and uniqueness theorem under the con
dition that both A. and h are small, and more recently, Kli
mov4 established some existence results for arbitrary A. but 
with the hypothesis that the external magnetic field is ab
sent. 

We believe if the geometry of a superconductor is sim
ple, the above described difficulty may be overcome. Our 
present study gives the Meissner effect in superconducting 
films a mathematical proof using the solutions of the Ginz
burg-Landau equations at the lowest energy level. First we 
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show the existence of the energy minimizing solutions and 
provide a sufficient condition which keeps the solutions 
found from being "trivial" (or normal). This is an early 
glance at why the smallness of the external magnetic field h is 
important to enable the film to maintain a superconducting 
state. It is surprising to see that the condition obtained for 
maintaining superconducting states does not involve the pa
rameter A, and, in this condition both the thickness of the 
film and the external magnetic field play equal parts. Then 
we prove that when h is small the solutions are close to the 
pure superconducting state, and when h is large the solutions 
will approach the normal state: this furnishes a mathemat
ical proof of the Meissner effect. For large and small values 
of h, asymptotic expressions for the responding magnetic 
field in the superconducting film are obtained. Furthermore, 
a time-evolution model for superconducting films will also 
be considered. 

II. THE GINZBURG-LANDAU EQUATIONS FOR 
SUPERCONDUCTING FILMS 

Consider a superconducting film of thickness 2a in a 
parallel constant magnetic field h. In normalized units the 
Ginzburg-Landau equations are (Burger5

; Odeh6
): 

ifJ"(x) = AifJ(X)(ifJ2(X) - 1) + A(hA(x»2ifJ(x), 

A "(x) =ifJ2(x)A(x), -a<x<a; (6) 
ifJ'( ±a) =0, A'( ±a) = 1, 

where, now, ifJ and hA are real scalar fields representing the 
order parameter and the gauge potential, respectively, A > 0 
is the usual coupling constant characterizing the types of 
superconductors, and the induced magnetic field in the film 
is given by F(x) = hA '(x). 

Odeh6 observed that (6) has a trivial solution ifJ = 0, 
A = x + C (where C is an arbitrary constant) and that non
trivial solutions can be produced in a neighborhood of the 
trivial solution through an implicit function theory ap
proach provided h is slightly below some "critical value" ho. 

We note that the order parameter ifJ represents the relative 
density of the Cooper pairs, and so, the solutions near the 
normal state ifJ = 0, A = x + C may not give physically real
istic solutions for the superconducting films. The purpose of 
this section is to find the energy minimizing solutions of (6) 
without any restriction to the range of h. We shall see, for 
small h, these solutions are far from the normal state: this is 
indeed what really happens in a superconductor. 

The energy of the field configuration (ifJ,A) in a super
conducting film of thickness 2a is given by (cf. Burger) 

E(ifJ,A)="!"'[ {(ifJ')2+Ah 2([A'-IF 
2 -a 

+ A 2ifJ2) + (A 12)(ifJ2 - 1)2}dx, (7) 

where (ifJ,A )EW 1
,2( - a,a).ltiseasilychecked that the min

imizers of the problem 

m = min E(ifJ,A) (8) 
(4),A)eW'·'( -0,0) 

are the solutions to (6). One can observe that the energy (7) 
is not good enough to work with because the term A 2ifJ2 does 
not enable us to controlthe W 1,2 ( - a,a) norm of a minimiz-

1285 J. Math. Phys., Vol. 31, No.5, May 1990 

ing sequence of the problem (8). In order to overcome this 
difficulty, we consider the modified problems 

mE= min EE(ifJ,A), 
(4),A)eW'·'( -a,a) 

(9) 

where E> 0 and 

EE =..!... fa {(ifJ')2 + Ah 2([A' - 1 f +A 2[ifJ2 + E]) 
2 -a 

+ (A 12)(ifJ2 - 1 )2}dx. (10) 

It is immediate to see that the minimum mE of EE is 
attained in the space W 1,2( - a,a), 

Indeed, let (ifJj,Aj )EW I
,2( - a,a) be a minimizing se

quence of (9). We can assume 

(11 ) 

From (11) and the Schwarz inequality we easily conclude 
that {(ifJj,Aj)} is a bounded sequence in WI,2( - a,a). 
For simplicity we may assume there is a point 

(ifJe,Ae)EW 1
•
2( -a,a) such that (ifJj,Aj):(ifJE,Ae) in 

WI,2( -a,a). The compact embedding 

WI,2( _ a,a) --+CO[ - a,a] (12) 

enables us to conclude that 

Ee (ifJe,Ae) <lir.n inf Ee (ifJj,Aj) = me' 
l- 00 

and, hence, me is attained at (ifJe,Ae). We shall show in the 
sequel that the minimizers of (8) can be found by taking 
E--+O+. 

From the standard regularity theory, 
(ifJe,Ae )EC 00 [ - a,a] and solves the problem 

ifJ;(x) = AifJe (x)(ifJ; (x) -1)+A(hAe(x»2ifJe(x), 

A;(x)=(ifJ;(X)+E)Ae(X), -a<x<a; (13) 

ifJ;( ±a) =0, A;( ±a) = 1. 

Because A; ( ± a) = 1, there is a point XeE( - a,a) 
such that A ;(xe ) = O. Hence, from (13)2' we get 
Ae (xe ) = O. Consequently the Schwarz inequality yields the 
bound 

IAe(x)l< I i~ A ; (s)dsI 

<$ci( J~a (A; (S»2 ds yl2 
<$ci[ (J~ a (A ; (S) - Wds y/2 + $ci] 

<$i(~~:: +$i). (14) 

Let EI < E2 be two positive numbers. It is obvious that 

me, <me,· (15) 

Assume now {Ej}T= I is a sequence of positive numbers 
satisfying . 

lim Ej = O. 
j-oo 

From (10) , (14) , and (15) we readily see that 
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{(<PEj,AEj )} isa bounded sequence in the space WI,2( - 0,0). 

For simplicity we may assume there is a point 
(¢,A)EW I

•
2

( - 0,0) such that 
w 

(<PE,AE) ..... (¢,A) in W I,2(-a,a) asj ..... oo. (16) 
J J 

In virtue of the embedding (12) we have 
s 

(<PE,AE) ..... (¢,A) in Co[ -0,0] as j ..... 00. (17) 
J J 

First we claim that (¢,A) is a minimizer of the problem 
(8). 

In fact, for any fixed (<p,A)EW I.2( - 0,0), we have 

~fa {(A.')2+~(A.2 _1)2+A.h2([A'_1]2 2 _ a 'I'Ej 2 'I'Ej EJ 

+ A ;)<p;j + Ej ]) }dX 

= EE (<PE,AE)<EE (<p,A) 
J J } j 

=~fa {(<P')2+~(<p2-1)2+A.h2([AI-IF 
2 -a 2 

(18) 

Letting j ..... 00 and using (16) and (17) in the inequality 
(18), we obtain E(¢,A) <E(<p,A). This is the desired com
parison. Hence ( ± ¢,A) are smooth solutions of (6) that 
minimize the energy (7). 

Finally, we want to find some condition under which the 
minimizers of the problem (8) are not the trivial solutions 

<Po = 0, Ao = x + C, C = constants. 

To this aim, we have only to achieve the inequality 

E(<po,Ao»m. (19) 

From (7), E(<po, Ao) = !A.a. On the other hand, taking 
<po = 1, A ° = x, we have E(<p°,A 0) = jAa3h 2. Therefore if 

a2h 2<~, (20) 

then E(<p°,A 0) <E(<po, Ao)' But (<po, A 0) is not a solution to 
(6), hence it cannot be an extremal point of E. Thus 

m<E(<p0,A 0) =jAa3h 2<E(<po,Ao) =!A.a, (21) 

and consequently (19) is achieved. 
We summarize the above discussion in the following. 
Theorem 2.1: The Ginzburg-Landau equations (6) al

ways have energy minimizing solutions for arbitrary A. > 0 
and external magnetic field h. Furthermore, if a2h 2<~, then 
the energy minimizing solutions are nontrivial (or supercon
ducting). 

Remarks: (1) It is surprising to notice that the condi
tion (20) does not involve A. and that both a and h play equal 
roles in maintaining the film in a superconducting state. 

(2) For sufficiently small external magnetic field h, we 
see from (21) that the energy minimizing solutions of (6) 
can be far away from the normal state (i.e., from the trivial 
solutions) . 

III. THE MEISSNER EFFECT 

When a superconductor is cooled below the transition 
temperature Te and the applied external magnetic field h is 

1286 J. Math. Phys., Vol. 31, No.5, May 1990 

weak, the superconductor will be in a superconducting state; 
but, however, the superconducting state can be quenched 
and normal state restored by the application of an external 
magnetic field exceeding in magnitUde a certain value he' 
called the critical or threshold magnetic field. This value he 
obeys approximately the formula 

he ;:::ho{1 - (T /Te )2), T < Te, 

and for different superconducting materials ho varies in a 
very wide range. 

In this section we will give the above picture a math
ematical description using the energy minimizing solutions 
of the Ginzburg-Landau equations (6) for superconducting 
films. Roughly speaking, we shall show that as h ..... 0 the film 
is in a pure superconducting state while as h ..... 00 the film is 
in the normal state. Note that here it is impossible to find in a 
superconducting state the complete expulsion of the magnet
ic flux from the film. 

Recall that the normal and pure superconducting states 
are given respectively by 

<Po = 0, Ao = x + C, (22) 

and 

<pl = ± 1, A 1 = (sinh x/cosh a), (23) 

where coshx=!(ex+e- X) and sinhx=!(eX-e- X). 
Note that the solutions (22) and (23) can all be obtained 
from solving (6) under the assumption h = O. 

For given h, let (<Ph' Ah) be a minimizer of the problem 
(8). 

Lemma 3.1: <Ph ..... O uniformly on [ - 0,0] as Ih I ..... 00. 

Proof Otherwise, we may assume for definiteness that 
there is a sequence {<Ph} and an Eo> 0 such that 

J 

hj ..... oo as j ..... 00 but II<phjllc"l_a.aJ>EO' (24) 

Let <PI = 0, AI = x. We have 

E(<Phj,Ah) =mj<E(<PI,AI) = !A.a, j = 1,2,... . (25) 

Inequality (25) yields the boundedness of {<Ph} in the space 
J 

WI,2( -0,0). For simplicity we can assume <Ph:,p for 
J 

some r/JEW 1.2( - 0,0). Thus <Ph -:,p in CO[ - 0,0] in virtue 
J 

of the compact embedding (12). From (24) we have 

11,pllc"! -a,aJ>EO' (26) 

On the other hand, (25) gives us 

f
a {(A h _1)2 +A ~<pDdx<~ ..... O, j ..... 00. 
-0 J J J h 2 

j 

Hence 

fa [(Ah/x) -Ahj(O) -x)']2dx ..... 0, j ..... oo, 

or equivalently, 
s 

u=Ah-Ah(O) ...... x in W I,2(-a,a) asj ..... oo. 
j j j 

Therefore we have 
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- f~a (Uj - X)2~~j dx, (27) 

where we have used the simple inequality 
2(p + q)2>p2 _ 2q2. 

Lettingj ..... 00 in (27) we have 

J~~ f~a (x + Ahj(0»2~~j dx = O. (28) 

By passing to a subsequence if necessary, we may assume 
Ah (0) ..... some point 77ER· or Ah (0) ..... 00 as j ..... 00. Obvious-

J J 

ly the latter possibility is prohibited by (26) and (28) and so 
we may assumeAh ..... 77. From (28) we get 

J 

f~a (x + 77)2t/l dx = O. 

Hence tP=O. This contradicts (26). 
Lemma 3.1 is proved. 
Now that ~h ..... 0 uniformly on [ - a,a] as Ih I ..... 00, we 

expect to prove A h ..... x + C, C = const as 1 h I ..... 00. In order 
to avoid the ambiguity arising from the arbitrary constant C, 
let us consider the normalized field 

- 1 fa Ah = Ah - - Ah (x)dx. 
2a -a 

Here, Ah is a translation of Ah with zero mean value. Since 

[a «Ah (x) - X)')2 dx = [a (A;' - 1)2 dx 

a <-2 ..... 0 as h ..... 00, 
h 

therefore we observe that Ah (x) ..... x uniformly on [ - a,a] 
as Ih 1""'00. 

Consequently we have shown that as Ih I ..... 00 the res
caled field configurations (~h;ih) constructed from the en
ergy minimizing solutions (~h,Ah) approach the normal 
state (O,x) uniformly as 1 hi ..... 00 • 

When h ..... 0 we expect to have ~~ ..... 1 uniformly on 
[ - a,a]. For otherwise, there is an Eo> 0 and a sequence 
hj ..... O as j ..... 00 such that 

11~~j -ll1c"l-a.al>EO' j= 1,2,... . (29) 

By the same reasoning as before we can assume 
s 

~h ..... tPinCO[ -a,a] forsomet/JEW·,2( -a,a). 
J 

Let ~2 = 1, A2 = O. We have 

~fa (~~ - 1)2 dx 
4 -a J 

<E(~hj,Ah) 

<E(~2,A2) 

=).ah] ..... O asj ..... oo. 

So tP= 1. This contradicts (29). 
Lemma 3.2: There exist constants ho, K(ho) > 0 such 

that 

IIAhllc"l-a,a)<K(ho) for Ih 1 <ho· 
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Proof Since ~~ ..... 1 uniformly on [- a,a] as h ..... O, 
there is an ho > 0 such that 

~i;>(1/2) whenever Ih 1 <ho· (30) 

Let Uh = Ah - x, Then Uh satisfies 

u;=~~uh+x~L -a<x<a; uj,(±a)=O. 

An integration by parts and an application of the Schwarz 
inequality yield 

- f~a (U;,)2 dx = f~a ~~u~dx + f~a X~~Uh dx 

1 fa ,/,2 2 d 1 fa 2,/,2 d ;>- 'f'hUh X-- X 'f'h X, 
2 -a 2 -a 

thus in virtue of (30), 

f~a [(U;,)2 + U~ ]dx<4 [a X2~~ dx, if Ih 1 <ho· 

From the above inequality and the embedding (12) we 
see that {Uh 1 Ih 1 < ho}, and hence {A h 1 Ih 1 < ho}, is a 
bounded set in C O

[ - a,a]. This proves Lemma 3.2. 
Using Lemma 3.2 we can deduce the behavior of Ah as 

h ..... O. Ah satisfies the boundary value problem 

A;(x)=Ah(x)+(~~-I)Ah' -a<x<a, 

A;'( ±a) = 1. 

Let G(xlt) be the Green function ofthe problem 

U"(x) - U(x) =/(x), -a<x<a, 

U'( ±a) =0. 

Then we easily find 

sinh x fa 
Ah (x) = --+ G(xlt)(~~ (t) - l)Ah (t)dt· 

cosh a -a 

(31) 

But ~~ ..... 1 uniformly on [- a,a] as h ..... 0 and 
{IiA h IIc"l -a,a) 1 Ih 1 < ho}is a bounded set (cf. Lemma 3.2), 
consequently we reach from (31) the conclusion 

sinh x . 
Ah (x) ..... --- umformlyon [ - a,a] as h ..... O. 

cosh a 

The above study leads to the following mathematical 
description of the Meissner effect. 

Theorem 3.3: For a given external magnetic field h, let 
(~h' A h ) be an energy minimizing solution of the Ginzburg
Landau equations (6) and (~h' Ah ) the associated normal
ized field configuration. 

(a) As Ih 1 ..... 00, (~h,Ah) approach the normal state 
(~o, Ao) = (O,x) uniformly on [ - a,a] and, moreover, if 
Fh (x) = hA i. (x) is the induced magnetic field in the super
conductor, then 

~ = 1 + oC·h). (32) 

(b) As h ..... O, (~h' Ah ) approach the pure supercon
ductingstates (~f,A f) = ( ± 1 ,sinh x/cosh a) uniformly 
on [ - a,a] and, moreover, 

Fh cosh x 
-=--+E(h), where E(t) ..... O as ( ..... 0. (33) 

h cosh a 
Proof It suffices to verify (32) and (33). 
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From (6)2 we have 

IA hex) -11 = I fa ¢i(s)Ah(s)ds I 

'(J~a ¢~ ds ) 1I2(f a ¢~A ~ dS )112 
2a 

'ThT11¢hllco!-a.al' XE[ -a,a], (34) 

sinceE(¢h.Ah),E(¢I' AI) implies 

fa ¢iA ~ ds, -;.. 
-a h 

Applying Lemma 3.1 to (34) we reach (32). 
Finally (33) follows from Lemma 3.2, ¢~ -+ 1 uniformly 

on [ - a,a], and differentiating (31). 
This proves Theorem 3.3. 
Remarks: (1) Using the implicit function theorem it is 

not hard to prove that for small h the energy minimizing 
solutions of (6) in the neighborhoods of (¢ g , A g) are 
unique. 

(2) (32) says that the induced magnetic field in the 
superconductor is approximately proportional to the exter
nal field h if h is strong. Thus the superconductor now be
haves like a normal conductor. 

(3) The first-order approximation of Fh in (33) can be 
obtained by the classical London theory (cf. Tinkham7

). 

( 4) Besides the energy minimizing solutions, (6) may 
have many other solutions. As a simple example, let us con
sider the limit case h = O. The multiple solutions of (6) can 
all be produced from the solutions of 

¢" (x) = A¢(X){¢2(X) - 1), - a,x,a, 

¢/( ± a) = O. 

This equation has at least k distinct pairs of solutions ex
pressed explicitly in terms of the Jacobian elliptic functions if 
Aa2 > (k2~/4). 

IV. TIME EVOLUTION 

The time dependence of the field configurations in a su
perconducting film can be switched on according to the con
vention (cf. e.g., AmbegaokarB) 

(¢"A t )= -tJE(¢,A), 

where tJ is the Frechet derivative. Therefore, supplemented 
with initial data, we have a time-evolution model governed 
by the equations 

¢t = ¢xx - A¢(¢2 - 1) - Ah 2A 2¢, 

At =Axx _¢2A, -a<x<a, t>O; 

¢x( ±a) =0, Ax( ±a) = 1, t>O, 

¢=tPo(x), A=ao(x), -a<x<a, t=O. 

(35) 

For greater generality, we allow h to be dependent on 
t;;~0 but uniform in x. In order to have a suitable function 
space setting, we introduce a translation 

a = A - x, a o = ao - x. 

Now (35) is equivalent to 
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¢t = ¢xx - A¢(¢2 - 1) - Ah 2(t) (a + X)2¢, 

a(=axx -¢2(a+x), -a<x<a, t>O; 

¢x( ±a) =ax ( ±a) =0, t>O, 

¢ = tPo, a = ao, - a < x < a, t = O. 

(36) 

Let Hk = W k.2( - a,a), HO = L 2( - a,a). Then T: 
HO .... Ho, where 

and 

T(¢,a) = ( - ¢xx, - a xx ) + (¢,a) 

is positive and self-adjoint, hence, a sectorial operator with 

Dom( T1/2) = HI 

(cf. Henry9). Consequently if ( tPo, a o) EH I, (36) is uniquely 
solvable in the weak sense over a small time interval [0, to) 
for some to> O. Standard parabolic regularity argument 
shows that the obtained solution (¢ (t,x), a (t,x» is indeed a 
classical solution on [0, to) X [ - a,a]. To see that the solu
tion exists for all t> 0, we have only to show that (¢, a) is 
bounded in H I for t> O. 

Lemma 4.1: There is a constant K> 0 independent of 
t> 0 such that 

II¢IIC"!-a.al' lIa IIC"!-a,al,K, t>O. 

Proof' We shall use the maximum principle for parabol
ic inequalities to infer the desired pointwise estimates. 

First, from (36) I' we have 

(¢2)( = (¢2)xx _ 2¢; _ U¢2(¢2 - 1) _ 2Ah 2A 2¢2 

,(¢2)xx - U¢2(¢2 - M), (37) 

where M = max{I,lltPoll~"[ _ a,a I}' The inequality (37) can 
be rewritten 

(¢2 _ M) ( , (¢2 _ M) xx _ U¢2 (¢2 - M). 

Since¢2 - M,Oatt = 0, - a <x<aand (¢2 - M)x = Oat 
x = ± a, t> 0, we can conclude that ¢2 - M,O for all t, x. 

Secondly, from (36)2 and - 2xa¢2,a2¢2 + a 2¢2, we 
have 

(a2), = (a2)xx - 2a; - 2¢2a2 - 2xa¢2 

,(a2)xx - ¢2(a2 _ a2) 

,(a2)xx - ¢2(a2 _ N2), 

where N = max{a,llao IIcO! -a,al}' By the same reasoning as 
before we reach a 2 

- N 2,0. This completes the proof of 
Lemma 4.1. 

Lemma 4.2: If h(t) is bounded, then there is a con-
stant K> 0 independent of t> 0 such that 

lI¢x IIL'( - a,a) ,llax IIL'( - a,a) ,K. 

Proof' Define 

Jo = fa ¢2(t,x)dx, J1(t) = J~a ¢;(t,x)dx. 

In virtue of Lemma 4.1, (36), and the Schwarz inequality, it 
is not hard to find 

J~(t),-2JI(t)+CO' Ji(t),C1, t>O, 

where CO,CI > 0 are two suitable constants independent of 
t> o. Therefore we have 
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J o (t) + J; (t)< - 2J1(t) + Co + C1 

<-(JO(t)+J1(t»+C2, t>O, (38) 

for some constant C2 > 0 (cf. Lemma 4.1 ). The boundedness 
of Jo(t) + J 1 (t) now follows immediately from solving the 
differential inequality (38). In particular, the desired inte
gral bound for rp x is obtained. The bound for a x can similarly 
be inferred. This proves Lemma 4.2. 

The above two lemmas establish the global existence 
and boundedness of the (unique) solution (rp (t,x),a (t,x» of 
the initial value problem (36) for bounded h (t) and (r/Jo, 
ao)EH I. This proves the part (a) of the following. 

Theorem 4.3: Suppose h = h(t) is a bounded contin
uous function on [0, 00 ). 

(a) If (r/Jo, ao)EW 1
•
2

( - a,a), then (35) has a unique 
global classical solution. This solution is pointwise bounded. 

(b) If h(t)EC 1 [0, 00) and Ih(t) I is decreasing, then 
along the solution (rp,A) of (35), the energy E(t) =.E(rp,A), 
t> 0 is also decreasing. Moreover, if h(t) = ho for t>'To, then 
the solution will approach the set of steady state solutions of 
(35), i.e., the solutions of (6). 

Proof' It remains to verify (b). 
Using (35) we have 

dE(t) = _ fa (rp; +)'h 2(t)A ;)dx + )'h(t)h '(t) 
dt -a 

x fa [(Ax - 1)2 + A 2rp2]dx. (39) 

If Ih(t) I is decreasing, then h(t)h ' (t) <0. SoE' (t) <0 due to 
(39). In the case h( t) =.const for t> 'To, the w-limit set of the 
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trajectory {( rp,a) (t)} =. {( rp,a)} t;>T" « rp,a) is the solution of 
(36» in HI is invariant since 

{S(t): HI-+Hllt>'To}, 

S(t)(r/Jo,ao) =. (rp,a)(t), (r/Jo,ao)EH 1 

is a dynamical system. From this fact and (39) one finds 
using a standard argument that the w-limit set of {( rp,a) (t)} 
is contained in the set of the steady state solutions of (36). 

Theorem 4.3 is proved. 
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